
xclim Documentation
Release 0.39.0

xclim Project Development Team

Nov 02, 2022

CONTENTS:

1 Installation 3
1.1 Stable release . 3
1.2 Anaconda release . 3
1.3 Extra dependencies . 3
1.4 From sources . 4
1.5 Creating a Conda environment . 4

2 Basic Usage 5
2.1 Climate indicator computations . 5
2.2 Health checks and metadata attributes . 7
2.3 Graphics . 10

3 Examples 13
3.1 Workflow Examples . 13
3.2 Ensembles . 24
3.3 Ensemble-Reduction Techniques . 28
3.4 Frequency analysis . 38
3.5 Customizing and controlling xclim . 42
3.6 Extending xclim . 45
3.7 Statistical Downscaling and Bias-Adjustment . 60
3.8 Statistical Downscaling and Bias-Adjustment - Advanced tools . 76
3.9 Spatial Analogues examples . 94

4 Climate indicators 103
4.1 atmos: Atmosphere . 103
4.2 land: Land surface . 103
4.3 seaIce: Sea ice . 103
4.4 Virtual submodules . 103

5 Climate indices 105
5.1 Indices library . 105
5.2 Indices submodules . 190

6 Health Checks 223
6.1 CF-Convention checking . 223
6.2 Data checks . 223
6.3 Missing values identification . 224
6.4 Data flags . 226

7 Unit handling 233
7.1 Threshold indices . 234

i

7.2 Sum and count indices . 235

8 Internationalization 237

9 Command line interface 241
9.1 Computing indicators . 254
9.2 Data Quality Checks . 257

10 Bias adjustment and downscaling algorithms 261
10.1 Application in multivariate settings . 261
10.2 SDBA User API . 262
10.3 Developer tools . 300

11 Spatial Analogues 305
11.1 Methods to compute the (dis)similarity between samples . 305
11.2 Analogue metrics API . 306
11.3 Utilities for developers . 310

12 Contributing 313
12.1 Types of Contributions . 313
12.2 Get Started! . 315
12.3 Pull Request Guidelines . 316
12.4 Tips . 317
12.5 Versioning . 318
12.6 Deploying . 318
12.7 Packaging . 319

13 Credits 321
13.1 Development Lead . 321
13.2 Co-Developers . 321
13.3 Contributors . 321

14 History 323
14.1 0.39.0 (2022-11-01) . 323
14.2 0.38.0 (2022-09-06) . 325
14.3 0.37.0 (2022-06-20) . 328
14.4 v0.36.0 (2022-04-29) . 331
14.5 v0.35.0 (2022-04-01) . 331
14.6 v0.34.0 (2022-02-25) . 332
14.7 v0.33.2 (2022-02-09) . 333
14.8 v0.33.0 (2022-01-28) . 334
14.9 v0.32.1 (2021-12-17) . 336
14.10 v0.32.0 (2021-12-17) . 336
14.11 v0.31.0 (2021-11-05) . 338
14.12 v0.30.1 (2021-10-01) . 340
14.13 v0.30.0 (2021-09-28) . 340
14.14 v0.29.0 (2021-08-30) . 342
14.15 v0.28.1 (2021-07-29) . 344
14.16 v0.28.0 (2021-07-07) . 345
14.17 v0.27.0 (2021-05-28) . 347
14.18 v0.26.1 (2021-05-04) . 348
14.19 v0.26.0 (2021-04-30) . 348
14.20 v0.25.0 (2021-03-31) . 349
14.21 v0.24.0 (2021-03-01) . 350
14.22 v0.23.0 (2021-01-22) . 351

ii

14.23 v0.22.0 (2020-12-07) . 352
14.24 v0.21.0 (2020-10-23) . 354
14.25 v0.20.0 (2020-09-18) . 354
14.26 v0.19.0 (2020-08-18) . 356
14.27 v0.18.0 (2020-06-26) . 357
14.28 v0.17.0 (2020-05-15) . 358
14.29 v0.16.0 (2020-04-23) . 358
14.30 v0.15.x (2020-03-12) . 359
14.31 v0.14.x (2020-02-21) . 359
14.32 v0.13.x (2020-01-10) . 359
14.33 v0.12.x-beta (2019-11-18) . 360
14.34 v0.11.x-beta (2019-10-17) . 360
14.35 v0.10.x-beta (2019-06-18) . 361
14.36 v0.10-beta (2019-06-06) . 361
14.37 v0.9-beta (2019-05-13) . 362
14.38 v0.8-beta (2019-02-11) . 362
14.39 0.7-beta (2019-02-05) . 362
14.40 v0.6-alpha (2018-10-03) . 363
14.41 v0.5-alpha (2018-09-26) . 363
14.42 v0.4-alpha (2018-09-14) . 363
14.43 v0.3-alpha (2018-09-4) . 363
14.44 v0.2-alpha (2018-08-27) . 363
14.45 v0.1.0-dev (2018-08-23) . 363

15 API 365
15.1 Indicators . 365
15.2 Indices . 564
15.3 Ensembles module . 564
15.4 Indicator Tools . 573
15.5 Unit Handling module . 580
15.6 Other Utilities . 584
15.7 Other xclim modules . 605

16 xclim 609
16.1 xclim package . 609

Bibliography 979

Python Module Index 989

Index 991

iii

iv

xclim Documentation, Release 0.39.0

xclim is a library of functions to compute climate indices from observations or model simulations. It is built using
xarray and can benefit from the parallelization handling provided by dask. Its objective is to make it as simple as
possible for users to compute indices from large climate datasets and for scientists to write new indices with very little
boilerplate.

For applications where meta-data and missing values are important to get right, xclim provides a class for each index
that validates inputs, checks for missing values, converts units and assigns metadata attributes to the output. This also
provides a mechanism for users to customize the indices to their own specifications and preferences.

xclim currently provides over 50 indices related to mean, minimum and maximum daily temperature, daily precipitation,
streamflow and sea ice concentration.

CONTENTS: 1

https://docs.xarray.dev/
https://www.dask.org/

xclim Documentation, Release 0.39.0

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

1.1 Stable release

To install xclim via pip, run this command in your terminal:

$ pip install xclim

This is the preferred method to install xclim, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

1.2 Anaconda release

For ease of installation across operating systems, we also offer an Anaconda Python package hosted on conda-forge.
This version tends to be updated at around the same frequency as the pip library, but can lag by a few days at times.

To install the xclim Anaconda binary, run this command in your terminal:

$ conda install -c conda-forge xclim

1.3 Extra dependencies

To improve performance of xclim, we highly recommend you also install flox (see: flox API). This package integrates
into xarray and significantly improves the performance of the grouping and resampling algorithms, especially when
using dask on large datasets.

We also recommend using the subsetting tools in clisops (see: clisops.core.subset API) for spatial manipulation of
geospatial data.

xclim is regularly tested against the main development branches of a handful of key base libraries (xarray, cftime, flox,
pint). For convenience, these libraries can be installed alongside xclim using the following pip-installable recipe:

$ pip install -r requirements_upstream.txt
Or, alternatively:
$ make upstream

Another optional library is SBCK, which provides experimental adjustment methods to extend xclim.sdba. It can’t be
installed directly from pip or conda and has one complex dependency : Eigen. Please refer to Eigen’s and SBCK’s docs
for the recommended installation instructions. However, Eigen is available on conda, so one can do:

3

https://pip.pypa.io/
https://docs.python-guide.org/starting/installation/
https://github.com/xarray-contrib/flox
https://flox.readthedocs.io/en/latest/api.html
https://github.com/roocs/clisops
https://clisops.readthedocs.io/en/latest/api.html
https://github.com/yrobink/SBCK
https://eigen.tuxfamily.org/index.php

xclim Documentation, Release 0.39.0

$ conda install -c conda-forge eigen pybind11
$ pip install "git+https://github.com/Ouranosinc/SBCK.git@easier-install#egg=sbck&
→˓subdirectory=python"

The last line will install SBCK>=v0.4.0 from Ouranos’ fork which implements a small fix that allows this direct instal-
lation from pip within a virtual environment.

Finally, the function xclim.sdba.property.first_eof makes use of eofs, another optional dependency, which is
available on both pip and conda.

1.4 From sources

Warning: For Python3.10+ users: Many of the required scientific libraries do not currently have wheels that
support the latest python. In order to ensure that installation of xclim doesn’t fail, we suggest installing the Cython
module before installing xclim in order to compile necessary libraries from source packages.

The sources for xclim can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git@github.com:Ouranosinc/xclim.git

Or download the tarball:

$ curl -OL https://github.com/Ouranosinc/xclim/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Alternatively, you can also install a local development copy via pip:

$ pip install -e .[dev]

1.5 Creating a Conda environment

To create a conda development environment including all xclim dependencies, enter the following command from
within your cloned repo:

$ conda create -n my_xclim_env python=3.8 --file=environment.yml
$ conda activate my_xclim_env
(my_xclim_env) $ pip install ".[dev]"

4 Chapter 1. Installation

https://ajdawson.github.io/eofs/
https://github.com/Ouranosinc/xclim
https://github.com/Ouranosinc/xclim/tarball/master

CHAPTER

TWO

BASIC USAGE

2.1 Climate indicator computations

xclim is a library of climate indicators that operate on xarray DataArray objects.

xclim provides two layers of computations, one responsible for computations and units handling (the computation
layer, the indices), and the other responsible for input health checks and metadata formatting (the CF layer, refering
to the Climate and Forecast convention, the indicators). Functions from the computation layer are found in xclim.
indices, while indicator objects from the CF layer are found in realm modules (xclim.atmos, xclim.land and
xclim.seaIce). Users should always use the indicators, and maybe revert to indices as a last resort if the indicator
machinery becomes too heavy for their special edge case.

To use xclim in a project, import both xclim and xarray.

[1]: from __future__ import annotations

import xarray as xr

import xclim
from xclim.testing import open_dataset

Indice calculations are performed by opening a netCDF-like file, accessing the variable of interest, and calling the
indice function, which returns a new DataArray.

For this example, we’ll first open a demonstration dataset storing surface air temperature and compute the number of
growing degree days (the sum of degrees above a certain threshold) at the monthly frequency.

[2]: # ds = xr.open_dataset("your_file.nc")
ds = open_dataset("ERA5/daily_surface_cancities_1990-1993.nc")
ds.tas

[2]: <xarray.DataArray 'tas' (location: 5, time: 1461)>
array([[277.49966, 270.44736, 273.5631 , ..., 259.30075, 267.44043, 264.0009],

[272.3179 , 268.01813, 273.50452, ..., 249.57759, 258.23706, 260.20535],
[245.21338, 252.72534, 248.18385, ..., 235.18086, 236.17192, 243.2071],
[270.79147, 263.67996, 257.4426 , ..., 257.80548, 269.45105, 261.2271],
[279.71753, 278.1774 , 279.41824, ..., 280.08725, 280.65396, 280.92868]],

dtype=float32)
Coordinates:

lat (location) float32 ...
* location (location) object 'Halifax' 'Montréal' ... 'Saskatoon' 'Victoria'
lon (location) float32 ...

* time (time) datetime64[ns] 1990-01-01 1990-01-02 ... 1993-12-31
(continues on next page)

5

https://xarray.pydata.org/

xclim Documentation, Release 0.39.0

(continued from previous page)

Attributes:
standard_name: air_temperature
long_name: Mean daily surface temperature
units: K
cell_methods: time: mean within days

[3]: gdd = xclim.atmos.growing_degree_days(tas=ds.tas, thresh="10.0 degC", freq="YS")
gdd

[3]: <xarray.DataArray 'growing_degree_days' (location: 5, time: 4)>
array([[7.9897247e+02, 7.2488672e+02, 6.4941925e+02, 6.7033386e+02],

[1.2330164e+03, 1.3716892e+03, 1.1340271e+03, 1.2288167e+03],
[8.0615845e+00, 2.7421051e+01, 1.0251160e+00, 2.0045013e+01],
[9.3481873e+02, 1.0134860e+03, 7.2482220e+02, 6.3551764e+02],
[6.2461761e+02, 5.3345679e+02, 6.3453369e+02, 5.9410144e+02]],

dtype=float32)
Coordinates:

lat (location) float32 44.5 45.5 63.75 52.0 48.5
* location (location) object 'Halifax' 'Montréal' ... 'Saskatoon' 'Victoria'
lon (location) float32 -63.5 -73.5 -68.5 -106.8 -123.2

* time (time) datetime64[ns] 1990-01-01 1991-01-01 1992-01-01 1993-01-01
Attributes:

units: K days
cell_methods: time: mean within days time: sum over days
history: [2022-11-02 04:17:49] growing_degree_days: GROWING_DEGREE...
standard_name: integral_of_air_temperature_excess_wrt_time
long_name: Cumulative sum of temperature degrees for mean daily temp...
description: Annual growing degree days (mean temperature above 10.0 d...

This computation was made using the growing_degree_days indicator. The same computation could be made
through the indice. You can see how the metadata is alot poorer here.

[4]: gdd = xclim.indices.growing_degree_days(tas=ds.tas, thresh="10.0 degC", freq="YS")
gdd

[4]: <xarray.DataArray 'tas' (location: 5, time: 4)>
array([[7.9897247e+02, 7.2488672e+02, 6.4941925e+02, 6.7033386e+02],

[1.2330164e+03, 1.3716892e+03, 1.1340271e+03, 1.2288167e+03],
[8.0615845e+00, 2.7421051e+01, 1.0251160e+00, 2.0045013e+01],
[9.3481873e+02, 1.0134860e+03, 7.2482220e+02, 6.3551764e+02],
[6.2461761e+02, 5.3345679e+02, 6.3453369e+02, 5.9410144e+02]],

dtype=float32)
Coordinates:

lat (location) float32 44.5 45.5 63.75 52.0 48.5
* location (location) object 'Halifax' 'Montréal' ... 'Saskatoon' 'Victoria'
lon (location) float32 -63.5 -73.5 -68.5 -106.8 -123.2

* time (time) datetime64[ns] 1990-01-01 1991-01-01 1992-01-01 1993-01-01
Attributes:

units: K d

The call to xclim.indices.growing_degree_days first checked that the input variable units were units of temper-
ature, ran the computation, then set the output’s units to the appropriate unit (here K d or kelvin days). As you can see,
the indicator returned the same output, but with more metadata, it also performed more checks as explained below.

6 Chapter 2. Basic Usage

xclim Documentation, Release 0.39.0

growing_degree_days makes most sense with daily input, but could theoritically accept other source frequencies.
The computational layer (indice) assumes that users have checked that the input data has the expected temporal fre-
quency and has no missing values. However, no checks are performed, so the output data could be wrong. That’s why
it’s always safer to use ``Indicator`` objects from the CF layer, as done in the following section.

New unit handling paradigm in xclim 0.24 for indices

As of xclim 0.24, the paradigm in unit handling has changed slightly. Now, indices are written in order to be more
flexible as to the sampling frequency and units of the data. You can use growing_degree_days on, for example,
the 6-hourly data. The ouput will then be in degree-hour units (K h). Moreover, all units, even when untouched
by the calculation, will be reformatted to a CF-compliant symbol format. This was made to ensure consistency
between all indices.

Very few indices will convert their output to a specific units, rather it is the dimensionality that will be consistent.
The Unit handling page goes in more details on how unit conversion can easily be done.

This doesn’t apply to Indicators. Those will always output data in a specific unit, the one listed in the Indicators.
cf_attrs metadata dictionnary.

Finally, as almost all indices, the function takes a freq argument to specify over what time period it is computed.
These are called “Offset Aliases” and are the same as the resampling string arguments. Valid arguments are detailed in
panda’s doc (note that aliases involving “business” notions are not supported by xarray and thus could raises issues
in xclim.

2.2 Health checks and metadata attributes

Indicator instances from the CF layer are found in modules bearing the name of the computational realm in which
its input variables are found: xclim.atmos, xclim.land and xclim.seaIce. These objects from the CF layer run
sanity checks on the input variables and set output’s metadata according to CF-convention when they apply. Some of
the checks involve:

• Identifying periods where missing data significantly impacts the calculation and omits calculations for those
periods. Those are called “missing methods” and are detailed in section Health checks.

• Appending process history and maintaining the historical provenance of file metadata.

• Writing Climate and Forecast Convention compliant metadata based on the variables and indices calculated.

Those modules are best used for producing NetCDF that will be shared with users. See Climate Indicators for a list of
available indicators.

If we run the growing_degree_days indicator over a non daily dataset, we’ll be warned that the input data is not daily.
That is, running xclim.atmos.growing_degree_days(ds.air, thresh='10.0 degC', freq='MS') will fail
with a ValidationError:

[5]: ds6h = xr.tutorial.open_dataset("air_temperature")
xr.infer_freq(ds6h.time) # Show that it is not daily

[5]: '6H'

[6]: gdd = xclim.atmos.growing_degree_days(tas=ds6h.tas, thresh="10.0 degC", freq="MS")

AttributeError Traceback (most recent call last)
Cell In [6], line 1

(continues on next page)

2.2. Health checks and metadata attributes 7

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
http://cfconventions.org/

xclim Documentation, Release 0.39.0

(continued from previous page)

----> 1 gdd = xclim.atmos.growing_degree_days(tas=ds6h.tas, thresh="10.0 degC", freq="MS
→˓")

File ~/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xarray/core/common.py:272, in AttrAccessMixin.__getattr__(self, name)
270 with suppress(KeyError):
271 return source[name]

--> 272 raise AttributeError(
273 f"{type(self).__name__!r} object has no attribute {name!r}"
274)

AttributeError: 'Dataset' object has no attribute 'tas'

Resampling to a daily frequency and running the same indicator succeeds, but we still get warnings from the CF
metadata checks.

[7]: daily_ds = ds6h.resample(time="D").mean(keep_attrs=True)
gdd = xclim.atmos.growing_degree_days(daily_ds.air, thresh="10.0 degC", freq="YS")

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/core/cfchecks.py:44: UserWarning: Variable does not have a `cell_
→˓methods` attribute.
_check_cell_methods(

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/core/cfchecks.py:48: UserWarning: Variable does not have a `standard_
→˓name` attribute.
check_valid(vardata, "standard_name", data["standard_name"])

To suppress the CF validation warnings in the following, we will set xclim to send them to the log, instead of raising a
warning or an error. We also could have set data_validation='warn' to be able to run the indicator on non-daily
data. These options are set globally or within a context with set_options.

The missing method which determines if a period should be considered missing or not can be controlled through the
check_missing option, globally or contextually. The main missing methods also have options that can be modified.

[8]: with xclim.set_options(
check_missing="pct",
missing_options={"pct": dict(tolerance=0.1)},
cf_compliance="log",

):
Change the missing method to "percent", instead of the default "any"
Set the tolerance to 10%, periods with more than 10% of missing data
in the input will be masked in the ouput.
gdd = xclim.atmos.growing_degree_days(daily_ds.air, thresh="10.0 degC", freq="MS")

Some indicators also expose time-selection arguments as **indexer keywords. This allows to run the indice on a
subset of the time coordinates, for example only on a specific season, month, or between two dates in every year. It
relies on the select_time function. Some indicators will simply select the time period and run the calculations, while
others will smartly perform the selection at the right time, when the order of operation makes a difference. All will
pass the indexer kwargs to the missing value handling ensuring that the missing values outside the valid time period
are not considered.

The next example computes the annual sum of growing degree days over 10 °C, but only considering days from the 1st
of April to the 30th of September.

8 Chapter 2. Basic Usage

xclim Documentation, Release 0.39.0

[9]: with xclim.set_options(cf_compliance="log"):
gdd = xclim.atmos.growing_degree_days(

tas=daily_ds.air, thresh="10 degC", freq="YS", date_bounds=("04-01", "09-30")
)

gdd

[9]: <xarray.DataArray 'growing_degree_days' (time: 2, lat: 25, lon: 53)>
array([[[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ...,

0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ...,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[3.3140015e+01, 5.0820099e+01, 6.6547607e+01, ...,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
...,
[2.7736938e+03, 2.6248127e+03, 2.5183259e+03, ...,
2.6201809e+03, 2.5202236e+03, 2.4362007e+03],
[2.8073425e+03, 2.7539409e+03, 2.6544858e+03, ...,
2.6141130e+03, 2.6077131e+03, 2.5585962e+03],
[2.8185554e+03, 2.8164487e+03, 2.7658499e+03, ...,
2.6862107e+03, 2.6818704e+03, 2.6931643e+03]],

[[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ...,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ...,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[1.0225220e+00, 5.5400085e+00, 1.0475037e+01, ...,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
...,
[2.8183235e+03, 2.6905312e+03, 2.6107827e+03, ...,
2.5506511e+03, 2.4474639e+03, 2.3652024e+03],
[2.8695332e+03, 2.8242588e+03, 2.7269099e+03, ...,
2.5259944e+03, 2.5199478e+03, 2.4677590e+03],
[2.8881079e+03, 2.8856880e+03, 2.8283704e+03, ...,
2.5869858e+03, 2.5948555e+03, 2.6111182e+03]]], dtype=float32)

Coordinates:
* lat (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0
* lon (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0
* time (time) datetime64[ns] 2013-01-01 2014-01-01

Attributes:
units: K days
cell_methods: time: sum over days
history: [2022-11-02 04:17:50] growing_degree_days: GROWING_DEGREE...
standard_name: integral_of_air_temperature_excess_wrt_time
long_name: Cumulative sum of temperature degrees for mean daily temp...
description: Annual growing degree days (mean temperature above 10 degc).

Finally, xclim also allows to call indicators using datasets and variable names.

[10]: with xclim.set_options(cf_compliance="log"):
gdd = xclim.atmos.growing_degree_days(

tas="air", thresh="10.0 degC", freq="MS", ds=daily_ds
)

(continues on next page)

2.2. Health checks and metadata attributes 9

xclim Documentation, Release 0.39.0

(continued from previous page)

variable names default to xclim names, so we can even do this:
renamed_daily_ds = daily_ds.rename(air="tas")
gdd = xclim.atmos.growing_degree_days(

thresh="10.0 degC", freq="MS", ds=renamed_daily_ds
)

2.3 Graphics

[11]: import matplotlib.pyplot

%matplotlib inline

Summary statistics histogram
gdd.plot()

[11]: (array([15532., 2079., 1861., 1935., 2137., 2416., 2675., 2202.,
931., 32.]),

array([0. , 66.32572937, 132.65145874, 198.97720337,
265.30291748, 331.62866211, 397.95440674, 464.28012085,
530.60583496, 596.93157959, 663.25732422]),

<BarContainer object of 10 artists>)

nbsphinx-code-borderwhite

[12]: # Show time series at a given geographical coordinate
gdd.isel(lon=20, lat=10).plot()

10 Chapter 2. Basic Usage

xclim Documentation, Release 0.39.0

[12]: [<matplotlib.lines.Line2D at 0x7fab4aff8430>]

nbsphinx-code-borderwhite

[13]: # Show spatial pattern at a specific time period
gdd.sel(time="2013-07").plot()

[13]: <matplotlib.collections.QuadMesh at 0x7fab4aeb1360>

nbsphinx-code-borderwhite

For more examples, see the directions suggested by xarray’s plotting documentation

2.3. Graphics 11

https://xarray.pydata.org/en/stable/plotting.html

xclim Documentation, Release 0.39.0

To save the data as a new NetCDF, use to_netcdf.

[14]: gdd.to_netcdf("monthly_growing_degree_days_data.nc")

It’s possible to save Dataset objects to other file formats. For more information see: xarray’s documentation

12 Chapter 2. Basic Usage

https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html

CHAPTER

THREE

EXAMPLES

3.1 Workflow Examples

xclim is built on very powerful multiprocessing and distributed computation libraries, notably xarray and dask.

xarray is a python package making it easy to work with n-dimensional arrays. It labels axes with their names [time,
lat, lon, level] instead of indices [0,1,2,3], reducing the likelihood of bugs and making the code easier to
understand. One of the key strengths of xarray is that it knows how to deal with non-standard calendars (we’re
looking at you, “360_days”) and can easily resample daily time series to weekly, monthly, seasonal or annual periods.
Finally, xarray is tightly inegrated with dask, a package that can automatically parallelize operations.

The following are a few examples to consult when using xclim to subset netCDF arrays and compute climate indicators,
taking advantage of the parallel processing capabilities offered by xarray and dask. For more information about these
projects, please see their documentation pages:

• xarray documentation

• dask documentation

3.1.1 Environment configuration

[]: # Imports for xclim and xarray
from __future__ import annotations

import numpy as np
import xarray as xr

import xclim as xc

xr.set_options(display_style="html")

import tempfile

File handling libraries
import time
from pathlib import Path

Output folder
output_folder = Path(tempfile.mkdtemp())

13

https://xarray.pydata.org/en/stable/
https://docs.dask.org/en/stable/

xclim Documentation, Release 0.39.0

3.1.2 Setting up the Dask client: parallel processing

In this example, we are using the dask.distributed submodule. This is not installed by default in a basic xclim
installation. Be sure to add distributed to your Python installation before setting up parallel processing operations!

First we create a pool of workers that will wait for jobs. The xarray library will automatically connect to these workers
and and dispatch them jobs that can be run in parallel.

The dashboard link lets you see in real time how busy those workers are.

• dask distributed documentation

This step is not mandatory as dask will fall back to its “single machine scheduler” if a Client is not created. However,
this default scheduler doesn’t allow you to set the number of threads or a memory limit and doesn’t start the dashboard,
which can be quite useful to understand your task’s progress.

[]: from distributed import Client

Depending on your workstation specifications, you may need to adjust these values.
On a single machine, n_workers=1 is usually better.
client = Client(n_workers=1, threads_per_worker=4, memory_limit="4GB")
client

2022-10-31 09:17:45,249 - distributed.diskutils - INFO - Found stale lock file and␣
→˓directory '/home/eric/repos/xclim/docs/notebooks/dask-worker-space/worker-5pbsqv_l',␣
→˓purging
2022-10-31 09:17:45,250 - distributed.diskutils - INFO - Found stale lock file and␣
→˓directory '/home/eric/repos/xclim/docs/notebooks/dask-worker-space/worker-x6kignns',␣
→˓purging

<Client: 'tcp://127.0.0.1:35205' processes=1 threads=4, memory=3.73 GiB>

3.1.3 Creating xarray datasets

To open a netCDF file with xarray, we use xr.open_dataset(<path to file>). By default, the entire file is
stored in one chunk, so there is no parallelism. To trigger parallel computations, we need to explicitly specify the
chunk size.

In this example, instead of opening a local file, we pass an OPeNDAP url to xarray. It retrieves the data automatically.
Notice also that opening the dataset is quite fast. In fact, the data itself has not been downloaded yet, only the coordinates
and the metadata. The downloads will be triggered only when the values need to be accessed directly.

dask’s parallelism is based on memory chunks. We need to tell xarray to split our netCDF array into chunks of a
given size, and operations on each chunk of the array will automatically be dispatched to the workers.

[]: data_url = "https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/dodsC/datasets/
→˓simulations/bias_adjusted/cmip5/ouranos/cb-oura-1.0/day_ACCESS1-3_historical+rcp85_
→˓r1i1p1_na10kgrid_qm-moving-50bins-detrend_1950-2100.ncml"

[]: # Chunking in memory along the time dimension.
Note that the data type is a 'dask.array'. xarray will automatically use client workers.
ds = xr.open_dataset(

(continues on next page)

14 Chapter 3. Examples

https://distributed.dask.org/en/latest/

xclim Documentation, Release 0.39.0

(continued from previous page)

data_url,
chunks={"time": 365, "lat": 168, "lon": 150},
drop_variables=["ts", "time_vectors"],

)
print(ds)

<xarray.Dataset>
Dimensions: (lat: 320, lon: 797, time: 55152)
Coordinates:
* lat (lat) float32 66.62 66.54 66.46 66.37 ... 40.29 40.21 40.12 40.04
* lon (lon) float32 -120.8 -120.7 -120.6 -120.5 ... -54.63 -54.55 -54.46
* time (time) datetime64[ns] 1950-01-01 1950-01-02 ... 2100-12-31

Data variables:
tasmin (time, lat, lon) float32 dask.array<chunksize=(365, 168, 150), meta=np.

→˓ndarray>
tasmax (time, lat, lon) float32 dask.array<chunksize=(365, 168, 150), meta=np.

→˓ndarray>
pr (time, lat, lon) float32 dask.array<chunksize=(365, 168, 150), meta=np.

→˓ndarray>
Attributes: (12/26)

Conventions: CF-1.5
title: Ouranos standard ensemble of bias-adjusted cl...
history: CMIP5 compliant file produced from raw ACCESS...
institution: Ouranos Consortium on Regional Climatology an...
source: ACCESS1-3 2011. Atmosphere: AGCM v1.0 (N96 gr...
driving_model: ACCESS1-3
... ...
frequency: day
modeling_realm: atmos
target_dataset: CANADA : ANUSPLIN interpolated Canada daily 3...
target_dataset_references: CANADA : https://doi.org/10.1175/2011BAMS3132...
driving_institution: Commonwealth Scientific and Industrial Resear...
driving_institute_id: CSIRO-BOM

[]: print(ds.tasmin.chunks)

((365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365,␣
→˓365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365,␣
→˓365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365,␣
→˓365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365,␣
→˓365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365,␣
→˓365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365,␣
→˓365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365,␣
→˓365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365,␣
→˓365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 37), (168,␣
→˓152), (150, 150, 150, 150, 150, 47))

3.1. Workflow Examples 15

xclim Documentation, Release 0.39.0

3.1.4 Multi-file datasets

NetCDF files are often split into periods to keep file size manageable. A single dataset can be split in dozens of
individual files. xarray has a function open_mfdataset that can open and aggregate a list of files and construct a
unique logical dataset. open_mfdataset can aggregate files over coordinates (time, lat, lon) and variables.

• Note that opening a multi-file dataset automatically chunks the array (one chunk per file).

• Note also that because xarray reads every file metadata to place it in a logical order, it can take a while to load.

[]: ## Create multi-file data & chunks
ds = xr.open_mfdataset('/path/to/files*.nc')

3.1.5 Subsetting and selecting data with xarray

Usually, xclim users are encouraged to use the subsetting utilities of the clisops package. Here, we will reduce the size
of our data using the methods implemented in xarray (docs here).

[]: ds2 = ds.sel(lat=slice(50, 45), lon=slice(-70, -65), time=slice("2090", "2100"))
print(ds2.tasmin)

<xarray.DataArray 'tasmin' (time: 4017, lat: 60, lon: 60)>
dask.array<getitem, shape=(4017, 60, 60), dtype=float32, chunksize=(365, 60, 60),␣
→˓chunktype=numpy.ndarray>
Coordinates:
* lat (lat) float32 49.96 49.87 49.79 49.71 ... 45.29 45.21 45.12 45.04
* lon (lon) float32 -69.96 -69.88 -69.8 -69.71 ... -65.21 -65.13 -65.05
* time (time) datetime64[ns] 2090-01-01 2090-01-02 ... 2100-12-31

Attributes:
long_name: air_temperature
standard_name: air_temperature
units: K
_ChunkSizes: [256 16 16]

[]: ds3 = ds.sel(lat=46.8, lon=-71.22, method="nearest").sel(time="1993")
print(ds3.tasmin)

3.1.6 Climate index calculation & resampling frequencies

xclim has two layers for the calculation of indicators. The bottom layer is composed of a list of functions that take
one or more xarray.DataArray’s as input and return an xarray.DataArray as output. You’ll find these functions
in xclim.indices. The indicator’s logic is contained in this function, as well as some unit handling, but it doesn’t
perform any data consistency checks (like if the time frequency is daily), and doesn’t not adjust the metadata of the
output array.

The second layer are class instances that you’ll find organized by realm. So far, there are three realms available in
xclim.atmos, xclim.seaIce and xclim.land, the first one being the most exhaustive. Before running computa-
tions, these classes check if the input data is a daily average of the expected variable:

1. If an indicator expects a daily mean and you pass it a daily max, a warning will be raised.

2. After the computation, it also checks the number of values per period to make sure there are not missing values
or NaN in the input data. If there are, the output is going to be set to NaN. Ex. : If the indicator performs a yearly
resampling but there are only 350 non-NaN values in one given year in the input data, that year’s output will be
NaN.

16 Chapter 3. Examples

https://clisops.readthedocs.io/en/latest/notebooks/subset.html
http://xarray.pydata.org/en/stable/indexing.html

xclim Documentation, Release 0.39.0

3. The output units are set correctly as well as other properties of the output array, complying as much as possible
with CF conventions.

For new users, we suggest you use the classes found in xclim.atmos and others. If you know what you’re doing and
you want to circumvent the built-in checks, then you can use the xclim.indices directly.

Almost all xclim indicators convert daily data to lower time frequencies, such as seasonal or annual values. This is
done using xarray.DataArray.resample method. Resampling creates a grouped object over which you apply a
reduction operation (e.g. mean, min, max). The list of available frequency is given in the link below, but the most often
used are:

• YS: annual starting in January

• YS-JUL: annual starting in July

• MS: monthly

• QS-DEC: seasonal starting in December

More info about this specification can be found in pandas’ documentation

Note - not all offsets in the link are supported by cftime objects in xarray.

In the example below, we’re computing the annual maximum temperature of the daily maximum temperature
(tx_max).

[]: out = xc.atmos.tx_max(ds2.tasmax, freq="YS")
print(out)

/home/phobos/Python/xclim/xclim/indicators/atmos/_temperature.py:87: UserWarning:␣
→˓Variable does not have a `cell_methods` attribute.
cfchecks.check_valid(tasmax, "cell_methods", "*time: maximum within days*")

<xarray.DataArray 'tx_max' (time: 11, lat: 60, lon: 60)>
dask.array<where, shape=(11, 60, 60), dtype=float32, chunksize=(1, 60, 60),␣
→˓chunktype=numpy.ndarray>
Coordinates:
* time (time) datetime64[ns] 2090-01-01 2091-01-01 ... 2100-01-01
* lat (lat) float32 49.95731 49.87398 49.79065 ... 45.12417 45.04084
* lon (lon) float32 -69.96264 -69.87931 -69.79598 ... -65.1295 -65.04617

Attributes:
long_name: Maximum daily maximum temperature
standard_name: air_temperature
units: K
_ChunkSizes: [256 16 16]
cell_methods: time: maximum within days time: maximum over days
xclim_history: [2021-02-15 17:08:48] tx_max: tx_max(tasmax=<array>, freq...
description: Annual maximum of daily maximum temperature.

If you execute the cell above, you’ll see that this operation is quite fast. This a feature coming from dask. Read Lazy
computation further down.

3.1. Workflow Examples 17

http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases

xclim Documentation, Release 0.39.0

Comparison of atmos vs indices modules

Using the xclim.indices module performs not checks and only fills the units attribute.

[]: out = xc.indices.tx_days_above(ds2.tasmax, thresh="30 C", freq="YS")
print(out)

<xarray.DataArray 'tasmax' (time: 11, lat: 60, lon: 60)>
dask.array<mul, shape=(11, 60, 60), dtype=int64, chunksize=(1, 60, 60), chunktype=numpy.
→˓ndarray>
Coordinates:
* time (time) datetime64[ns] 2090-01-01 2091-01-01 ... 2100-01-01
* lat (lat) float32 49.95731 49.87398 49.79065 ... 45.12417 45.04084
* lon (lon) float32 -69.96264 -69.87931 -69.79598 ... -65.1295 -65.04617

Attributes:
units: d

With xclim.atmos, checks are performed and many CF-compliant attributes are added:

[]: out = xc.atmos.tx_days_above(ds2.tasmax, thresh="30 C", freq="YS")
print(out)

<xarray.DataArray 'tx_days_above' (time: 11, lat: 60, lon: 60)>
dask.array<where, shape=(11, 60, 60), dtype=float64, chunksize=(1, 60, 60),␣
→˓chunktype=numpy.ndarray>
Coordinates:
* time (time) datetime64[ns] 2090-01-01 2091-01-01 ... 2100-01-01
* lat (lat) float32 49.95731 49.87398 49.79065 ... 45.12417 45.04084
* lon (lon) float32 -69.96264 -69.87931 -69.79598 ... -65.1295 -65.04617

Attributes:
units: days
cell_methods: time: maximum within days time: sum over days
xclim_history: [2021-02-15 17:08:49] tx_days_above: tx_days_above(tasmax...
standard_name: number_of_days_with_air_temperature_above_threshold
long_name: Number of days with tmax > 30 c
description: Annual number of days where daily maximum temperature exc...

/home/phobos/Python/xclim/xclim/indicators/atmos/_temperature.py:87: UserWarning:␣
→˓Variable does not have a `cell_methods` attribute.
cfchecks.check_valid(tasmax, "cell_methods", "*time: maximum within days*")

[]: # We have created an xarray data-array - We can insert this into an output xr.Dataset␣
→˓object with a copy of the original dataset global attrs
dsOut = xr.Dataset(attrs=ds2.attrs)

Add our climate index as a data variable to the dataset
dsOut[out.name] = out
print(dsOut)

<xarray.Dataset>
Dimensions: (lat: 60, lon: 60, time: 11)
Coordinates:
* time (time) datetime64[ns] 2090-01-01 2091-01-01 ... 2100-01-01
* lat (lat) float32 49.95731 49.87398 ... 45.12417 45.04084
* lon (lon) float32 -69.96264 -69.87931 ... -65.1295 -65.04617

(continues on next page)

18 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

Data variables:
tx_days_above (time, lat, lon) float64 dask.array<chunksize=(1, 60, 60), meta=np.

→˓ndarray>
Attributes:

Conventions: CF-1.5
title: Ouranos standard ensemble of bias-adjusted cl...
history: CMIP5 compliant file produced from raw ACCESS...
institution: Ouranos Consortium on Regional Climatology an...
source: ACCESS1-3 2011. Atmosphere: AGCM v1.0 (N96 gr...
driving_model: ACCESS1-3
driving_experiment: historical,rcp85
institute_id: Ouranos
type: GCM
processing: bias_adjusted
dataset_description: https://www.ouranos.ca/publication-scientifiq...
bias_adjustment_method: 1D-Quantile Mapping
bias_adjustment_reference: http://doi.org/10.1002/2015JD023890
project_id: CMIP5
licence_type: permissive
terms_of_use: Terms of use at https://www.ouranos.ca/climat...
attribution: Use of this dataset should be acknowledged as...
frequency: day
modeling_realm: atmos
target_dataset: CANADA : ANUSPLIN interpolated Canada daily 3...
target_dataset_references: CANADA : https://doi.org/10.1175/2011BAMS3132...
driving_institution: Commonwealth Scientific and Industrial Resear...
driving_institute_id: CSIRO-BOM

Different ways of resampling

Many indices use algorithms that find the length of given sequences. For instance, xclim.indices.
heat_wave_max_length finds the longest sequence where tasmax and tasmin are above given threshold values.
Resampling can be used to find the longest sequence in given periods of time, for instance the longest heat wave for
each month if the resampling frequency is freq == "MS".

The order of the two operations just described, i.e. : * Finding the length of sequences respecting a certain criteria
(“run length algorithms”) * Separating the dataset in given time periods (“resampling”)

is important and can lead to differing results.

The cell below illustrates this by looking at the maximum lengths of heat waves each month from May 2010 to August
2010 by doing these operations in the two possible orders. The heat wave max lengths for July in a small region of
interest lat ∈ [43, 44.5], lon ∈ [−117.5,−116] are shown: The maximal lengths are sometimes longer first applying
the run length algorithmn (resample_before_rl == False).

[]: # import plotting stuff
import matplotlib.pyplot as plt

%matplotlib inline
plt.style.use("seaborn")
plt.rcParams["figure.figsize"] = (11, 5)

3.1. Workflow Examples 19

xclim Documentation, Release 0.39.0

[]: ds_reduced = (
ds.sel(lat=slice(44.5, 43))
.sel(lon=slice(-117.5, -116))
.sel(time=slice("2010-05-01", "2011-08-31"))

)
tn, tx = ds_reduced.tasmin, ds_reduced.tasmax
freq = "MS"

Threshold on tasmin: chosen smaller than the default 22.0 degC
thresh_tn = "20.0 degC"

Computing index by resampling **before** run length algorithm (default value)
hw_before = xc.indices.heat_wave_max_length(

tn, tx, freq=freq, thresh_tasmin=thresh_tn, resample_before_rl=True
)
Computing index by resampling **after** run length algorithm
hw_after = xc.indices.heat_wave_max_length(

tn, tx, freq=freq, thresh_tasmin=thresh_tn, resample_before_rl=False
)

hw_before.sel(time="2010-07-01").plot()
plt.title("Resample, then run length")
plt.figure()
hw_after.sel(time="2010-07-01").plot()
plt.title("Run length, then resample")

Let’s focus on the point (−117.21075, 44.29087), which has a maximum wave length of 4 or 7, depending if resampling
occurs before or after the run length algorithm.

Plotting the values of tasmin in July and early August, we see a sequence of 7 hot minimal temperatures at the end of
July that surpass the threshold to qualify for a heat wave.

1. If resampling occurs first and we first separate the periods in months, the run length algorithms will only look
for sequences of hot days within the month of July and will exclude the last 3 days of this sequence of 7 days.

2. Using the run length algorithm before resampling looks for sequences of hot days in all the dataset given (tem-
peratures form May 1, 2010 to Aug. 31, 2010) and then subdivides these sequences in the months where they
have started. Since it starts in July, this sequence registered ascounts for a heat wave of 7 days happening in July.

This also implies that the first 3 days of August which belong in this sequence of 7 days will be counted as a sequence
in August with the first method, but not with the second.

[]: from xclim.core.units import convert_units_to

Select a spatial point of interest in July-early August
loni, lati = -117.21075, 44.29087
tn_pt = tn.sel(time=slice("2010-07-01", "2010-08-05")).sel(lat=lati, lon=loni)
tn_pt = convert_units_to(tn_pt, "degC")

tn_pt.plot(marker="o", label="tasmin")
plt.axhline(y=convert_units_to(thresh_tn, "degC"), color="orange", label=thresh_tn)
plt.axvline(x=["2010-08-01"], color="green", label="Aug. 1st")
plt.legend()

20 Chapter 3. Examples

xclim Documentation, Release 0.39.0

3.1.7 Lazy computation - Nothing has been computed so far !

If you look at the output of those operations, they’re identified as dask.array objects. What happens is that dask
creates a chain of operations that when executed, will yield the values we want. We have thus far only created a schedule
of tasks with a small preview and not done any actual computations. You can trigger computations by using the load
or compute method, or writing the output to disk via to_netcdf. Of course, calling .plot() will also trigger the
computation.

[]: %%time
output_file = output_folder / "test_tx_max.nc"
dsOut.to_netcdf(output_file)

CPU times: user 1.1 s, sys: 74.4 ms, total: 1.17 s
Wall time: 14.4 s

(Times may of course vary depending on the machine and the Client settings)

Performance tips

Optimizing the chunk size

You can improve performance by being smart about chunk sizes. If chunks are too small, there is a lot of time lost in
overhead. If chunks are too large, you may end up exceeding the individual worker memory limit.

[]: print(ds2.chunks["time"])

(330, 365, 365, 365, 365, 365, 365, 365, 365, 365, 365, 37)

[]: # rechunk data in memory for the entire grid
ds2c = ds2.chunk(chunks={"time": 4 * 365})
print(ds2c.chunks["time"])

(1460, 1460, 1097)

[]: %%time
out = xc.atmos.tx_max(ds2c.tasmax, freq="YS")
dsOut = xr.Dataset(data_vars=None, coords=out.coords, attrs=ds.attrs)
dsOut[out.name] = out

output_file = output_folder / "test_tx_max.nc"
dsOut.to_netcdf(output_file)

/home/phobos/Python/xclim/xclim/indicators/atmos/_temperature.py:87: UserWarning:␣
→˓Variable does not have a `cell_methods` attribute.
cfchecks.check_valid(tasmax, "cell_methods", "*time: maximum within days*")

CPU times: user 582 ms, sys: 75.1 ms, total: 657 ms
Wall time: 5.42 s

3.1. Workflow Examples 21

xclim Documentation, Release 0.39.0

Loading the data in memory

If the dataset is relatively small, it might be more efficient to simply load the data into the memory and use numpy
arrays instead of dask arrays.

[]: ds4 = ds3.load()

3.1.8 Unit handling in xclim

A lot of effort has been placed into automatic handling of input data units. xclim will automatically detect the input
variable(s) units (e.g. °C versus °K or mm/s versus mm/day etc.) and adjust on-the-fly in order to calculate indices in
the consistent manner. This comes with the obvious caveat that input data requires metadata attribute for units.

In the example below, we compute weekly total precipitation in mm using inputs of mm/s and mm/d. As you see, the
output is identical.

[]: # Compute with the original mm s-1 data
out1 = xc.atmos.precip_accumulation(ds4.pr, freq="MS")
Create a copy of the data converted to mm d-1
pr_mmd = ds4.pr * 3600 * 24
pr_mmd.attrs["units"] = "mm d-1"
out2 = xc.atmos.precip_accumulation(pr_mmd, freq="MS")

/home/eric/anaconda3/envs/xclim/lib/python3.10/site-packages/xclim/core/cfchecks.py:44:␣
→˓UserWarning: Variable does not have a `cell_methods` attribute.
_check_cell_methods(

/home/eric/anaconda3/envs/xclim/lib/python3.10/site-packages/xclim/core/cfchecks.py:48:␣
→˓UserWarning: Variable has a non-conforming standard_name: Got `lwe_precipitation_rate`,
→˓ expected `['precipitation_flux']`
check_valid(vardata, "standard_name", data["standard_name"])

/home/eric/anaconda3/envs/xclim/lib/python3.10/site-packages/xclim/core/cfchecks.py:44:␣
→˓UserWarning: Variable does not have a `cell_methods` attribute.
_check_cell_methods(

/home/eric/anaconda3/envs/xclim/lib/python3.10/site-packages/xclim/core/cfchecks.py:48:␣
→˓UserWarning: Variable does not have a `standard_name` attribute.
check_valid(vardata, "standard_name", data["standard_name"])

[]: plt.figure()
out1.plot(label="From mm s-1", linestyle="-")
out2.plot(label="From mm d-1", linestyle="none", marker="o")
plt.legend()

<matplotlib.legend.Legend at 0x7f4d325ce680>

22 Chapter 3. Examples

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

Threshold indices

xclim unit handling also applies to threshold indicators. Users can provide threshold in units of choice and xclim will
adjust automatically. For example determining the number of days with tasmax > 20°C users can define a threshold
input of ‘20 C’ or ‘20 degC’ even if input data is in Kelvin. Alernatively users can even provide a threshold in Kelvin
‘293.15 K’ (if they really wanted to).

[]: # Create a copy of the data converted to C
tasmax_C = ds4.tasmax - 273.15
tasmax_C.attrs["units"] = "C"

Using Kelvin data, threshold in Celsius
out1 = xc.atmos.tx_days_above(ds4.tasmax, thresh="20 C", freq="MS")

Using Celsius data
out2 = xc.atmos.tx_days_above(tasmax_C, thresh="20 C", freq="MS")

Using Celsius but with threshold in Kelvin
out3 = xc.atmos.tx_days_above(tasmax_C, thresh="293.15 K", freq="MS")

Plot and see that it's all identical:
plt.figure()
out1.plot(label="K and degC", linestyle="-")
out2.plot(label="degC and degC", marker="s", markersize=10, linestyle="none")
out3.plot(label="degC and K", marker="o", linestyle="none")
plt.legend()

/home/eric/anaconda3/envs/xclim/lib/python3.10/site-packages/xclim/core/cfchecks.py:44:␣
→˓UserWarning: Variable does not have a `cell_methods` attribute.

(continues on next page)

3.1. Workflow Examples 23

xclim Documentation, Release 0.39.0

(continued from previous page)

_check_cell_methods(
/home/eric/anaconda3/envs/xclim/lib/python3.10/site-packages/xclim/core/cfchecks.py:44:␣
→˓UserWarning: Variable does not have a `cell_methods` attribute.
_check_cell_methods(

/home/eric/anaconda3/envs/xclim/lib/python3.10/site-packages/xclim/core/cfchecks.py:48:␣
→˓UserWarning: Variable does not have a `standard_name` attribute.
check_valid(vardata, "standard_name", data["standard_name"])

/home/eric/anaconda3/envs/xclim/lib/python3.10/site-packages/xclim/core/cfchecks.py:44:␣
→˓UserWarning: Variable does not have a `cell_methods` attribute.
_check_cell_methods(

/home/eric/anaconda3/envs/xclim/lib/python3.10/site-packages/xclim/core/cfchecks.py:48:␣
→˓UserWarning: Variable does not have a `standard_name` attribute.
check_valid(vardata, "standard_name", data["standard_name"])

<matplotlib.legend.Legend at 0x7f4d325ceb90>

nbsphinx-code-borderwhite

3.2 Ensembles

An important aspect of climate models is that they are run multiple times with some initial perturbations to see how they
replicate the natural variability of the climate. Through xclim.ensembles, xclim provides an easy interface to compute
ensemble statistics on different members. Most methods perform checks and conversion on top of simpler xarray
methods, providing an easier interface to use.

24 Chapter 3. Examples

xclim Documentation, Release 0.39.0

3.2.1 create_ensemble

Our first step is to create an ensemble. This methods takes a list of files defining the same variables over the same
coordinates and concatenates them into one dataset with an added dimension realization.

Using xarray a very simple way of creating an ensemble dataset would be :

import xarray
xarray.open_mfdataset(files, concat_dim='realization')

However, this is only successful when the dimensions of all the files are identical AND only if the calendar type of each
netcdf file is the same

xclim’s create_ensemble() method overcomes these constraints selecting the common time period to all files and
assigns a standard calendar type to the dataset.

Input netcdf files still require equal spatial dimension size (e.g. lon, lat dimensions). If input data contains multiple
cftime calendar types they must not be at daily frequency.

Given files all named ens_tas_m[member number].nc, we use glob to get a list of all those files.

[2]: import glob

import xarray as xr

import xclim as xc

Set display to HTML sytle (for fancy output)
xr.set_options(display_style="html", display_width=50)

import matplotlib.pyplot as plt

%matplotlib inline

from xclim import ensembles

ens = ensembles.create_ensemble(glob.glob("ens_tas_m*.nc")).load()
ens.close()

[3]: plt.style.use("seaborn-dark")
plt.rcParams["figure.figsize"] = (13, 5)
ens.tas.plot(hue="realization")
plt.show()

/tmp/ipykernel_185198/3759128785.py:1: MatplotlibDeprecationWarning: The seaborn styles␣
→˓shipped by Matplotlib are deprecated since 3.6, as they no longer correspond to the␣
→˓styles shipped by seaborn. However, they will remain available as 'seaborn-v0_8-<style>
→˓'. Alternatively, directly use the seaborn API instead.
plt.style.use("seaborn-dark")

3.2. Ensembles 25

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

[4]: ens.tas # Attributes of the first dataset to be opened are copied to the final output

[4]: <xarray.DataArray 'tas' (realization: 10,
time: 1461)>

array([[-9.64656381e+00, -9.26040772e+00, -8.87806804e+00, ...,
-1.31302578e+01, -1.29187994e+01, -1.26967688e+01],
[-1.65889811e+01, -1.63276759e+01, -1.60659825e+01, ...,
-8.73902910e+00, -8.78822649e+00, -8.83136000e+00],
[-4.10937864e+00, -4.44479867e+00, -4.76310008e+00, ...,
-1.12778396e+01, -1.18303622e+01, -1.23940281e+01],
...,
[-1.29529675e+01, -1.23962949e+01, -1.18458977e+01, ...,
-9.50811703e+00, -1.01747658e+01, -1.08616860e+01],
[-1.27624696e+01, -1.26684919e+01, -1.25704334e+01, ...,
-3.95151822e+00, -3.38266276e+00, -2.78819028e+00],
[-1.15739977e+01, -1.15310439e+01, -1.14786644e+01, ...,
-4.12362653e-03, 6.36696289e-01, 1.29724317e+00]])

Coordinates:
* time (time) datetime64[ns] 2000-01-...
* realization (realization) int64 0 1 2 ... 8 9

Attributes:
units: degC
standard_name: air_temperature
long_name: Mean air temperature at sur...
title: tas of member 01

3.2.2 Ensemble statistics

Beyond creating ensemble dataset the xclim.ensembles module contains functions for calculating statistics between
realizations

Ensemble mean, standard-deviation, max & min
In the example below we use xclim’s ensemble_mean_std_max_min() to calculate statistics across the 10 realizations
in our test dataset. Output variables are created combining the original variable name tas with addtional ending
indicating the statistic calculated on the realization dimension : _mean, _stdev, _min, _max

The resulting output now contains 4 derived variables from the original single variable in our ensemble dataset.

26 Chapter 3. Examples

xclim Documentation, Release 0.39.0

[5]: ens_stats = ensembles.ensemble_mean_std_max_min(ens)
ens_stats

[5]: <xarray.Dataset>
Dimensions: (time: 1461)
Coordinates:
* time (time) datetime64[ns] 2000-01-01...

Data variables:
tas_mean (time) float64 -10.99 ... -6.575
tas_stdev (time) float64 5.499 5.104 ... 4.69
tas_max (time) float64 1.579 ... 1.297
tas_min (time) float64 -17.68 ... -12.7

Attributes:
history: [2022-11-02 04:12:41] : Computati...

3.2.3 Ensemble percentiles

Here we use xclim’s ensemble_percentiles() to calculate percentile values across the 10 realizations. The output
has now a percentiles dimension instead of realization. Split variables can be created instead, by specify-
ing split=True (the variable name tas will be appended with _p{x}). Compared to numpy’s percentile() and
xarray’s quantile(), this method handles more efficiently dataset with invalid values and the chunking along the
realization dimension (which is automatic when dask arrays are used).

[6]: ens_perc = ensembles.ensemble_percentiles(ens, values=[15, 50, 85], split=False)
ens_perc

[6]: <xarray.Dataset>
Dimensions: (time: 1461, percentiles: 3)
Coordinates:
* time (time) datetime64[ns] 2000-01-...
* percentiles (percentiles) int64 15 50 85

Data variables:
tas (time, percentiles) float64 -1...

Attributes:
units: degC
standard_name: air_temperature
long_name: Mean air temperature at sur...
title: tas of member 01
history: [2022-11-02 04:12:41] : Com...

[7]: fig, ax = plt.subplots()
ax.fill_between(

ens_stats.time.values,
ens_stats.tas_min,
ens_stats.tas_max,
alpha=0.3,
label="Min-Max",

)
ax.fill_between(

ens_perc.time.values,
ens_perc.tas.sel(percentiles=15),
ens_perc.tas.sel(percentiles=85),

(continues on next page)

3.2. Ensembles 27

xclim Documentation, Release 0.39.0

(continued from previous page)

alpha=0.5,
label="Perc. 15-85",

)
ax._get_lines.get_next_color() # Hack to get different line
ax._get_lines.get_next_color()
ax.plot(ens_stats.time.values, ens_stats.tas_mean, linewidth=2, label="Mean")
ax.plot(

ens_perc.time.values, ens_perc.tas.sel(percentiles=50), linewidth=2, label="Median"
)
ax.legend()
plt.show()

nbsphinx-code-borderwhite

3.3 Ensemble-Reduction Techniques

xclim.ensembles provides means of reducing the number of candidates in a sample to get a reasonable and represen-
tative spread of outcomes using a reduced number of candidates. By reducing the number of realizations in a strategic
manner, we can significantly reduce the number of realizations to examine, while maintaining statistical representation
of original dataset. This is particularly useful when computation power or time is a factor.

For more information on the principles and methods behind ensemble reduction techniques, see: https://journals.plos.
org/plosone/article?id=10.1371/journal.pone.0152495 and https://doi.org/10.1175/JCLI-D-14-00636.1

Selection Criteria
The following example considers 50 member ensemble with a total of 6 criteria considered (3 variable deltas * 2 time
horizons). Our goal is to reduce this number to a more manageable size while preserving the range of uncertainty
across our different criteria.

[2]: import matplotlib.pyplot as plt
import numpy as np
import xarray as xr

from xclim import ensembles

Using an xarray dataset of our criteria
ds_crit

28 Chapter 3. Examples

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152495
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152495
https://doi.org/10.1175/JCLI-D-14-00636.1

xclim Documentation, Release 0.39.0

[2]: <xarray.Dataset>
Dimensions: (horizon: 2, realization: 50)
Coordinates:
* horizon (horizon) <U9 '2041-2070' '2071-2100'

Dimensions without coordinates: realization
Data variables:

delta_annual_tavg (horizon, realization) float64 5.646 3.6 ... 5.594 6.144
delta_annual_prtot (horizon, realization) float64 14.42 -1.739 ... 20.69
delta_JJA_prtot (horizon, realization) float64 -1.108 -0.7181 ... 3.48

[3]: plt.style.use("seaborn-dark")
plt.rcParams["figure.figsize"] = (13, 5)
fig = plt.figure(figsize=(11, 9))
ax = plt.axes(projection="3d")

for h in ds_crit.horizon:
ax.scatter(

ds_crit.sel(horizon=h).delta_annual_tavg,
ds_crit.sel(horizon=h).delta_annual_prtot,
ds_crit.sel(horizon=h).delta_JJA_prtot,
label=f"delta {h.values}",

)

ax.set_xlabel("delta_annual_tavg (C)")
ax.set_ylabel("delta_annual_prtot (%)")
ax.set_zlabel("delta_JJA_prtot (%)")
plt.legend()
plt.show()

/tmp/ipykernel_185254/1565879235.py:1: MatplotlibDeprecationWarning: The seaborn styles␣
→˓shipped by Matplotlib are deprecated since 3.6, as they no longer correspond to the␣
→˓styles shipped by seaborn. However, they will remain available as 'seaborn-v0_8-<style>
→˓'. Alternatively, directly use the seaborn API instead.
plt.style.use("seaborn-dark")

3.3. Ensemble-Reduction Techniques 29

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

Ensemble reduction techniques in xclim require a 2D array with dimensions of criteria (values) and realization
(runs/simulations).

[4]: # Create 2d xr.DataArray containing criteria values
crit = None
for h in ds_crit.horizon:

for v in ds_crit.data_vars:
if crit is None:

crit = ds_crit[v].sel(horizon=h)
else:

crit = xr.concat((crit, ds_crit[v].sel(horizon=h)), dim="criteria")
crit.name = "criteria"
crit.shape

[4]: (6, 50)

30 Chapter 3. Examples

xclim Documentation, Release 0.39.0

3.3.1 K-Means reduce ensemble

The kmeans_reduce_ensemble works by grouping realizations into sub-groups based on the provided critera and
retaining a representative realization per sub-group.

For a real-world example of the K-means clustering algorithm applied to climate data selection, see: https://doi.org/
10.1371/journal.pone.0152495 and https://doi.org/10.1175/JCLI-D-11-00440.1

The following example uses method = dict(n_clusters=25) in order to take the original 50 realizations and reduce
them down to 25. The function itself returns the ids (indexes: int) of the realizations, which can then be used to select
the data from the original ensemble.

[5]: ids, cluster, fig_data = ensembles.kmeans_reduce_ensemble(
data=crit, method={"n_clusters": 25}, random_state=42, make_graph=True

)
ds_crit.isel(realization=ids)

[5]: <xarray.Dataset>
Dimensions: (horizon: 2, realization: 25)
Coordinates:
* horizon (horizon) <U9 '2041-2070' '2071-2100'

Dimensions without coordinates: realization
Data variables:

delta_annual_tavg (horizon, realization) float64 5.646 4.468 ... 5.594
delta_annual_prtot (horizon, realization) float64 14.42 -1.352 ... 27.31
delta_JJA_prtot (horizon, realization) float64 -1.108 3.299 ... 0.4022

With this reduced number, we can now compare the distribution of the selection versus the original ensemble of simu-
lations.

[6]: plt.style.use("seaborn-dark")
fig = plt.figure(figsize=(11, 9))
ax = plt.axes(projection="3d")

for h in ds_crit.horizon:
ax.scatter(

ds_crit.sel(horizon=h, realization=ids).delta_annual_tavg,
ds_crit.sel(horizon=h, realization=ids).delta_annual_prtot,
ds_crit.sel(horizon=h, realization=ids).delta_JJA_prtot,
label=f"delta {h.values} - selected",

)

ax.set_xlabel("delta_annual_tavg (C)")
ax.set_ylabel("delta_annual_prtot (%)")
ax.set_zlabel("delta_JJA_prtot (%)")
plt.legend()
plt.show()

/tmp/ipykernel_185254/1105539681.py:1: MatplotlibDeprecationWarning: The seaborn styles␣
→˓shipped by Matplotlib are deprecated since 3.6, as they no longer correspond to the␣
→˓styles shipped by seaborn. However, they will remain available as 'seaborn-v0_8-<style>
→˓'. Alternatively, directly use the seaborn API instead.
plt.style.use("seaborn-dark")

3.3. Ensemble-Reduction Techniques 31

https://doi.org/10.1371/journal.pone.0152495
https://doi.org/10.1371/journal.pone.0152495
https://doi.org/10.1175/JCLI-D-11-00440.1

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

The function optionally produces a data dictionary for figure production of the associated R2 profile.

The function ensembles.plot_rsqprofile provides plotting for evaluating the proportion of total variance in cli-
mate realizations that is covered by the selection.

In this case ~88% of the total variance in original ensemble is covered by the selection.

[7]: ensembles.plot_rsqprofile(fig_data)

32 Chapter 3. Examples

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

Alternatively we can use method = {'rsq_cutoff':Float} or method = {'rsq_optimize':None} * For ex-
ample with rsq_cutoff we instead find the number of realizations needed to cover the provided 𝑅2 value

[8]: ids1, cluster1, fig_data1 = ensembles.kmeans_reduce_ensemble(
data=crit, method={"rsq_cutoff": 0.75}, random_state=42, make_graph=True

)
ensembles.plot_rsqprofile(fig_data1)
ds_crit.isel(realization=ids1)

[8]: <xarray.Dataset>
Dimensions: (horizon: 2, realization: 17)
Coordinates:
* horizon (horizon) <U9 '2041-2070' '2071-2100'

Dimensions without coordinates: realization
Data variables:

delta_annual_tavg (horizon, realization) float64 5.646 4.468 ... 6.144
delta_annual_prtot (horizon, realization) float64 14.42 -1.352 ... 20.69
delta_JJA_prtot (horizon, realization) float64 -1.108 3.299 ... 3.48

3.3. Ensemble-Reduction Techniques 33

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

3.3.2 KKZ reduce ensemble

xclim also makes available a similar ensemble reduction algorithm, ensembles.kkz_reduce_ensemble. see: https:
//doi.org/10.1175/JCLI-D-14-00636.1

The advantage of this algorithm is largely that fewer realizations are needed in order to reach the same level of rep-
resentative members than the K-means clustering algorithm, as the KKZ methods tends towards identifying members
that fall towards the extremes of criteria values.

This technique also produces nested selection results, where additional increase in desired selection size does not alter
the previous choices, which is not the case for the K-means algorithm.

[9]: ids = ensembles.kkz_reduce_ensemble(crit, num_select=10)
ds_crit.isel(realization=ids)

[9]: <xarray.Dataset>
Dimensions: (horizon: 2, realization: 10)
Coordinates:
* horizon (horizon) <U9 '2041-2070' '2071-2100'

Dimensions without coordinates: realization
Data variables:

delta_annual_tavg (horizon, realization) float64 1.719 6.405 ... 7.449
delta_annual_prtot (horizon, realization) float64 9.611 1.527 ... 22.34
delta_JJA_prtot (horizon, realization) float64 -0.1268 -4.622 ... 7.207

[10]: plt.style.use("seaborn-dark")
fig = plt.figure(figsize=(9, 9))
ax = plt.axes(projection="3d")

for h in ds_crit.horizon:

ax.scatter(
ds_crit.sel(horizon=h, realization=ids).delta_annual_tavg,

(continues on next page)

34 Chapter 3. Examples

https://doi.org/10.1175/JCLI-D-14-00636.1
https://doi.org/10.1175/JCLI-D-14-00636.1

xclim Documentation, Release 0.39.0

(continued from previous page)

ds_crit.sel(horizon=h, realization=ids).delta_annual_prtot,
ds_crit.sel(horizon=h, realization=ids).delta_JJA_prtot,
label=f"delta {h.values} - selected",

)

ax.set_xlabel("delta_annual_tavg (C)")
ax.set_ylabel("delta_annual_prtot (%)")
ax.set_zlabel("delta_JJA_prtot (%)")
plt.legend()
plt.show()

/tmp/ipykernel_185254/2399916596.py:1: MatplotlibDeprecationWarning: The seaborn styles␣
→˓shipped by Matplotlib are deprecated since 3.6, as they no longer correspond to the␣
→˓styles shipped by seaborn. However, they will remain available as 'seaborn-v0_8-<style>
→˓'. Alternatively, directly use the seaborn API instead.
plt.style.use("seaborn-dark")

nbsphinx-code-borderwhite

3.3. Ensemble-Reduction Techniques 35

xclim Documentation, Release 0.39.0

3.3.3 KKZ algorithm vs K-Means algorithm

To give a better sense of the differences between Nested (KKZ) and Unnested (K-Means) results, we can progressively
identify members that would be chosen by each algorithm through iterative fashion.

[11]: ## NESTED results using KKZ
for n in np.arange(5, 15, 3):

ids = ensembles.kkz_reduce_ensemble(crit, num_select=n)
print(ids)

[19, 24, 33, 3, 21]
[19, 24, 33, 3, 21, 18, 35, 48]
[19, 24, 33, 3, 21, 18, 35, 48, 40, 39, 29]
[19, 24, 33, 3, 21, 18, 35, 48, 40, 39, 29, 11, 2, 8]

[12]: ## UNNESTED results using k-means
for n in np.arange(5, 15, 3):

ids, cluster, fig_data = ensembles.kmeans_reduce_ensemble(
crit, method={"n_clusters": n}, random_state=42, make_graph=True

)
print(ids)

[7, 12, 27, 35, 45]
[7, 12, 19, 26, 27, 29, 36, 49]
[0, 10, 12, 14, 19, 32, 35, 38, 39, 45, 49]
[2, 12, 14, 16, 17, 19, 22, 27, 33, 39, 40, 45, 47, 49]

While the Nested feature of the KKZ results is typically advantageous, it can sometimes result in unbalanced coverage
of the original ensemble. In general careful consideration and validation of selection results is suggested when
``n`` is small, regardless of the technique used.
To illustrate a simple example using only 2 of our criteria shows differences in results between the two techniques:

The KKZ algorithm iteratively maximizes distance from previous selected candidates - potentially resulting in ‘off-
center’ results versus the original ensemble

The K-means algorithm will redivide the data space with each iteration producing results that are consistently centered
on the original ensemble but lacking coverage in the extremes

[13]: df = crit.isel(criteria=[0, 1])

Use standardized data in the plot so that selection distances is better visualized
df = (df - df.mean("realization")) / df.std("realization")

plt.figure(figsize=(18, 3))
for n in np.arange(1, 6):

plt.subplot(1, 5, n, aspect="equal")
plt.scatter(df.isel(criteria=0), df.isel(criteria=1))
ids_KKZ = ensembles.kkz_reduce_ensemble(crit.isel(criteria=[0, 1]), num_select=n)
plt.scatter(

df.isel(criteria=0, realization=ids_KKZ),
df.isel(criteria=1, realization=ids_KKZ),
s=100,

)
plt.title(f"KKZ={n}")
if n == 1:

(continues on next page)

36 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

plt.ylabel("standardized delta_annual_prtot")
if n == 3:

plt.xlabel("standardized delta_annual_tavg")
plt.suptitle("KKZ selection results")

plt.figure(figsize=(18, 3))
for n in np.arange(1, 6):

plt.subplot(1, 5, n, aspect="equal")
plt.scatter(df.isel(criteria=0), df.isel(criteria=1))
ids_Kmeans, c, figdata = ensembles.kmeans_reduce_ensemble(

crit.isel(criteria=[0, 1]),
method={"n_clusters": n},
random_state=42,
make_graph=True,

)
plt.scatter(

df.isel(criteria=0, realization=ids_Kmeans),
df.isel(criteria=1, realization=ids_Kmeans),
s=100,

)
plt.title(f"Kmeans={n}")
if n == 1:

plt.ylabel("standardized delta_annual_prtot")
if n == 3:

plt.xlabel("standardized delta_annual_tavg")
plt.suptitle("K-means selection results")
plt.show()

nbsphinx-code-borderwhite

nbsphinx-code-borderwhite

[]:

3.3. Ensemble-Reduction Techniques 37

xclim Documentation, Release 0.39.0

3.4 Frequency analysis

Frequency analysis refers to the study of the probability of occurrence of events. It’s often used in regulatory contexts
to determine design values for infrastructures. For example, your city might require that road drainage systems be able
to cope with a level of rainfall that is exceeded only once every 20 years on average. This 20-year return event, the
infrastructure design value, is computed by first extracting precipitation annual maxima from a rainfall observation
time series, fitting a statistical distribution to the maxima, then estimating the 95th percentile (1:20 chance of being
exceeded).

To facilitate this type of analysis on a large number of time series from model simulations or observations, xclim packs
a few common utility functions. In the following example, we’re estimating the 95th percentile of the daily precipitation
maximum over the May-October period using a Generalized Extreme Value distribution.

Note that at the moment, all frequency analysis functions are hard-coded to operate along the time dimension.

Let’s first create a synthetic time series of daily precipitation.

[1]: from __future__ import annotations

import warnings

import numpy as np
import xarray as xr

warnings.simplefilter("ignore")
from scipy.stats import bernoulli, gamma

from xclim.core.missing import missing_pct
from xclim.indices.generic import select_resample_op
from xclim.indices.stats import fa, fit, frequency_analysis, parametric_quantile

Create synthetic daily precipitation time series (mm/d)
n = 50 * 366
start = np.datetime64("1950-01-01")
time = start + np.timedelta64(1, "D") * range(n)
time = xr.cftime_range(start="1950-01-01", periods=n)

Generate wet (1) /dry (0) days, then multiply by rain magnitude.
wet = bernoulli.rvs(0.1, size=n)
intensity = gamma(a=4, loc=1, scale=6).rvs(n)
pr = xr.DataArray(

wet * intensity,
dims=("time",),
coords={"time": time},
attrs={"units": "mm/d", "standard_name": "precipitation_flux"},

)
pr

[1]: <xarray.DataArray (time: 18300)>
array([0. , 31.31894244, 0. , ..., 0. ,

0. , 0.])
Coordinates:
* time (time) datetime64[ns] 1950-01-01 1950-01-02 ... 2000-02-07

Attributes:
units: mm/d

(continues on next page)

38 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

standard_name: precipitation_flux

The frequency_analysis function combines all the necessary steps to estimate our design value:

1. Extract May to October period (month=[5,6,7,8,9,10])

2. Extract maxima (mode="max")

3. Fit the GEV distribution on the maxima (dist="genextreme")

4. Compute the value exceeded, on average, once every 20 years (t=20)

Note that xclim essentially wraps scipy.stats distributions, so many distributions like norm, gumbel_r, lognorm,
etc. are supported.

[2]: # Compute the design value
frequency_analysis(

pr, t=20, dist="genextreme", mode="max", freq="Y", month=[5, 6, 7, 8, 9, 10]
)

[2]: <xarray.DataArray (return_period: 1)>
array([76.74502779])
Coordinates:
* return_period (return_period) int64 20

Attributes:
units: mm/d
standard_name: precipitation_flux
long_name: genextreme quantiles
description: Quantiles estimated by the genextreme distribution
method: ML
estimator: Maximum likelihood
scipy_dist: genextreme
history: [2022-11-02 04:14:00] fit: Estimate distribution paramete...
cell_methods: dparams: ppf
mode: max

In practice, it’s often useful to be able to save intermediate results, for example the parameters of the fitted distribution,
so in the following we crack open what goes on behind the frequency_analysis function.

The first step of the frequency analysis is to extract the May-October maxima. This is done using the indices.
generic.select_resample_op function, which applies an operator (op) on a resampled time series. It can also select
portion of the year, such as climatological seasons (e.g. ‘DJF’ for winter months), or individual months (e.g. month=[1]
for January).

[3]: sub = select_resample_op(pr, op="max", freq="Y", month=[5, 6, 7, 8, 9, 10])
sub

[3]: <xarray.DataArray (time: 51)>
array([42.46182863, 60.16694676, 50.15641454, 60.68633697, 64.39583729,

51.9758267 , 53.30238348, 44.58883451, 55.89005643, 58.36051476,
87.3481922 , 48.76889094, 49.42329233, 58.83701311, 36.56513742,
65.31046294, 37.21478037, 71.8971477 , 35.86304007, 35.1753032 ,
47.69935178, 69.17584802, 45.4109899 , 37.64384397, 40.91791735,
43.0036093 , 55.42031341, 44.22312984, 58.63037261, 75.34738883,
82.55820154, 42.9081283 , 42.45047923, 49.12350764, 43.49974382,
60.56716676, 40.5714501 , 57.24524874, 39.14287789, 47.21202421,

(continues on next page)

3.4. Frequency analysis 39

xclim Documentation, Release 0.39.0

(continued from previous page)

48.54698611, 68.16610079, 57.80389551, 55.54407512, 56.75103673,
45.73347511, 73.13801584, 38.66852959, 62.63084965, 43.90404714,

nan])
Coordinates:
* time (time) datetime64[ns] 1950-12-31 1951-12-31 ... 2000-12-31

Attributes:
units: mm/d
standard_name: precipitation_flux

The next step is to fit the statistical distribution on these maxima. This is done by the fit method, which takes as
argument the sample series, the distribution’s name and the parameter estimation method. The fit is done by default
using the Maximum Likelihood algorithm. For some extreme value distributions however, the maximum likelihood is
not always robust, and xclim offers the possibility to use Probability Weighted Moments (PWM) to estimate param-
eters. Note that the lmoments3 package which is used by xclim to compute the PWM only supports expon, gamma,
genextreme, genpareto, gumbel_r, pearson3 and weibull_min.

[4]: # The fitting dimension is hard-coded as `time`.
params = fit(sub, dist="genextreme")
params

[4]: <xarray.DataArray (dparams: 3)>
array([-3.44429578e-02, 4.69713080e+01, 9.52015601e+00])
Coordinates:
* dparams (dparams) <U5 'c' 'loc' 'scale'

Attributes:
original_units: mm/d
original_standard_name: precipitation_flux
long_name: genextreme parameters
description: Parameters of the genextreme distribution
method: ML
estimator: Maximum likelihood
scipy_dist: genextreme
units:
history: [2022-11-02 04:14:01] fit: Estimate distribution...

Finally, the last step is to compute the percentile, or quantile, using the fitted parameters, using the
parametric_quantile function. The function uses metadata stored in attributes of the parameters generated by
fit to determine what distribution to use and what are the units of the quantiles. Here we need to pass the quantile
(values between 0 and 1), which for exceedance probabilities is just :math1 - 1/T.

[5]: parametric_quantile(params, q=1 - 1.0 / 20)

[5]: <xarray.DataArray (quantile: 1)>
array([76.74502779])
Coordinates:
* quantile (quantile) float64 0.95

Attributes:
units: mm/d
standard_name: precipitation_flux
long_name: genextreme quantiles
description: Quantiles estimated by the genextreme distribution
method: ML
estimator: Maximum likelihood

(continues on next page)

40 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

scipy_dist: genextreme
history: [2022-11-02 04:14:01] fit: Estimate distribution paramete...
cell_methods: dparams: ppf

As a convenience utility, the two last steps (fit and parametric_quantile) are bundled into the fa function, which
takes care of converting the return period into a quantile value, and renames the quantile output dimension to
return_period. This dimension renaming is done to avoid name clashes with the quantile method. Indeed, it’s
often necessary when analysing large ensembles, or probabilistic samples, to compute the quantiles of the quantiles,
which will cause xarray to raise an error. The mode argument specifies whether we are working with maxima (max)
or minima (min). This is important because a 100-year return period value for minima corresponds to a 0.01 quantile,
while a 100-year return period value for maxima corresponds to a 0.99 quantile.

[6]: fa(sub, t=20, dist="genextreme", mode="max")

[6]: <xarray.DataArray (return_period: 1)>
array([76.74502779])
Coordinates:
* return_period (return_period) int64 20

Attributes:
units: mm/d
standard_name: precipitation_flux
long_name: genextreme quantiles
description: Quantiles estimated by the genextreme distribution
method: ML
estimator: Maximum likelihood
scipy_dist: genextreme
history: [2022-11-02 04:14:01] fit: Estimate distribution paramete...
cell_methods: dparams: ppf
mode: max

3.4.1 Handling missing values

When working with observations from weather stations, there are often stretches of days without measurements due to
equipment malfunction. Practitioners usually do not want to ignore entire years of data due to a few missing days, so
one option is to record annual maxima only if there are no more than a given percentage of missing values, say 5%.
These kinds of filters can easily be applied using xclim.

[7]: # Set the first half of the first year as missing.
pr[:200] = np.nan

Compute vector returning which years should be considered missing.
null = missing_pct(pr, tolerance=0.05, freq="Y", month=[5, 6, 7, 8, 9, 10])

Compute stats on masked values
fa(sub.where(~null), t=20, dist="genextreme", mode="high")

[7]: <xarray.DataArray (return_period: 1)>
array([76.72640332])
Coordinates:
* return_period (return_period) int64 20

Attributes:
units: mm/d

(continues on next page)

3.4. Frequency analysis 41

xclim Documentation, Release 0.39.0

(continued from previous page)

standard_name: precipitation_flux
long_name: genextreme quantiles
description: Quantiles estimated by the genextreme distribution
method: ML
estimator: Maximum likelihood
scipy_dist: genextreme
history: [2022-11-02 04:14:01] fit: Estimate distribution paramete...
cell_methods: dparams: ppf
mode: high

3.5 Customizing and controlling xclim

xclim’s behaviour can be controlled globally or contextually through xclim.set_options, which acts the same way as
xarray.set_options. For the extension of xclim with the addition of indicators, see the Extending xclim notebook.

[1]: from __future__ import annotations

import xarray as xr

import xclim
from xclim.testing import open_dataset

Let’s create fake data with some missing values and mask every 10th, 20th and 30th of the month.This represents
9.6-10% of masked data for all months except February where it is 7.1%.

[2]: tasmax = (
xr.tutorial.open_dataset("air_temperature")
.air.resample(time="D")
.max(keep_attrs=True)

)
tasmax = tasmax.where(tasmax.time.dt.day % 10 != 0)

3.5.1 Checks

Above, we created fake temperature data from a xarray tutorial dataset that doesn’t have all the standard CF attributes.
By default, when triggering a computation with an Indicator from xclim, warnings will be raised:

[3]: tx_mean = xclim.atmos.tx_mean(tasmax=tasmax, freq="MS") # compute monthly max tasmax

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/core/cfchecks.py:44: UserWarning: Variable does not have a `cell_
→˓methods` attribute.
_check_cell_methods(

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/core/cfchecks.py:48: UserWarning: Variable does not have a `standard_
→˓name` attribute.
check_valid(vardata, "standard_name", data["standard_name"])

Setting cf_compliance to 'log' mutes those warnings and sends them to the log instead.

42 Chapter 3. Examples

xclim Documentation, Release 0.39.0

[4]: xclim.set_options(cf_compliance="log")

tx_mean = xclim.atmos.tx_mean(tasmax=tasmax, freq="MS") # compute monthly max tasmax

3.5.2 Adding translated metadata

With the help of its internationalization module (xclim.core.locales), xclim can add translated metadata to the
output of the indicators. The metadata is not translated on-the-fly, but translations are manually written for each in-
dicator and metadata field. Currently, all indicators have a french translation, but users can add more choices. See
Internationalization and Extending xclim.

In the example below, notice the added long_name_fr and description_fr attributes. Also, the use of
set_options as a context makes this configuration transient, only valid within the context.

[5]: with xclim.set_options(metadata_locales=["fr"]):
out = xclim.atmos.tx_max(tasmax=tasmax)

out.attrs

[5]: {'units': 'K',
'cell_methods': ' time: maximum over days',
'history': "[2022-11-02 04:12:30] tx_max: TX_MAX(tasmax=air, freq='YS') with options␣
→˓check_missing=any - xclim version: 0.39.0",
'standard_name': 'air_temperature',
'long_name': 'Maximum daily maximum temperature',
'description': 'Annual maximum of daily maximum temperature.',
'long_name_fr': 'Maximum de la température quotidienne',
'description_fr': 'Maximum annuel de la température maximale quotidienne.'}

3.5.3 Missing values

One can also globally change the missing method.

Change the default missing method to “pct” and set its tolerance to 8%:

[6]: xclim.set_options(check_missing="pct", missing_options={"pct": {"tolerance": 0.08}})

tx_mean = xclim.atmos.tx_mean(tasmax=tasmax, freq="MS") # compute monthly max tasmax
tx_mean.sel(time="2013", lat=75, lon=200)

[6]: <xarray.DataArray 'tx_mean' (time: 12)>
array([nan, 242.76694, nan, nan, nan, nan,

nan, nan, nan, nan, nan, nan],
dtype=float32)

Coordinates:
lat float32 75.0
lon float32 200.0

* time (time) datetime64[ns] 2013-01-01 2013-02-01 ... 2013-12-01
Attributes:

units: K
cell_methods: time: mean over days
history: [2022-11-02 04:12:30] tx_mean: TX_MEAN(tasmax=air, freq='...
standard_name: air_temperature

(continues on next page)

3.5. Customizing and controlling xclim 43

xclim Documentation, Release 0.39.0

(continued from previous page)

long_name: Mean daily maximum temperature
description: Monthly mean of daily maximum temperature.

Only February has non-masked data. Let’s say we want to use the “wmo” method (and its default options), but only
once, we can do:

[7]: with xclim.set_options(check_missing="wmo"):
tx_mean = xclim.atmos.tx_mean(

tasmax=tasmax, freq="MS"
) # compute monthly max tasmax

tx_mean.sel(time="2013", lat=75, lon=200)

[7]: <xarray.DataArray 'tx_mean' (time: 12)>
array([246.4122 , 242.76694, 250.18001, 260.53598, 268.20145, 274.92004,

277.01144, 273.31146, 270.30484, 263.94357, 254.68298, 251.45862],
dtype=float32)

Coordinates:
lat float32 75.0
lon float32 200.0

* time (time) datetime64[ns] 2013-01-01 2013-02-01 ... 2013-12-01
Attributes:

units: K
cell_methods: time: mean over days
history: [2022-11-02 04:12:30] tx_mean: TX_MEAN(tasmax=air, freq='...
standard_name: air_temperature
long_name: Mean daily maximum temperature
description: Monthly mean of daily maximum temperature.

This method checks that there is less than nm=5 invalid values in a month and that there are no consecutive runs of
nc>=4 invalid values. Thus, every month is now valid.

Finally, it is possible for advanced users to register their own method. Xclim’s missing methods are in fact based on
class instances. Thus, to create a custom missing class, one should implement a subclass based on xclim.core.
checks.MissingBase and overriding at least the is_missing method. The method should take a null argument
and a count argument.

• null is a DataArrayResample instance of the resampled mask of invalid values in the input dataarray.

• count is the number of days in each resampled periods and any number of other keyword arguments.

The is_missingmethod should return a boolean mask, at the same frequency as the indicator output (same as count),
where True values are for elements that are considered missing and masked on the output.

When registering the class with the xclim.core.checks.register_missing_method decorator, the keyword ar-
guments will be registered as options for the missing method. One can also implement a validate static method that
receives only those options and returns whether they should be considered valid or not.

[8]: from xclim.core.missing import MissingBase, register_missing_method
from xclim.indices.run_length import longest_run

@register_missing_method("consecutive")
class MissingConsecutive(MissingBase):

"""Any period with more than max_n consecutive missing values is considered invalid""
→˓"

(continues on next page)

44 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

def is_missing(self, null, count, max_n=5):
return null.map(longest_run, dim="time") >= max_n

@staticmethod
def validate(max_n):

return max_n > 0

The new method is now accessible and usable with:

[9]: with xclim.set_options(
check_missing="consecutive", missing_options={"consecutive": {"max_n": 2}}

):
tx_mean = xclim.atmos.tx_mean(

tasmax=tasmax, freq="MS"
) # compute monthly max tasmax

tx_mean.sel(time="2013", lat=75, lon=200)

[9]: <xarray.DataArray 'tx_mean' (time: 12)>
array([246.4122 , 242.76694, 250.18001, 260.53598, 268.20145, 274.92004,

277.01144, 273.31146, 270.30484, 263.94357, 254.68298, 251.45862],
dtype=float32)

Coordinates:
lat float32 75.0
lon float32 200.0

* time (time) datetime64[ns] 2013-01-01 2013-02-01 ... 2013-12-01
Attributes:

units: K
cell_methods: time: mean over days
history: [2022-11-02 04:12:34] tx_mean: TX_MEAN(tasmax=air, freq='...
standard_name: air_temperature
long_name: Mean daily maximum temperature
description: Monthly mean of daily maximum temperature.

3.6 Extending xclim

xclim tries to make it easy for users to add their own indices and indicators. The following goes into details on how to
create indices and document them so that xclim can parse most of the metadata directly. We then explain the multiple
ways new Indicators can be created and, finally, how we can regroup and structure them in virtual submodules.

Central to xclim are the Indicators, objects computating indices over climate variables, but xclim also provides other
modules:

Where subset is a phantom module, kept for legacy code, as it only redirects the calls to clisops.core.subset.

This introduction will focus on the Indicator/Indice part of xclim and how one can extend it by implementing new ones.

3.6. Extending xclim 45

xclim Documentation, Release 0.39.0

3.6.1 Indices vs Indicators

Internally and in the documentation, xclim makes a distinction between “indices” and “indicators”.

indice

• A python function accepting DataArrays and other parameters (usually bultin types)

• Returns one or several DataArrays.

• Handles the units : checks input units and set proper CF-compliant output units. But doesn’t usually prescribe
specific units, the output will at minimum have the proper dimensionality.

• Performs no other checks or set any (non-unit) metadata.

• Accessible through xclim.indices.

indicator

• An instance of a subclass of xclim.core.indicator.Indicator that wraps around an indice (stored in its
compute property).

• Returns one or several DataArrays.

• Handles missing values, performs input data and metadata checks (see usage).

• Always ouputs data in the same units.

• Adds dynamically generated metadata to the output after computation.

• Accessible through xclim.indicators

Most metadata stored in the Indicators is parsed from the underlying indice documentation, so defining indices with
complete documentation and an appropriate signature helps the process. The two next sections go into details on the
definition of both objects.

Call sequence

The following graph shows the steps done when calling an Indicator. Attributes and methods of the Indicator object
relating to those steps are listed on the right side.

3.6.2 Defining new indices

The annotated example below shows the general template to be followed when defining proper indices. In the comments
Ind is the indicator instance that would be created from this function.

Note that it is not needed to follow these standards when writing indices that will be wrapped in indicators. Problems
in parsing will not raise errors at runtime, but might raise warnings and will result in Indicators with poorer metadata
than expected by most users, especially those that dynamically use indicators in other applications where the code is
inaccessible, like web services.

The following code is another example.

46 Chapter 3. Examples

xclim Documentation, Release 0.39.0

[1]: from __future__ import annotations

import xarray as xr

import xclim as xc
from xclim.core.units import convert_units_to, declare_units
from xclim.indices.generic import threshold_count

@declare_units(tasmax="[temperature]", thresh="[temperature]")
def tx_days_compare(

tasmax: xr.DataArray, thresh: str = "0 degC", op: str = ">", freq: str = "YS"
):

r"""Number of days where maximum daily temperature. is above or under a threshold.

The daily maximum temperature is compared to a threshold using a given operator and␣
→˓the number
of days where the condition is true is returned.

It assumes a daily input.

Parameters

tasmax : xarray.DataArray
Maximum daily temperature.

thresh : str
Threshold temperature to compare to.

op : {'>', '<'}
The operator to use.
A fixed set of choices can be imposed. Only strings, numbers, booleans or None␣

→˓are accepted.
freq : str
Resampling frequency.

Returns

xarray.DataArray, [temperature]
Maximum value of daily maximum temperature.

Notes

Let :math:`TX_{ij}` be the maximum temperature at day :math:`i` of period :math:`j`.␣

→˓Then the maximum
daily maximum temperature for period :math:`j` is:

.. math::

TXx_j = max(TX_{ij})

References

:cite:cts:`smith_citation_2020`
"""

(continues on next page)

3.6. Extending xclim 47

xclim Documentation, Release 0.39.0

(continued from previous page)

thresh = convert_units_to(thresh, tasmax)
out = threshold_count(tasmax, op, thresh, freq)
out.attrs["units"] = "days"
return out

Naming and conventions

Variable names should correspond to CMIP6 variables, whenever possible. The file xclim/data/variables.yml
lists all variables that xclim can use when generating indicators from yaml files (see below), and new indices should
try to reflect these also. For new variables, the xclim.testing.get_all_CMIP6_variables function downloads
the official table of CMIP6 variables and puts everything in a dictionary. If possible, use variables names from this list,
add them to variables.yml as needed.

Generic functions for common operations

The xclim.indices.generic submodule contains useful functions for common computations (like threshold_count
or select_resample_op) and many basic indice functions, as defined by clix-meta. In order to reduce duplicate
code, their use is recommended for xclim’s indices. As previously said, the units handling has to be made explicitly
when non trivial, xclim.core.units also exposes a few helpers for that (like convert_units_to, to_agg_units or
rate2amount).

Documentation

As shown in both example, a certain level of convention is best followed when writing the docstring of the indice
function. The general structure follows the NumpyDoc conventions and some fields might be parsed when creating the
indicator (see the image above and the section below). If you are contributing to the xclim codebase, when adding a
citation to the docstring, this is best done by adding that reference to the references.bib file and then citing it using
its label with the :cite:cts: directive (or one of its variant). See the contributing docs.

3.6.3 Defining new indicators

xclim’s Indicators are instances of (subclasses of) xclim.core.indicator.Indicator. While they are the central
to xclim, their construction can be somewhat tricky as a lot happens backstage. Essentially, they act as self-aware
functions, taking a set of input variables (DataArrays) and parameters (usually strings, integers or floats), performing
some health checks on them and returning one or multiple DataArrays, with CF-compliant (and potentially translated)
metadata attributes, masked according to a given missing value set of rules. They define the following key attributes:

• the identifier, as string that uniquely identifies the indicator, usually all caps.

• the realm, one of “atmos”, “land”, “seaIce” or “ocean”, classifying the domain of use of the indicator.

• the compute function that returns one or more DataArrays, the “indice”,

• the cfcheck and datacheck methods that make sure the inputs are appropriate and valid.

• the missing function that masks elements based on null values in the input.

• all metadata attributes that will be attributed to the output and that document the indicator:

– Indicator-level attribute are : title, abstract, keywords, references and notes.

– Ouput variables attributes (respecting CF conventions) are: var_name, standard_name, long_name,
units, cell_methods, description and comment.

48 Chapter 3. Examples

https://github.com/clix-meta/clix-meta

xclim Documentation, Release 0.39.0

Output variables attributes are regrouped in Indicator.cf_attrs and input parameters are documented in
Indicator.parameters.

A particularity of Indicators is that each instance corresponds to a single class: when creating a new indicator, a new
class is automatically created. This is done for easy construction of indicators based on others, like shown further down.

See the class documentation for more info on the meaning of each attribute. The indicators module contains over 50
examples of indicators to draw inspiration from.

Identifier vs python name

An indicator’s identifier is not the same as the name it has within the python module. For example, xc.atmos.
relative_humidity has hurs as its identifier. As explained below, indicator classes can be accessed through xc.
core.indicator.registry with their identifier.

Metadata parsing vs explicit setting

As explained above, most metadata can be parsed from the indice’s signature and docstring. Otherwise, it can always
be set when creating a new Indicator instance or a new subclass. When creating an indicator, output metadata attributes
can be given as strings, or list of strings in the case of indicator returning multiple outputs. However, they are stored in
the cf_attrs list of dictionaries on the instance.

Internationalization of metadata

xclim offers the possibility to translate the main Indicator metadata field and automatically add the translations to the
outputs. The mechnanic is explained in the Internationalization page.

Inputs and checks

xclim decides which input arguments of the indicator’s call function are considered variables and which are param-
eters using the annotations of the underlying indice (the compute method). Arguments annotated with the xarray.
DataArray type are considered variables and can be read from the dataset passed in ds.

Indicator creation

There a two ways for creating indicators:

1) By initializing an existing indicator (sub)class

2) From a dictionary

The first method is best when defining indicators in scripts of external modules and are explained here. The second
is best used when building virtual modules through YAML files, and is explained further down and in the submodule
doc.

Creating a new indicator that simply modifies a few metadata output of an existing one is a simple call like:

[2]: from xclim.core.indicator import registry
from xclim.core.utils import wrapped_partial

An indicator based on tg_mean, but returning Celsius and fixed on annual resampling
tg_mean_c = registry["TG_MEAN"](

identifier="tg_mean_c",
(continues on next page)

3.6. Extending xclim 49

https://github.com/Ouranosinc/xclim/tree/master/xclim/indicators

xclim Documentation, Release 0.39.0

(continued from previous page)

units="degC",
title="Mean daily mean temperature but in degC",
parameters=dict(freq="YS"), # We inject the freq arg.

)

[3]: print(tg_mean_c.__doc__)

Mean daily mean temperature but in degC (realm: atmos)

Mean of daily mean temperature.

This indicator will check for missing values according to the method "from_context".
Based on indice :py:func:`~xclim.indices._simple.tg_mean`.
With injected parameters: freq=YS.

Parameters

tas : str or DataArray
Mean daily temperature.
Default : `ds.tas`. [Required units : [temperature]]

ds : Dataset, optional
A dataset with the variables given by name.
Default : None.

indexer :
Indexing parameters to compute the indicator on a temporal subset of the data. It␣

→˓accepts the same arguments as :py:func:`xclim.indices.generic.select_time`.
Default : None.

Returns

tg_mean_c : DataArray
Mean daily mean temperature (air_temperature) [degC], with additional attributes:␣

→˓**cell_methods**: time: mean over days; **description**: {freq} mean of daily mean␣
→˓temperature.
Notes

Let :math:`TN_i` be the mean daily temperature of day :math:`i`, then for a period :math:
→˓`p` starting at
day :math:`a` and finishing on day :math:`b`:

.. math::

TG_p = \frac{\sum_{i=a}^{b} TN_i}{b - a + 1}

The registry is a dictionary mapping indicator identifiers (in uppercase) to their class. This way, we could subclass
tg_mean to create our new indicator. tg_mean_c is the exact same as atmos.tg_mean, but outputs the result in
Celsius instead of Kelvins, has a different title and removes control over the freq argument, resampling to “YS”. The
identifier keyword is here needed in order to differentiate the new indicator from tg_mean itself. If it wasn’t given,
a warning would have been raised and further subclassing of tg_mean would have in fact subclassed tg_mean_c,
which is not wanted!

50 Chapter 3. Examples

xclim Documentation, Release 0.39.0

By default, indicator classes are registered in xclim.core.indicator.registry, using their identifier which is
prepended by the indicator’s module if that indicator is declared outisde xclim. An “child” indicator inherits it’s module
from its parent:

[4]: tg_mean_c.__module__ == xc.atmos.tg_mean.__module__

[4]: True

To create indicators with a different module, for example, in a goal to differentiate them in the registry, two methods
can be used : passing module to the constructor, or using conventional class inheritance.

[5]: # Passing module
tg_mean_c2 = registry["TG_MEAN_C"](module="test") # we didn't change the identifier!
print(tg_mean_c2.__module__)
"test.TG_MEAN_C" in registry

xclim.indicators.test

[5]: True

[6]: # Conventionnal class inheritance, uses the current module name
class TG_MEAN_C3(registry["TG_MEAN_C"]):

pass # nothing to change really

tg_mean_c3 = TG_MEAN_C3()

print(tg_mean_c3.__module__)
"__main__.TG_MEAN_C" in registry

__main__

[6]: True

While the former method is shorter, the latter is what xclim uses internally as it provides some clean code structure.
See the code in the github repo.

3.6.4 Virtual modules

xclim gives users the ability to generate their own modules from existing indices library. These mappings can help in
emulating existing libraries (such as ICCLIM), with the added benefit of CF-compliant metadata, multilingual metadata
support, and optimized calculations using federated resources (using Dask). This can be used for example to tailor
existing indices with predefined thresholds without having to rewrite indices.

Presently, xclim is capable of approximating the indices developed in ICCLIM, ANUCLIM and clix-meta and is open
to contributions of new indices and library mappings.

This notebook serves as an example of how one might go about creating their own library of mapped indices. Two
ways are possible:

1. From a YAML file (recommended way)

2. From a mapping (dictionary) of indicators

3.6. Extending xclim 51

https://github.com/Ouranosinc/xclim/tree/master/xclim/indicators
https://icclim.readthedocs.io/en/stable/explanation/climate_indices.html
https://fennerschool.anu.edu.au/files/anuclim61.pdf
https://github.com/clix-meta/clix-meta

xclim Documentation, Release 0.39.0

YAML file

The first method is based on the YAML syntax proposed by clix-meta, expanded to xclim’s needs. The full doc-
umentation on that syntax is here. This notebook shows an example different complexities of indicator creation. It
creates a minimal python module defining a indice, creates a YAML file with the metadata for several indicators and
then parses it into xclim.

[8]: # These variables were generated by a hidden cell above that syntax-colored them.
print("Content of example.py :")
print(highlighted_py)
print("\n\nContent of example.yml :")
print(highlighted_yaml)
print("\n\nContent of example.fr.json :")
print(highlighted_json)

Content of example.py :
noqa: D100
from __future__ import annotations

import xarray as xr

from xclim.core.units import declare_units, rate2amount

@declare_units(pr="[precipitation]")
def extreme_precip_accumulation_and_days(

pr: xr.DataArray, perc: float = 95, freq: str = "YS"
):

"""Total precipitation accumulation during extreme events and number of days of such␣
→˓precipitation.

The `perc` percentile of the precipitation (including all values, not in a day-of-
→˓year manner)

is computed. Then, for each period, the days where `pr` is above the threshold are␣
→˓accumulated,

to get the total precip related to those extreme events.

Parameters

pr: xr.DataArray
Precipitation flux (both phases).

perc: float
Percentile corresponding to "extreme" precipitation, [0-100].

freq: str
Resampling frequency.

Returns

xarray.DataArray
Precipitation accumulated during events where pr was above the {perc}th percentile␣

→˓of the whole series.
xarray.DataArray
Number of days where pr was above the {perc}th percentile of the whole series.

"""
(continues on next page)

52 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

pr_thresh = pr.quantile(perc / 100, dim="time").drop_vars("quantile")

extreme_days = pr >= pr_thresh
pr_extreme = rate2amount(pr).where(extreme_days)

out1 = pr_extreme.resample(time=freq).sum()
out1.attrs["units"] = pr_extreme.units

out2 = extreme_days.resample(time=freq).sum()
out2.attrs["units"] = "days"
return out1, out2

Content of example.yml :
doc: |
==============
Example module
==============

This module is an example of YAML generated xclim submodule.
realm: atmos
references: xclim documentation https://xclim.readthedocs.io
indicators:
RX1day:
base: rx1day
cf_attrs:
long_name: Highest 1-day precipitation amount

RX5day:
base: max_n_day_precipitation_amount
cf_attrs:
long_name: Highest 5-day precipitation amount

parameters:
freq: QS-DEC
window: 5

R75pdays:
base: days_over_precip_thresh
parameters:
pr_per:
description: Daily 75th percentile of wet day precipitation flux.

thresh: 1 mm/day
fd:
compute: count_occurrences
input:
data: tasmin

cf_attrs:
cell_methods: 'time: minimum within days time: sum over days'
long_name: Number of Frost Days (Tmin < 0°C)
standard_name: number_of_days_with_air_temperature_below_threshold
units: days
var_name: fd

parameters:
(continues on next page)

3.6. Extending xclim 53

xclim Documentation, Release 0.39.0

(continued from previous page)

op: <
threshold: 0 degC
freq:
default: YS

references: ETCCDI
R95p:
compute: extreme_precip_accumulation_and_days
cf_attrs:
- cell_methods: 'time: sum within days time: sum over days'
long_name: Annual total PRCP when RR > {perc}th percentile
units: m
var_name: R95p

- long_name: Annual number of days when RR > {perc}th percentile
units: days
var_name: R95p_days

parameters:
perc: 95

references: climdex
R99p:
base: .R95p
cf_attrs:
- var_name: R99p
- var_name: R99p_days

parameters:
perc: 99

Content of example.fr.json :
{
"FD": {
"title": "Nombre de jours de gel",
"long_name": "Nombre de jours de gel (Tmin < 0°C)",
"description": "Nombre de jours où la température minimale passe sous 0°C."

},
"R95P": {
"title": "Précpitations accumulées lors des jours de fortes pluies (> {perc}e␣

→˓percentile)"
},
"R95P.R95p": {
"long_name": "Accumulation {freq:f} des précipitations lors des jours de fortes␣

→˓pluies (> {perc}e percentile)",
"description": "Épaisseur équivalente des précipitations accumulées lors des jours␣

→˓où la pluie est plus forte que le {perc}e percentile de la série."
},
"R95P.R95p_days": {
"long_name": "Nombre de jours de fortes pluies (> {perc}e percentile)",
"description": "Nombre de jours où la pluie est plus forte que le {perc}e percentile␣

→˓de la série."
},
"R99P.R99p": {
"long_name": "Accumulation {freq:f} des précipitations lors des jours de fortes␣

(continues on next page)

54 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

→˓pluies (> {perc}e percentile)",
"description": "Épaisseur équivalente des précipitations accumulées lors des jours␣

→˓où la pluie est plus forte que le {perc}e percentile de la série."
},
"R99P.R99p_days": {
"long_name": "Nombre de jours de fortes pluies (> {perc}e percentile)",
"description": "Nombre de jours où la pluie est plus forte que le {perc}e percentile␣

→˓de la série."
},
"RX5DAY": {
"long_name": "Cumul maximal de la précipitation quotidienne sur 5 jours."

}
}

example.yml created a module of 4 indicators.

Values of the base arguments are the identifier of the associated indicators, and those can be different than their name
within the python modules. For example, xc.atmos.relative_humidity has HURS as identifier. One can always
access xc.atmos.relative_humidity.identifier to get the correct name to use.

• RX1day is simply the same as registry['RX1DAY'], but with an updated long_name.

• RX5day is based on registry['MAX_N_DAY_PRECIPITATION_AMOUNT'], changed the long_name and injects
the window and freq arguments.

• R75pdays is based on registry['DAYS_OVER_PRECIP_THRESH'], injects the thresh argument and changes
the description of the per argument.

• fd is a more complex example. As there were no base: entry, the Daily class serves as a base. As it is pretty
much empty, a lot has to be given explicitly:

– Many output metadata fields are given

– A compute function name if given (here it refers to a function in xclim.indices.generic).

– Some parameters are injected, the default for freq is modified.

– The input variable data is mapped to a known variable. Functions in xclim.indices.generic are indeed
generic. Here we tell xclim that the data argument is minimum daily temperature. This will set the proper
units check, default value and CF-compliance checks.

• R95p is similar to fd but here the compute is not defined in xclim but rather in example.py. Also, the custom
function returns two outputs, so the output section is a list of mappings rather than a mapping directly.

• R99p is the same as R95p but changes the injected value. In order to avoid rewriting the output metadata, and
allowed periods, we based it on R95p : as the latter was defined within the current yaml file, the identifier is
prefixed by a dot (.).

Additionnaly, the yaml specified a realm and references to be used on all indices and provided a submodule doc-
string. Creating the module is then simply:

Finally, french translations for the main attributes and the new indicaters are given in example.fr.json. Even though
new indicator objects are created for each yaml entry, non-specified translations are taken from the base classes if
missing in the json file.

Note that all files are named the same way : example.<ext>, with the translations having an additionnal suffix giving
the locale name. In the next cell, we build the module by passing only the path without extension. This absence of

3.6. Extending xclim 55

xclim Documentation, Release 0.39.0

extension is what tells xclim to try to parse a module (*.py) and custom translations (*.<locale>.json). Those two
could also be read beforehand and passed through the indices= and translations= arguments.

Validation of the YAML file

Using yamale, it is possible to check if the yaml file is valid. xclim ships with a schema (in xclim/data/schema.yml)
file. The file can be located with:

[9]: from importlib.resources import path

with path("xclim.data", "schema.yml") as f:
print(f)

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/data/schema.yml

And the validation can be executed either in a python session:

[10]: import yamale

with path("xclim.data", "schema.yml") as f:
schema = yamale.make_schema(f)
data = yamale.make_data("example.yml") # in the current folder

yamale.validate(schema, data)

[10]: [<yamale.schema.validationresults.ValidationResult at 0x7fce1034f880>]

No errors means it passed. The validation can also be run through the command line with:

yamale -s path/to/schema.yml path/to/module.yml

Loading the module and computating of the indices.

[11]: import xclim as xc

example = xc.core.indicator.build_indicator_module_from_yaml("example", mode="raise")

[12]: print(example.__doc__)
print("--")
print(xc.indicators.example.R99p.__doc__)

==============
Example module
==============

This module is an example of YAML generated xclim submodule.

--
Total precipitation accumulation during extreme events and number of days of such␣
→˓precipitation. (realm: atmos)

The `perc` percentile of the precipitation (including all values, not in a day-of-year␣
(continues on next page)

56 Chapter 3. Examples

https://github.com/23andMe/Yamale

xclim Documentation, Release 0.39.0

(continued from previous page)

→˓manner) is computed. Then, for each period, the days where `pr` is above the threshold␣
→˓are accumulated, to get the total precip related to those extreme events.

This indicator will check for missing values according to the method "from_context".
Based on indice :py:func:`~example.extreme_precip_accumulation_and_days`.
With injected parameters: perc=99.

Parameters

pr : str or DataArray
Precipitation flux (both phases).
Default : `ds.pr`. [Required units : [precipitation]]

freq : offset alias (string)
Resampling frequency.
Default : YS.

ds : Dataset, optional
A dataset with the variables given by name.
Default : None.

Returns

R99p : DataArray
Annual total PRCP when RR > {perc}th percentile [m], with additional attributes:␣

→˓**cell_methods**: time: sum within days time: sum over daysR99p_days : DataArray
Annual number of days when RR > {perc}th percentile [days]

References

xclim documentation https://xclim.readthedocs.io

Useful for using this technique in large projects, we can iterate over the indicators like so:

[13]: from xclim.testing import open_dataset

ds = open_dataset("ERA5/daily_surface_cancities_1990-1993.nc")
ds2 = ds.assign(

pr_per=xc.core.calendar.percentile_doy(ds.pr, window=5, per=75).isel(
percentiles=0, drop=True

)
)

outs = []
with xc.set_options(metadata_locales="fr"):

for name, ind in example.iter_indicators():
print(f"Indicator: {name}")
print(f"\tIdentifier: {ind.identifier}")
print(f"\tTitle: {ind.title}")
out = ind(ds=ds2) # Use all default arguments and variables from the dataset
if isinstance(out, tuple):

outs.extend(out)
else:

(continues on next page)

3.6. Extending xclim 57

xclim Documentation, Release 0.39.0

(continued from previous page)

outs.append(out)

Indicator: RX1day
Identifier: RX1day
Title: Maximum 1-day total precipitation

Indicator: RX5day
Identifier: RX5day
Title: maximum n-day total precipitation

Indicator: R75pdays
Identifier: R75pdays
Title: Number of days with precipitation above a given percentile

Indicator: fd
Identifier: fd
Title: Calculate the number of times some condition is met.

Indicator: R95p
Identifier: R95p
Title: Total precipitation accumulation during extreme events and number of days␣

→˓of such precipitation.
Indicator: R99p

Identifier: R99p
Title: Total precipitation accumulation during extreme events and number of days␣

→˓of such precipitation.

out contains all the computed indices, with translated metadata. Note that this merge doesn’t make much sense with
the current list of indicators since they have different frequencies (freq).

[14]: out = xr.merge(outs)
out.attrs = {

"title": "Indicators computed from the example module."
} # Merge puts the attributes of the first variable, we don't want that.
out

[14]: <xarray.Dataset>
Dimensions: (location: 5, time: 21)
Coordinates:
* location (location) object 'Halifax' 'Montréal' ... 'Saskatoon' 'Victoria'
* time (time) datetime64[ns] 1989-12-01 1990-01-01 ... 1993-12-01
lat (location) float32 44.5 45.5 63.75 52.0 48.5
lon (location) float32 -63.5 -73.5 -68.5 -106.8 -123.2

Data variables:
RX1day (location, time) float32 nan 61.13 nan nan ... nan nan nan nan
RX5day (location, time) float64 nan nan 84.1 71.25 ... 23.15 26.55 nan
R75pdays (location, time) float64 nan 93.0 nan nan nan ... nan nan nan nan
fd (location, time) float64 nan 92.0 nan nan nan ... nan nan nan nan
R95p (location, time) float64 nan 0.7553 nan nan ... nan nan nan nan
R95p_days (location, time) float64 nan 24.0 nan nan nan ... nan nan nan nan
R99p (location, time) float64 nan 0.2054 nan nan ... nan nan nan nan
R99p_days (location, time) float64 nan 4.0 nan nan nan ... nan nan nan nan

Attributes:
title: Indicators computed from the example module.

58 Chapter 3. Examples

xclim Documentation, Release 0.39.0

Mapping of indicators

For more complex mappings, submodules can be constructed from Indicators directly. This is not the recommended
way, but can sometimes be a workaround when the YAML version is lacking features.

[15]: from xclim.core.indicator import build_indicator_module, registry
from xclim.core.utils import wrapped_partial

mapping = dict(
egg_cooking_season=registry["MAXIMUM_CONSECUTIVE_WARM_DAYS"](

module="awesome",
compute=xc.indices.maximum_consecutive_tx_days,
parameters=dict(thresh="35 degC"),
long_name="Season for outdoor egg cooking.",

),
fish_feeling_days=registry["WETDAYS"](

module="awesome",
compute=xc.indices.wetdays,
parameters=dict(thresh="14.0 mm/day"),
long_name="Days where we feel we are fishes",

),
sweater_weather=xc.atmos.tg_min.__class__(module="awesome"),

)

awesome = build_indicator_module(
name="awesome",
objs=mapping,
doc="""

=========================
My Awesome Custom indices
=========================
There are only 3 indices that really matter when you come down to brass tacks.
This mapping library exposes them to users who want to perform real deal
climate science.
""",

)

[16]: print(xc.indicators.awesome.__doc__)

=========================
My Awesome Custom indices
=========================
There are only 3 indices that really matter when you come down to brass tacks.
This mapping library exposes them to users who want to perform real deal
climate science.

[17]: # Let's look at our new awesome module
print(awesome.__doc__)
for name, ind in awesome.iter_indicators():

print(f"{name} : {ind}")

3.6. Extending xclim 59

xclim Documentation, Release 0.39.0

=========================
My Awesome Custom indices
=========================
There are only 3 indices that really matter when you come down to brass tacks.
This mapping library exposes them to users who want to perform real deal
climate science.

egg_cooking_season : <xclim.indicators.awesome.MAXIMUM_CONSECUTIVE_WARM_DAYS object at␣
→˓0x7fce0ffa7a90>
fish_feeling_days : <xclim.indicators.awesome.WETDAYS object at 0x7fce0ffbc460>
sweater_weather : <xclim.indicators.awesome.TG_MIN object at 0x7fce0ffbd0c0>

3.7 Statistical Downscaling and Bias-Adjustment

xclim provides tools and utilities to ease the bias-adjustement process through its xclim.sdba module. Almost
all adjustment algorithms conform to the train - adjust scheme, formalized within TrainAdjust classes. Given a
reference time series (ref), historical simulations (hist) and simulations to be adjusted (sim), any bias-adjustment method
would be applied by first estimating the adjustment factors between the historical simulation and the observations series,
and then applying these factors to sim, which could be a future simulation.

This presents examples, while a bit more info and the API are given on this page.

A very simple “Quantile Mapping” approach is available through the “Empirical Quantile Mapping” object. The object
is created through the .train method of the class, and the simulation is adjusted with .adjust.

[1]: from __future__ import annotations

import cftime
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr

%matplotlib inline
plt.style.use("seaborn")
plt.rcParams["figure.figsize"] = (11, 5)

Create toy data to explore bias adjustment, here fake temperature timeseries
t = xr.cftime_range("2000-01-01", "2030-12-31", freq="D", calendar="noleap")
ref = xr.DataArray(

(
-20 * np.cos(2 * np.pi * t.dayofyear / 365)
+ 2 * np.random.random_sample((t.size,))
+ 273.15
+ 0.1 * (t - t[0]).days / 365

), # "warming" of 1K per decade,
dims=("time",),
coords={"time": t},
attrs={"units": "K"},

)
sim = xr.DataArray(

(
(continues on next page)

60 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

-18 * np.cos(2 * np.pi * t.dayofyear / 365)
+ 2 * np.random.random_sample((t.size,))
+ 273.15
+ 0.11 * (t - t[0]).days / 365

), # "warming" of 1.1K per decade
dims=("time",),
coords={"time": t},
attrs={"units": "K"},

)

ref = ref.sel(time=slice(None, "2015-01-01"))
hist = sim.sel(time=slice(None, "2015-01-01"))

ref.plot(label="Reference")
sim.plot(label="Model")
plt.legend()

/tmp/ipykernel_185772/3017572584.py:9: MatplotlibDeprecationWarning: The seaborn styles␣
→˓shipped by Matplotlib are deprecated since 3.6, as they no longer correspond to the␣
→˓styles shipped by seaborn. However, they will remain available as 'seaborn-v0_8-<style>
→˓'. Alternatively, directly use the seaborn API instead.
plt.style.use("seaborn")

[1]: <matplotlib.legend.Legend at 0x7fb17027beb0>

nbsphinx-code-borderwhite

[2]: from xclim import sdba

QM = sdba.EmpiricalQuantileMapping.train(
ref, hist, nquantiles=15, group="time", kind="+"

)
scen = QM.adjust(sim, extrapolation="constant", interp="nearest")

ref.groupby("time.dayofyear").mean().plot(label="Reference")
hist.groupby("time.dayofyear").mean().plot(label="Model - biased")
scen.sel(time=slice("2000", "2015")).groupby("time.dayofyear").mean().plot(

label="Model - adjusted - 2000-15", linestyle="--"
)
scen.sel(time=slice("2015", "2030")).groupby("time.dayofyear").mean().plot(

(continues on next page)

3.7. Statistical Downscaling and Bias-Adjustment 61

xclim Documentation, Release 0.39.0

(continued from previous page)

label="Model - adjusted - 2015-30", linestyle="--"
)
plt.legend()

[2]: <matplotlib.legend.Legend at 0x7fb1599a9930>

nbsphinx-code-borderwhite

In the previous example, a simple Quantile Mapping algorithm was used with 15 quantiles and one group of values. The
model performs well, but our toy data is also quite smooth and well-behaved so this is not surprising. A more complex
example could have biais distribution varying strongly across months. To perform the adjustment with different factors
for each months, one can pass group='time.month'. Moreover, to reduce the risk of sharp change in the adjustment at
the interface of the months, interp='linear' can be passed to adjust and the adjustment factors will be interpolated
linearly. Ex: the factors for the 1st of May will be the average of those for april and those for may.

[3]: QM_mo = sdba.EmpiricalQuantileMapping.train(
ref, hist, nquantiles=15, group="time.month", kind="+"

)
scen = QM_mo.adjust(sim, extrapolation="constant", interp="linear")

ref.groupby("time.dayofyear").mean().plot(label="Reference")
hist.groupby("time.dayofyear").mean().plot(label="Model - biased")
scen.sel(time=slice("2000", "2015")).groupby("time.dayofyear").mean().plot(

label="Model - adjusted - 2000-15", linestyle="--"
)
scen.sel(time=slice("2015", "2030")).groupby("time.dayofyear").mean().plot(

label="Model - adjusted - 2015-30", linestyle="--"
)
plt.legend()

[3]: <matplotlib.legend.Legend at 0x7fb17027b040>

62 Chapter 3. Examples

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

The training data (here the adjustment factors) is available for inspection in the ds attribute of the adjustment object.

[4]: QM_mo.ds

[4]: <xarray.Dataset>
Dimensions: (quantiles: 15, month: 12)
Coordinates:
* quantiles (quantiles) float64 0.03333 0.1 0.1667 ... 0.8333 0.9 0.9667
* month (month) int64 1 2 3 4 5 6 7 8 9 10 11 12

Data variables:
af (month, quantiles) float64 -2.04 -2.076 -2.022 ... -1.892 -1.9
hist_q (month, quantiles) float64 256.1 256.5 256.7 ... 259.2 259.8

Attributes:
group: time.month
group_compute_dims: ['time']
group_window: 1
_xclim_adjustment: {"py/object": "xclim.sdba.adjustment.EmpiricalQuanti...
adj_params: EmpiricalQuantileMapping(group=Grouper(name='time.mo...

[5]: QM_mo.ds.af.plot()

[5]: <matplotlib.collections.QuadMesh at 0x7fb157dc2590>

nbsphinx-code-borderwhite

3.7. Statistical Downscaling and Bias-Adjustment 63

xclim Documentation, Release 0.39.0

3.7.1 Grouping

For basic time period grouping (months, day of year, season), passing a string to the methods needing it is sufficient.
Most methods acting on grouped data also accept a window int argument to pad the groups with data from adjacent
ones. Units of window are the sampling frequency of the main grouping dimension (usually time). For more complex
grouping, or simply for clarity, one can pass a xclim.sdba.base.Grouper directly.

Example here with another, simpler, adjustment method. Here we want sim to be scaled so that its mean fits the one of
ref. Scaling factors are to be computed separately for each day of the year, but including 15 days on either side of the
day. This means that the factor for the 1st of May is computed including all values from the 16th of April to the 15th
of May (of all years).

[6]: group = sdba.Grouper("time.dayofyear", window=31)
QM_doy = sdba.Scaling.train(ref, hist, group=group, kind="+")
scen = QM_doy.adjust(sim)

ref.groupby("time.dayofyear").mean().plot(label="Reference")
hist.groupby("time.dayofyear").mean().plot(label="Model - biased")
scen.sel(time=slice("2000", "2015")).groupby("time.dayofyear").mean().plot(

label="Model - adjusted - 2000-15", linestyle="--"
)
scen.sel(time=slice("2015", "2030")).groupby("time.dayofyear").mean().plot(

label="Model - adjusted - 2015-30", linestyle="--"
)
plt.legend()

[6]: <matplotlib.legend.Legend at 0x7fb17027b9a0>

nbsphinx-code-borderwhite

[7]: sim

[7]: <xarray.DataArray (time: 11315)>
array([255.298312, 256.302941, 256.964941, ..., 258.907658, 259.234249,

259.439703])
Coordinates:
* time (time) object 2000-01-01 00:00:00 ... 2030-12-31 00:00:00

Attributes:
units: K

[8]: QM_doy.ds.af.plot()

64 Chapter 3. Examples

xclim Documentation, Release 0.39.0

[8]: [<matplotlib.lines.Line2D at 0x7fb157923340>]

nbsphinx-code-borderwhite

3.7.2 Modular approach

The sdba module adopts a modular approach instead of implementing published and named methods directly. A
generic bias adjustment process is laid out as follows:

• preprocessing on ref, hist and sim (using methods in xclim.sdba.processing or xclim.sdba.
detrending)

• creating and training the adjustment object Adj = Adjustment.train(obs, hist, **kwargs) (from
xclim.sdba.adjustment)

• adjustment scen = Adj.adjust(sim, **kwargs)

• post-processing on scen (for example: re-trending)

The train-adjust approach allows to inspect the trained adjustment object. The training information is stored in the
underlying Adj.ds dataset and often has a af variable with the adjustment factors. Its layout and the other available
variables vary between the different algorithm, refer to their part of the API docs.

For heavy processing, this separation allows the computation and writing to disk of the training dataset before perform-
ing the adjustment(s). See the advanced notebook.

Parameters needed by the training and the adjustment are saved to the Adj.ds dataset as a adj_params attribute. Other
parameters, those only needed by the adjustment are passed in the adjust call and written to the history attribute in
the output scenario dataarray.

First example : pr and frequency adaptation

The next example generates fake precipitation data and adjusts the sim timeseries but also adds a step where the dry-
day frequency of hist is adapted so that is fits the one of ref. This ensures well-behaved adjustment factors for the
smaller quantiles. Note also that we are passing kind='*' to use the multiplicative mode. Adjustment factors will be
multiplied/divided instead of being added/substracted.

[9]: vals = np.random.randint(0, 1000, size=(t.size,)) / 100
vals_ref = (4 ** np.where(vals < 9, vals / 100, vals)) / 3e6
vals_sim = (

(1 + 0.1 * np.random.random_sample((t.size,)))
(continues on next page)

3.7. Statistical Downscaling and Bias-Adjustment 65

xclim Documentation, Release 0.39.0

(continued from previous page)

* (4 ** np.where(vals < 9.5, vals / 100, vals))
/ 3e6

)

pr_ref = xr.DataArray(
vals_ref, coords={"time": t}, dims=("time",), attrs={"units": "mm/day"}

)
pr_ref = pr_ref.sel(time=slice("2000", "2015"))
pr_sim = xr.DataArray(

vals_sim, coords={"time": t}, dims=("time",), attrs={"units": "mm/day"}
)
pr_hist = pr_sim.sel(time=slice("2000", "2015"))

pr_ref.plot(alpha=0.9, label="Reference")
pr_sim.plot(alpha=0.7, label="Model")
plt.legend()

[9]: <matplotlib.legend.Legend at 0x7fb1579665c0>

nbsphinx-code-borderwhite

[10]: # 1st try without adapt_freq
QM = sdba.EmpiricalQuantileMapping.train(

pr_ref, pr_hist, nquantiles=15, kind="*", group="time"
)
scen = QM.adjust(pr_sim)

pr_ref.sel(time="2010").plot(alpha=0.9, label="Reference")
pr_hist.sel(time="2010").plot(alpha=0.7, label="Model - biased")
scen.sel(time="2010").plot(alpha=0.6, label="Model - adjusted")
plt.legend()

[10]: <matplotlib.legend.Legend at 0x7fb157990640>

66 Chapter 3. Examples

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

In the figure above, scen has small peaks where sim is 0. This problem originates from the fact that there are more
“dry days” (days with almost no precipitation) in hist than in ref. The next example works around the problem using
frequency-adaptation, as described in Themeßl et al. (2010).

[11]: # 2nd try with adapt_freq
sim_ad, pth, dP0 = sdba.processing.adapt_freq(

pr_ref, pr_sim, thresh="0.05 mm d-1", group="time"
)
QM_ad = sdba.EmpiricalQuantileMapping.train(

pr_ref, sim_ad, nquantiles=15, kind="*", group="time"
)
scen_ad = QM_ad.adjust(pr_sim)

pr_ref.sel(time="2010").plot(alpha=0.9, label="Reference")
pr_sim.sel(time="2010").plot(alpha=0.7, label="Model - biased")
scen_ad.sel(time="2010").plot(alpha=0.6, label="Model - adjusted")
plt.legend()

[11]: <matplotlib.legend.Legend at 0x7fb157ab0d60>

nbsphinx-code-borderwhite

3.7. Statistical Downscaling and Bias-Adjustment 67

https://doi.org/10.1007/s10584-011-0224-4

xclim Documentation, Release 0.39.0

Second example: tas and detrending

The next example reuses the fake temperature timeseries generated at the beginning and applies the same QM adjust-
ment method. However, for a better adjustment, we will scale sim to ref and then detrend the series, assuming the trend
is linear. When sim (or sim_scl) is detrended, its values are now anomalies, so we need to normalize ref and hist
so we can compare similar values.

This process is detailed here to show how the sdba module should be used in custom adjustment processes, but this
specific method also exists as sdba.DetrendedQuantileMapping and is based on Cannon et al. 2015. However,
DetrendedQuantileMapping normalizes over a time.dayofyear group, regardless of what is passed in the group
argument. As done here, it is anyway recommended to use dayofyear groups when normalizing, especially for vari-
ables with strong seasonal variations.

[12]: doy_win31 = sdba.Grouper("time.dayofyear", window=15)
Sca = sdba.Scaling.train(ref, hist, group=doy_win31, kind="+")
sim_scl = Sca.adjust(sim)

detrender = sdba.detrending.PolyDetrend(degree=1, group="time.dayofyear", kind="+")
sim_fit = detrender.fit(sim_scl)
sim_detrended = sim_fit.detrend(sim_scl)

ref_n, _ = sdba.processing.normalize(ref, group=doy_win31, kind="+")
hist_n, _ = sdba.processing.normalize(hist, group=doy_win31, kind="+")

QM = sdba.EmpiricalQuantileMapping.train(
ref_n, hist_n, nquantiles=15, group="time.month", kind="+"

)
scen_detrended = QM.adjust(sim_detrended, extrapolation="constant", interp="nearest")
scen = sim_fit.retrend(scen_detrended)

ref.groupby("time.dayofyear").mean().plot(label="Reference")
sim.groupby("time.dayofyear").mean().plot(label="Model - biased")
scen.sel(time=slice("2000", "2015")).groupby("time.dayofyear").mean().plot(

label="Model - adjusted - 2000-15", linestyle="--"
)
scen.sel(time=slice("2015", "2030")).groupby("time.dayofyear").mean().plot(

label="Model - adjusted - 2015-30", linestyle="--"
)
plt.legend()

[12]: <matplotlib.legend.Legend at 0x7fb157964400>

68 Chapter 3. Examples

https://doi.org/10.1175/JCLI-D-14-00754.1

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

Third example : Multi-method protocol - Hnilica et al. 2017

In their paper of 2017, Hnilica, Hanel and Pus present a bias-adjustment method based on the principles of Principal
Components Analysis. The idea is simple : use principal components to define coordinates on the reference and on
the simulation and then transform the simulation data from the latter to the former. Spatial correlation can thus be
conserved by taking different points as the dimensions of the transform space. The method was demonstrated in the
article by bias-adjusting precipitation over different drainage basins.

The same method could be used for multivariate adjustment. The principle would be the same, concatening the different
variables into a single dataset along a new dimension. An example is given in the advanced notebook.

Here we show how the modularity of xclim.sdba can be used to construct a quite complex adjustment protocol
involving two adjustment methods : quantile mapping and principal components. Evidently, as this example uses only
2 years of data, it is not complete. It is meant to show how the adjustment functions and how the API can be used.

[13]: # We are using xarray's "air_temperature" dataset
ds = xr.tutorial.open_dataset("air_temperature")

[14]: # To get an exagerated example we select different points
here "lon" will be our dimension of two "spatially correlated" points
reft = ds.air.isel(lat=21, lon=[40, 52]).drop_vars(["lon", "lat"])
simt = ds.air.isel(lat=18, lon=[17, 35]).drop_vars(["lon", "lat"])

Principal Components Adj, no grouping and use "lon" as the space dimensions
PCA = sdba.PrincipalComponents.train(reft, simt, group="time", crd_dim="lon")
scen1 = PCA.adjust(simt)

QM, no grouping, 20 quantiles and additive adjustment
EQM = sdba.EmpiricalQuantileMapping.train(

reft, scen1, group="time", nquantiles=50, kind="+"
)
scen2 = EQM.adjust(scen1)

[15]: # some Analysis figures
fig = plt.figure(figsize=(12, 16))
gs = plt.matplotlib.gridspec.GridSpec(3, 2, fig)

(continues on next page)

3.7. Statistical Downscaling and Bias-Adjustment 69

https://doi.org/10.1002/joc.4890

xclim Documentation, Release 0.39.0

(continued from previous page)

axPCA = plt.subplot(gs[0, :])
axPCA.scatter(reft.isel(lon=0), reft.isel(lon=1), s=20, label="Reference")
axPCA.scatter(simt.isel(lon=0), simt.isel(lon=1), s=10, label="Simulation")
axPCA.scatter(scen2.isel(lon=0), scen2.isel(lon=1), s=3, label="Adjusted - PCA+EQM")
axPCA.set_xlabel("Point 1")
axPCA.set_ylabel("Point 2")
axPCA.set_title("PC-space")
axPCA.legend()

refQ = reft.quantile(EQM.ds.quantiles, dim="time")
simQ = simt.quantile(EQM.ds.quantiles, dim="time")
scen1Q = scen1.quantile(EQM.ds.quantiles, dim="time")
scen2Q = scen2.quantile(EQM.ds.quantiles, dim="time")
for i in range(2):

if i == 0:
axQM = plt.subplot(gs[1, 0])

else:
axQM = plt.subplot(gs[1, 1], sharey=axQM)

axQM.plot(refQ.isel(lon=i), simQ.isel(lon=i), label="No adj")
axQM.plot(refQ.isel(lon=i), scen1Q.isel(lon=i), label="PCA")
axQM.plot(refQ.isel(lon=i), scen2Q.isel(lon=i), label="PCA+EQM")
axQM.plot(

refQ.isel(lon=i), refQ.isel(lon=i), color="k", linestyle=":", label="Ideal"
)
axQM.set_title(f"QQ plot - Point {i + 1}")
axQM.set_xlabel("Reference")
axQM.set_xlabel("Model")
axQM.legend()

axT = plt.subplot(gs[2, :])
reft.isel(lon=0).plot(ax=axT, label="Reference")
simt.isel(lon=0).plot(ax=axT, label="Unadjusted sim")
scen1.isel(lon=0).plot(ax=axT, label='PCA only')
scen2.isel(lon=0).plot(ax=axT, label="PCA+EQM")
axT.legend()
axT.set_title("Timeseries - Point 1")

[15]: Text(0.5, 1.0, 'Timeseries - Point 1')

70 Chapter 3. Examples

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

Fourth example : Multivariate bias-adjustment with multiple steps - Cannon 2018

This section replicates the “MBCn” algorithm described by Cannon (2018). The method relies on some univariate
algorithm, an adaption of the N-pdf transform of Pitié et al. (2005) and a final reordering step.

In the following, we use the AHCCD and CanESM2 data are reference and simulation and we correct both pr and
tasmax together.

[16]: from xclim.core.units import convert_units_to
from xclim.testing import open_dataset

dref = open_dataset(
"sdba/ahccd_1950-2013.nc", chunks={"location": 1}, drop_variables=["lat", "lon"]

(continues on next page)

3.7. Statistical Downscaling and Bias-Adjustment 71

https://doi.org/10.1007/s00382-017-3580-6
https://ieeexplore.ieee.org/document/1544887/

xclim Documentation, Release 0.39.0

(continued from previous page)

).sel(time=slice("1981", "2010"))
dref = dref.assign(

tasmax=convert_units_to(dref.tasmax, "K"),
pr=convert_units_to(dref.pr, "kg m-2 s-1"),

)
dsim = open_dataset(

"sdba/CanESM2_1950-2100.nc", chunks={"location": 1}, drop_variables=["lat", "lon"]
)

dhist = dsim.sel(time=slice("1981", "2010"))
dsim = dsim.sel(time=slice("2041", "2070"))
dref

[16]: <xarray.Dataset>
Dimensions: (location: 3, time: 10950)
Coordinates:
* time (time) object 1981-01-01 00:00:00 ... 2010-12-31 00:00:00
* location (location) object 'Vancouver' 'Kugluktuk' 'Amos'

Data variables:
tasmax (location, time) float32 dask.array<chunksize=(1, 10950), meta=np.ndarray>
pr (location, time) float32 dask.array<chunksize=(1, 10950), meta=np.ndarray>

Attributes:
title: Test dataset for xclim.sdba - observed data
description: Extraced from homogenized observation data (AHCCD).'Vancouv...
comment: 'Vancouver' has tasmax from station 1108380 and pr from 110...
history: 2021-04-23T13:30:00 Extracted from AHCCD gen2 and gen3 data.
conventions: CF-1.8

Perform an initial univariate adjustment.

[17]: # additive for tasmax
QDMtx = sdba.QuantileDeltaMapping.train(

dref.tasmax, dhist.tasmax, nquantiles=20, kind="+", group="time"
)
Adjust both hist and sim, we'll feed both to the Npdf transform.
scenh_tx = QDMtx.adjust(dhist.tasmax)
scens_tx = QDMtx.adjust(dsim.tasmax)

remove == 0 values in pr:
dref["pr"] = sdba.processing.jitter_under_thresh(dref.pr, "0.01 mm d-1")
dhist["pr"] = sdba.processing.jitter_under_thresh(dhist.pr, "0.01 mm d-1")
dsim["pr"] = sdba.processing.jitter_under_thresh(dsim.pr, "0.01 mm d-1")

multiplicative for pr
QDMpr = sdba.QuantileDeltaMapping.train(

dref.pr, dhist.pr, nquantiles=20, kind="*", group="time"
)
Adjust both hist and sim, we'll feed both to the Npdf transform.
scenh_pr = QDMpr.adjust(dhist.pr)
scens_pr = QDMpr.adjust(dsim.pr)

(continues on next page)

72 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

scenh = xr.Dataset(dict(tasmax=scenh_tx, pr=scenh_pr))
scens = xr.Dataset(dict(tasmax=scens_tx, pr=scens_pr))

Stack the variables to multivariate arrays and standardize them

The standardization process ensure the mean and standard deviation of each column (variable) is 0 and 1 respectively.

hist and sim are standardized together so the two series are coherent. We keep the mean and standard deviation to be
reused when we build the result.

[18]: # Stack the variables (tasmax and pr)
ref = sdba.processing.stack_variables(dref)
scenh = sdba.processing.stack_variables(scenh)
scens = sdba.processing.stack_variables(scens)

Standardize
ref, _, _ = sdba.processing.standardize(ref)

allsim, savg, sstd = sdba.processing.standardize(xr.concat((scenh, scens), "time"))
hist = allsim.sel(time=scenh.time)
sim = allsim.sel(time=scens.time)

Perform the N-dimensional probability density function transform

The NpdfTransform will iteratively randomly rotate our arrays in the “variables” space and apply the univariate ad-
justment before rotating it back. In Cannon (2018) and Pitié et al. (2005), it can be seen that the source array’s joint
distribution converges toward the target’s joint distribution when a large number of iterations is done.

[19]: from xclim import set_options

See the advanced notebook for details on how this option work
with set_options(sdba_extra_output=True):

out = sdba.adjustment.NpdfTransform.adjust(
ref,
hist,
sim,
base=sdba.QuantileDeltaMapping, # Use QDM as the univariate adjustment.
base_kws={"nquantiles": 20, "group": "time"},
n_iter=20, # perform 20 iteration
n_escore=1000, # only send 1000 points to the escore metric (it is realy slow)

)

scenh = out.scenh.rename(time_hist="time") # Bias-adjusted historical period
scens = out.scen # Bias-adjusted future period
extra = out.drop_vars(["scenh", "scen"])

Un-standardize (add the mean and the std back)
scenh = sdba.processing.unstandardize(scenh, savg, sstd)
scens = sdba.processing.unstandardize(scens, savg, sstd)

3.7. Statistical Downscaling and Bias-Adjustment 73

xclim Documentation, Release 0.39.0

Restoring the trend

The NpdfT has given us new “hist” and “sim” arrays with a correct rank structure. However, the trend is lost in this
process. We reorder the result of the initial adjustment according to the rank structure of the NpdfT outputs to get our
final bias-adjusted series.

sdba.processing.reordering : ‘ref’ the argument that provides the order, ‘sim’ is the argument to reorder.

[20]: scenh = sdba.processing.reordering(hist, scenh, group="time")
scens = sdba.processing.reordering(sim, scens, group="time")

[21]: scenh = sdba.processing.unstack_variables(scenh)
scens = sdba.processing.unstack_variables(scens)

There we are!

Let’s trigger all the computations. Here we write the data to disk and use compute=False in order to trigger the whole
computation tree only once. There seems to be no way in xarray to do the same with a load call.

[22]: from dask import compute
from dask.diagnostics import ProgressBar

tasks = [
scenh.isel(location=2).to_netcdf("mbcn_scen_hist_loc2.nc", compute=False),
scens.isel(location=2).to_netcdf("mbcn_scen_sim_loc2.nc", compute=False),
extra.escores.isel(location=2)
.to_dataset()
.to_netcdf("mbcn_escores_loc2.nc", compute=False),

]

with ProgressBar():
compute(tasks)

[##] | 100% Completed | 72.34 s

Let’s compare the series and look at the distance scores to see how well the Npdf transform has converged.

[23]: scenh = xr.open_dataset("mbcn_scen_hist_loc2.nc")

fig, ax = plt.subplots()

dref.isel(location=2).tasmax.plot(ax=ax, label="Reference")
scenh.tasmax.plot(ax=ax, label="Adjusted", alpha=0.65)
dhist.isel(location=2).tasmax.plot(ax=ax, label="Simulated")

ax.legend()

[23]: <matplotlib.legend.Legend at 0x7fb157d31960>

74 Chapter 3. Examples

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

[24]: escores = xr.open_dataarray("mbcn_escores_loc2.nc")
diff_escore = escores.differentiate("iterations")
diff_escore.plot()
plt.title("Difference of the subsequent e-scores.")
plt.ylabel("E-scores difference")

[24]: Text(0, 0.5, 'E-scores difference')

nbsphinx-code-borderwhite

[25]: diff_escore

[25]: <xarray.DataArray 'escores' (iterations: 20)>
array([-0.19985771, -0.6296294 , -1.1185977 , -0.57538605, -0.13274083,

-0.13149223, 0.07849893, -0.08094403, -0.14455 , -0.07826406,
-0.08621401, 0.00700814, 0.03081307, 0.00317964, -0.02028587,
-0.03295726, -0.06330341, -0.00502983, 0.01870689, -0.02817357],

dtype=float32)
Coordinates:

location object ...
* iterations (iterations) int64 0 1 2 3 4 5 6 7 8 ... 12 13 14 15 16 17 18 19

The tutorial continues in the advanced notebook with more on optimization with dask, other fancier detrending algo-
rithms and an example pipeline for heavy processing.

3.7. Statistical Downscaling and Bias-Adjustment 75

xclim Documentation, Release 0.39.0

3.8 Statistical Downscaling and Bias-Adjustment - Advanced tools

The previous notebook covered the most common utilities of xclim.sdba for conventionnal cases. Here we explore
more advanced usage of xclim.sdba tools.

3.8.1 Optimization with dask

Adjustment processes can be very heavy when we need to compute them over large regions and long timeseries. Using
small groupings (like time.dayofyear) adds precision and robustness, but also decuplates the load and computing
complexity. Fortunately, unlike the heroic pioneers of scientific computing who managed to write parallelized Fortran,
we now have dask. With only a few parameters, we can magically distribute the computing load to multiple workers
and threads.

A good first read on the use of dask within xarray are the latter’s Optimization tips.

Some xclim.sdba-specific tips:

• Most adjustment method will need to perform operation on the whole time coordinate, so it is best to optimize
chunking along the other dimensions. This is often different from how public data is shared, where more universal
3D chunks are used.

Chunking of outputs can be controlled in xarray’s to_netcdf. We also suggest using Zarr files. According to its
creators, zarr stores should give better performances, especially because of their better ability for parallel I/O.
See Dataset.to_zarr and this useful rechunking package.

• One of the main bottleneck for adjustments with small groups is that dask needs to build and optimize an enor-
mous task graph. This issue has been greatly reduced with xclim 0.27 and the use of map_blocks in the adjust-
ment methods. However, not all adjustment methods use this optimized syntax.

In order to help dask, one can split the processing in parts. For splitting traning and adjustment, see the section
below.

• Another massive bottleneck of parallelization of xarray is the thread-locking behaviour of some methods. It is
quite difficult to isolate and avoid those lockings, so one of the best workaround is to use Dask configurations
with many processes and few threads. The former do not share memory and thus are not impacted when a
lock is activated from a thread in another worker. However, this adds many memory transfer operations and, by
experience, reduces dask’s ability to parallelize some pipelines. Such a dask Client is usually created with a large
n_workers and a small threads_per_worker.

• Sometimes, datasets have auxiliary coordinates (for example : lat / lon in a rotated pole dataset). Xarray handles
these variables as data variables and will not load them if dask is used. However, in some operations, xclim or
xarray will trigger an access to those variables, triggering computations each time, since they are dask-backed.
To avoid this behaviour, one can load the coordinates, or simply remove them from the inputs.

3.8.2 LOESS smoothing and detrending

As described in Cleveland (1979), locally weighted linear regressions are multiple regression methods using a nearest-
neighbor approach. Instead of using all data points to compute a linear or polynomial regression, LOESS algorithms
compute a local regression for each point in the dataset, using only the k-nearest neighbors as selected by a weight-
ing function. This weighting function must fulfill some strict requirements, see the doc of xclim.sdba.loess.
loess_smoothing for more details.

In xclim’s implementation, the user can choose between local constancy (𝑑 = 0, local estimates are weighted averages)
and local linearity (𝑑 = 1, local estimates are taken from linear regressions). Two weighting functions are currently
implemented : “tricube” (𝑤(𝑥) = (1− 𝑥3)3) and “gaussian” (𝑤(𝑥) = 𝑒−𝑥2/2𝜎2). Finally, the number of Cleveland’s
robustifying iterations is controllable through niter. After computing an estimate of 𝑦(𝑥), the weights are modulated

76 Chapter 3. Examples

https://dask.org/
https://xarray.pydata.org/en/stable/user-guide/dask.html#optimization-tips
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.to_netcdf.html?highlight=to_netcdf#xarray.Dataset.to_netcdf
https://zarr.readthedocs.io/en/stable/
https://ui.adsabs.harvard.edu/abs/2018AGUFMIN33A..06A/abstract
https://ui.adsabs.harvard.edu/abs/2018AGUFMIN33A..06A/abstract
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.to_zarr.html?highlight=to_zarr#xarray.Dataset.to_zarr
https://rechunker.readthedocs.io

xclim Documentation, Release 0.39.0

by a function of the distance between the estimate and the points and the procedure is started over. These iterations are
made to weaken the effect of outliers on the estimate.

The next example shows the application of the LOESS to daily temperature data. The black line and dot are the
estimated 𝑦, outputs of the sdba.loess.loess_smoothing function, using local linear regression (passing 𝑑 = 1),
a window spanning 20% (𝑓 = 0.2) of the domain, the “tricube” weighting function and only one iteration. The red
curve illustrates the weighting function on January 1st 2014, where the red circles are the nearest-neighbors used in the
estimation.

[1]: from __future__ import annotations

import matplotlib.pyplot as plt
import numpy as np
import xarray as xr

from xclim.sdba import loess

%matplotlib inline

[2]: # Daily temperature data from xarray's tutorials
ds = xr.tutorial.open_dataset("air_temperature").resample(time="D").mean()
tas = ds.isel(lat=0, lon=0).air

Compute the smoothed series
f = 0.2
ys = loess.loess_smoothing(tas, d=1, weights="tricube", f=f, niter=1)

Plot data points and smoothed series
fig, ax = plt.subplots()
ax.plot(tas.time, tas, "o", fillstyle="none")
ax.plot(tas.time, ys, "k")
ax.set_xlabel("Time")
ax.set_ylabel("Temperature [K]")

The code below calls internal functions to demonstrate how the weights are computed.

LOESS algorithms as implemented here use scaled coordinates.
x = tas.time
x = (x - x[0]) / (x[-1] - x[0])
xi = x[366]
ti = tas.time[366]

Weighting function take the distance with all neighbors scaled by the r parameter as␣
→˓input
r = int(f * tas.time.size)
h = np.sort(np.abs(x - xi))[r]
weights = loess._tricube_weighting(np.abs(x - xi).values / h)

Plot nearest neighbors and weighing function
wax = ax.twinx()
wax.plot(tas.time, weights, color="indianred")
ax.plot(

tas.time, tas.where(tas * weights > 0), "o", color="lightcoral", fillstyle="none"
)

(continues on next page)

3.8. Statistical Downscaling and Bias-Adjustment - Advanced tools 77

xclim Documentation, Release 0.39.0

(continued from previous page)

ax.plot(ti, ys[366], "ko")
wax.set_ylabel("Weights")
plt.show()

nbsphinx-code-borderwhite

LOESS smoothing can suffer from heavy boundary effects. On the previous graph, we can associate the strange bend
on the left end of the line to them. The next example shows a stronger case. Usually, 𝑓

2𝑁 points on each side should
be discarded. On the other hand, LOESS has the advantage of always staying within the bounds of the data.

LOESS Detrending

In climate science, it can be used in the detrending process. xclim provides sdba.detrending.LoessDetrend in
order to compute trend with the LOESS smoothing and remove them from timeseries.

First we create some toy data with a sinusoidal annual cycle, random noise and a linear temperature increase.

[3]: time = xr.cftime_range("1990-01-01", "2049-12-31", calendar="noleap")
tas = xr.DataArray(

(
10 * np.sin(time.dayofyear * 2 * np.pi / 365)
+ 5 * (np.random.random_sample(time.size) - 0.5) # Annual variability
+ np.linspace(0, 1.5, num=time.size) # Random noise

), # 1.5 degC increase in 60 years
dims=("time",),
coords={"time": time},
attrs={"units": "degC"},
name="temperature",

)
tas.plot()

[3]: [<matplotlib.lines.Line2D at 0x7f072fadf430>]

78 Chapter 3. Examples

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

Then we compute the trend on the data. Here, we compute on the whole timeseries (group='time') with the param-
eters suggested above.

[4]: from xclim.sdba.detrending import LoessDetrend

Create the detrending object
det = LoessDetrend(group="time", d=0, niter=2, f=0.2)
Fitting returns a new object and computes the trend.
fit = det.fit(tas)
Get the detrended series
tas_det = fit.detrend(tas)

[5]: fig, ax = plt.subplots()
fit.ds.trend.plot(ax=ax, label="Computed trend")
ax.plot(time, np.linspace(0, 1.5, num=time.size), label="Expected tred")
ax.plot([time[0], time[int(0.1 * time.size)]], [0.4, 0.4], linewidth=6, color="gray")
ax.plot([time[-int(0.1 * time.size)], time[-1]], [1.1, 1.1], linewidth=6, color="gray")
ax.legend()

[5]: <matplotlib.legend.Legend at 0x7f072f727610>

3.8. Statistical Downscaling and Bias-Adjustment - Advanced tools 79

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

As said earlier, this example shows how the Loess has strong boundary effects. It is recommended to remove the 𝑓
2 ·𝑁

outermost points on each side, as shown by the gray bars in the graph above.

3.8.3 Initializing an Adjustment object from a training dataset

For large scale uses, when the training step deserves its own computation and write to disk, or simply when there are
multiples sim to be adjusted with the same training, it is helpful to be able to instantiate the Adjustment objects from
the training dataset itself. This trick relies on a global attribute “adj_params” set on the training dataset.

[6]: import numpy as np
import xarray as xr

Create toy data for the example, here fake temperature timeseries
t = xr.cftime_range("2000-01-01", "2030-12-31", freq="D", calendar="noleap")
ref = xr.DataArray(

(
-20 * np.cos(2 * np.pi * t.dayofyear / 365)
+ 2 * np.random.random_sample((t.size,))
+ 273.15
+ 0.1 * (t - t[0]).days / 365

), # "warming" of 1K per decade,
dims=("time",),
coords={"time": t},
attrs={"units": "K"},

)
sim = xr.DataArray(

(
-18 * np.cos(2 * np.pi * t.dayofyear / 365)
+ 2 * np.random.random_sample((t.size,))

(continues on next page)

80 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

+ 273.15
+ 0.11 * (t - t[0]).days / 365

), # "warming" of 1.1K per decade
dims=("time",),
coords={"time": t},
attrs={"units": "K"},

)

ref = ref.sel(time=slice(None, "2015-01-01"))
hist = sim.sel(time=slice(None, "2015-01-01"))

[7]: from xclim.sdba.adjustment import QuantileDeltaMapping

QDM = QuantileDeltaMapping.train(
ref, hist, nquantiles=15, kind="+", group="time.dayofyear"

)
QDM

[7]: QuantileDeltaMapping(group=Grouper(name='time.dayofyear'), kind='+')

The trained QDM exposes the training data in the ds attribute, Here, we will write it to disk, read it back and initialize
an new object from it. Notice the adj_params in the dataset, that has the same value as the repr string printed just
above. Also, notice the _xclim_adjustment attribute that contains a json string so we can rebuild the adjustment
object later.

[8]: QDM.ds

[8]: <xarray.Dataset>
Dimensions: (quantiles: 15, dayofyear: 365)
Coordinates:
* quantiles (quantiles) float64 0.03333 0.1 0.1667 ... 0.8333 0.9 0.9667
* dayofyear (dayofyear) int64 1 2 3 4 5 6 7 8 ... 359 360 361 362 363 364 365

Data variables:
af (dayofyear, quantiles) float64 -1.672 -1.485 ... -2.536 -2.364
hist_q (dayofyear, quantiles) float64 255.5 255.7 256.1 ... 258.3 258.5

Attributes:
group: time.dayofyear
group_compute_dims: ['time']
group_window: 1
_xclim_adjustment: {"py/object": "xclim.sdba.adjustment.QuantileDeltaMa...
adj_params: QuantileDeltaMapping(group=Grouper(name='time.dayofy...

[9]: QDM.ds.to_netcdf("QDM_training.nc")
ds = xr.open_dataset("QDM_training.nc")
QDM2 = QuantileDeltaMapping.from_dataset(ds)
QDM2

[9]: QuantileDeltaMapping(group=Grouper(name='time.dayofyear'), kind='+')

In the case above, creating a full object from the dataset doesn’t make the most sense since we are in the same python
session, with the “old” object still available. This method effective when we reload the training data in a different
python session, say on another computer. However, take note that there is no retrocompatiblity insurance. If the
QuantileDeltaMapping class was to change in a new xclim version, one would not be able to create the new object from
a dataset saved with the old one.

3.8. Statistical Downscaling and Bias-Adjustment - Advanced tools 81

xclim Documentation, Release 0.39.0

For the case where we stay in the same python session, it is still useful to trigger the dask computations. For small
datasets, that could mean a simple QDM.ds.load(), but sometimes even the training data is too large to be full loaded
in memory. In that case, we could also do:

[10]: QDM.ds.to_netcdf("QDM_training2.nc")
ds = xr.open_dataset("QDM_training2.nc")
ds.attrs["title"] = "This is the dataset, but read from disk."
QDM.set_dataset(ds)
QDM.ds

[10]: <xarray.Dataset>
Dimensions: (quantiles: 15, dayofyear: 365)
Coordinates:
* quantiles (quantiles) float64 0.03333 0.1 0.1667 ... 0.8333 0.9 0.9667
* dayofyear (dayofyear) int64 1 2 3 4 5 6 7 8 ... 359 360 361 362 363 364 365

Data variables:
af (dayofyear, quantiles) float64 ...
hist_q (dayofyear, quantiles) float64 ...

Attributes:
group: time.dayofyear
group_compute_dims: time
group_window: 1
_xclim_adjustment: {"py/object": "xclim.sdba.adjustment.QuantileDeltaMa...
adj_params: QuantileDeltaMapping(group=Grouper(name='time.dayofy...
title: This is the dataset, but read from disk.

[11]: QDM2.adjust(sim)

[11]: <xarray.DataArray 'scen' (time: 11315)>
array([254.76744557, 253.58008949, 254.12594895, ..., 257.97733552,

258.32205384, 257.73578114])
Coordinates:
* time (time) object 2000-01-01 00:00:00 ... 2030-12-31 00:00:00

Attributes:
units: K
history: [2022-11-02 04:16:47] : Bias-adjusted with QuantileDelt...
bias_adjustment: QuantileDeltaMapping(group=Grouper(name='time.dayofyear...

3.8.4 Retrieving extra output diagnostics

To fully understand what is happening during the bias-adjustment process, sdba can output diagnostic variables, giving
more visibility to what the adjustment is doing behind the scene. This behaviour, a verbose option, is controlled by
the sdba_extra_output option, set with xclim.set_options. When True, train calls are instructed to include
additional variables to the training datasets. In addition, the adjust calls will always output a dataset, with scen and,
depending on the algorithm, other diagnostics variables. See the documentation of each Adjustment objects to see
what extra variables are available.

For the moment, this feature is still in construction and only a few Adjustment actually provide extra outputs. Please
open issues on the Github repo if you have needs or ideas of interesting diagnostic variables.

For example, QDM.adjust adds sim_q, which gives the quantile of each element of sim within its group.

[12]: from xclim import set_options

(continues on next page)

82 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

with set_options(sdba_extra_output=True):
QDM = QuantileDeltaMapping.train(

ref, hist, nquantiles=15, kind="+", group="time.dayofyear"
)
out = QDM.adjust(sim)

out.sim_q

[12]: <xarray.DataArray 'sim_q' (time: 11315)>
array([0.22580645, 0.03225806, 0.12903226, ..., 1. , 1. ,

1.])
Coordinates:
* time (time) object 2000-01-01 00:00:00 ... 2030-12-31 00:00:00

Attributes:
group: time.dayofyear
group_compute_dims: time
group_window: 1
long_name: Group-wise quantiles of `sim`.

3.8.5 Moving window for adjustments

Some Adjustment methods require that the adjusted data (sim) be of the same length (same number of points) than
the training data (ref and hist). This requirements often ensure conservation of statistical properties and a better
representation of the climate change signal over the long adjusted timeseries.

In opposition to a conventionnal “rolling window”, here it is the years that are the base units of the win-
dow, not the elements themselves. xclim implements sdba.construct_moving_yearly_window and sdba.
unpack_moving_yearly_window to manipulate data in that goal. The “construct” function cuts the data in over-
lapping windows of a certain length (in years) and stacks them along a new "movingdim" dimension, alike to xarray’s
da.rolling(time=win).construct('movingdim'), but with yearly steps. The step between each window can
also be controlled. This argument is an indicator of how many years overlap between each window. With a value of 1
(the default), a window will have window - 1 years overlapping with the previous one. step = window will result
in no overlap at all.

By default, the result is chunked along this 'movingdim' dimension. For this reason, the method is expected to be
more computationally efficient (when using dask) than looping over the windows.

Note that this results in two restrictions:

1. The constructed array has the same “time” axis for all windows. This is a problem if the actual year is of
importance for the adjustment, but this is not the case for any of xclim’s current adjustment methods.

2. The input timeseries must be in a calendar with uniform year lengths. For daily data, this means only the
“360_day”, “noleap” and “all_leap” calendars are supported.

The “unpack” function does the opposite : it concatenates the windows together to recreate the original timeseries. The
time points that are not part of a window will not appear in the reconstructed timeseries. If append_ends is True, the
reconstructed timeseries will go from the first time point of the first window to the last time point of the last window.
In the middle, the central step years are kept from each window. If append_ends is False, only the central step
years are kept from each window. Which means the final timeseries has (window - step) / 2 years missing on
either side, with the extra year missing on the right in case of an odd (window - step). We are missing data, but the
contribution from each window is equal.

Here, asref and hist cover 15 years, we will use a window of 15 on sim. With a step of 2, this means the first window
goes from 2000 to 2014 (inclusive). The last window goes from 2016 to 2030. window - step = 13, so 6 years will

3.8. Statistical Downscaling and Bias-Adjustment - Advanced tools 83

xclim Documentation, Release 0.39.0

be missing at the beginning of the final scen and 7 years at the end.

[13]: QDM = QuantileDeltaMapping.train(
ref, hist, nquantiles=15, kind="+", group="time.dayofyear"

)

scen_nowin = QDM.adjust(sim)

[14]: sim

[14]: <xarray.DataArray (time: 11315)>
array([256.74354 , 255.3637 , 256.179604, ..., 260.072006, 260.296143,

260.099419])
Coordinates:
* time (time) object 2000-01-01 00:00:00 ... 2030-12-31 00:00:00

Attributes:
units: K

[15]: from xclim.sdba import construct_moving_yearly_window, unpack_moving_yearly_window

sim_win = construct_moving_yearly_window(sim, window=15, step=2)
sim_win

[15]: <xarray.DataArray (movingwin: 9, time: 5475)>
array([[256.74353954, 255.36369957, 256.17960354, ..., 258.13852895,

257.0138726 , 258.53277038],
[255.5794212 , 256.57911694, 256.1239989 , ..., 258.14040728,
257.33586818, 258.2943761],
[257.2505275 , 256.95749482, 256.560793 , ..., 258.29880184,
257.68651803, 258.57291414],
...,
[256.84909066, 257.75000565, 258.39769119, ..., 258.68748128,
258.36927884, 258.56330623],
[258.54749818, 258.12959623, 257.77547822, ..., 258.38429885,
258.69731705, 259.86176945],
[257.65909532, 257.19981079, 257.56780433, ..., 260.07200584,
260.296143 , 260.09941931]])

Coordinates:
* movingwin (movingwin) object 2000-01-01 00:00:00 ... 2016-01-01 00:00:00
* time (time) object 2000-01-01 00:00:00 ... 2014-12-31 00:00:00

Attributes:
units: K

Here, we retrieve the full timeseries.

[16]: scen_win = unpack_moving_yearly_window(QDM.adjust(sim_win), append_ends=True)
scen_win

[16]: <xarray.DataArray 'scen' (time: 11315)>
array([254.83881496, 253.58008949, 254.02327152, ..., 257.97733552,

258.32205384, 257.73578114])
Coordinates:
* time (time) object 2000-01-01 00:00:00 ... 2030-12-31 00:00:00

Attributes:
units: K

(continues on next page)

84 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

history: [2022-11-02 04:16:53] : Bias-adjusted with QuantileDelt...
bias_adjustment: QuantileDeltaMapping(group=Grouper(name='time.dayofyear...

Whereas here, we have gaps at the edges.

[17]: scen_win = unpack_moving_yearly_window(QDM.adjust(sim_win), append_ends=False)
scen_win

[17]: <xarray.DataArray 'scen' (time: 6570)>
array([254.58622127, 253.92936261, 253.81536684, ..., 256.81706788,

256.36782424, 256.61562843])
Coordinates:
* time (time) object 2006-01-01 00:00:00 ... 2023-12-31 00:00:00

Attributes:
units: K
history: [2022-11-02 04:16:53] : Bias-adjusted with QuantileDelt...
bias_adjustment: QuantileDeltaMapping(group=Grouper(name='time.dayofyear...

Here is another short example, with an uneven number of years. Here sim goes from 2000 to 2029 (30 years instead
of 31). With a step of 2 and a window of 15, the first window goes again from 2000 to 2014, but the last one is now
from 2014 to 2028. The next window would be 2016-2030, but that last year doesn’t exist.

[18]: sim_win = construct_moving_yearly_window(
sim.sel(time=slice("2000", "2029")), window=15, step=2

)
sim_win

[18]: <xarray.DataArray (movingwin: 8, time: 5475)>
array([[256.74353954, 255.36369957, 256.17960354, ..., 258.13852895,

257.0138726 , 258.53277038],
[255.5794212 , 256.57911694, 256.1239989 , ..., 258.14040728,
257.33586818, 258.2943761],
[257.2505275 , 256.95749482, 256.560793 , ..., 258.29880184,
257.68651803, 258.57291414],
...,
[258.13609574, 257.70418467, 257.3264016 , ..., 259.12320205,
259.6551021 , 258.58641276],
[256.84909066, 257.75000565, 258.39769119, ..., 258.68748128,
258.36927884, 258.56330623],
[258.54749818, 258.12959623, 257.77547822, ..., 258.38429885,
258.69731705, 259.86176945]])

Coordinates:
* movingwin (movingwin) object 2000-01-01 00:00:00 ... 2014-01-01 00:00:00
* time (time) object 2000-01-01 00:00:00 ... 2014-12-31 00:00:00

Attributes:
units: K

Here, we don’t recover the full timeseries, even when we append the ends, because 2029 is not part of a window.

[19]: sim2 = unpack_moving_yearly_window(sim_win, append_ends=True)
sim2

[19]: <xarray.DataArray (time: 10585)>
array([256.74353954, 255.36369957, 256.17960354, ..., 258.38429885,

(continues on next page)

3.8. Statistical Downscaling and Bias-Adjustment - Advanced tools 85

xclim Documentation, Release 0.39.0

(continued from previous page)

258.69731705, 259.86176945])
Coordinates:
* time (time) object 2000-01-01 00:00:00 ... 2028-12-31 00:00:00

Attributes:
units: K

Without appending the ends, the final timeseries is from 2006 to 2021, 6 years missing at the beginning, like last time
and 8 years missing at the end.

[20]: sim2 = unpack_moving_yearly_window(sim_win, append_ends=False)
sim2

[20]: <xarray.DataArray (time: 5840)>
array([256.49094585, 256.15575521, 255.89263837, ..., 259.54809517,

257.85627029, 259.53688816])
Coordinates:
* time (time) object 2006-01-01 00:00:00 ... 2021-12-31 00:00:00

Attributes:
units: K

3.8.6 Full example: Multivariate adjustment in the additive space

The following example shows a complete bias-adjustment workflow using the PrincipalComponents method in a
multi-variate configuration. Moreover, it uses the trick showed by Alavoine et Grenier (2022) to transform “multi-
plicative” variable to the “additive” space using log and logit transformations. This way, we can perform multi-variate
adjustment with variables that couldn’t be used in the same kind of adjustment, like “tas” and “hurs”.

We will transform the variables that need it to the additive space, adding some jitter in the process to avoid
𝑙𝑜𝑔(0) situations. Then, we will stack the different variables into a single DataArray, allowing us to use to use
PrincipalComponents in a multi-variate way. Following the PCA, a simple quantile-mapping method is used, both
adjustment acting on the residuals, while the mean of the simulated trend is adjusted on its own. Each step will be
explained.

First, open the data, convert the calendar and the units. Because we will perform adjustments on “dayofyear” groups
(with a window), keeping standard calendars results in a extra “dayofyear” with only a quarter of the data. It’s usual to
transform to a “noleap” calendar, which drops the 29th of February, as it only has a small impact on the data.

[21]: import xclim.sdba as sdba
from xclim.core.calendar import convert_calendar
from xclim.core.units import convert_units_to
from xclim.testing import open_dataset

group = sdba.Grouper("time.dayofyear", window=31)

dref = convert_calendar(open_dataset("sdba/ahccd_1950-2013.nc"), "noleap").sel(
time=slice("1981", "2010")

)
dsim = open_dataset("sdba/CanESM2_1950-2100.nc")

dref = dref.assign(
tasmax=convert_units_to(dref.tasmax, "K"),

)
dsim = dsim.assign(pr=convert_units_to(dsim.pr, "mm/d"))

86 Chapter 3. Examples

https://doi.org/10.31223/X5C34C

xclim Documentation, Release 0.39.0

1. Jitter, additive space transformation and variable stacking

Here, tasmax is already ready to be adjusted in an additive way, because all data points are far from the physical zero (0
K). This is not the case for pr, which is why we want to transform that variable to the additive space, to avoid splitting
our workflow in two. For pr the “log” transformation is simply:

𝑝𝑟′ = ln (𝑝𝑟 − 𝑏)

where 𝑏 is the lower bound, here 0 mm/d. However, we could have exact zeros (0 mm/d) in the datasets, which will
translate into −∞. To avoid this, we simply replace the smallest values by a random distribution of very small, but
not problematic, values. In the following, all values below 0.1 mm/d are replace by a uniform random distribution of
values within the range (0, 0.1) mm/d (bounds excluded).

Finally, the variables are stacked together into a single DataAray.

[22]: dref_as = dref.assign(
pr=sdba.processing.to_additive_space(

sdba.processing.jitter(dref.pr, lower="0.1 mm/d", minimum="0 mm/d"),
lower_bound="0 mm/d",
trans="log",

)
)
ref = sdba.stack_variables(dref_as)

dsim_as = dsim.assign(
pr=sdba.processing.to_additive_space(

sdba.processing.jitter(dsim.pr, lower="0.1 mm/d", minimum="0 mm/d"),
lower_bound="0 mm/d",
trans="log",

)
)
sim = sdba.stack_variables(dsim_as)
sim

[22]: <xarray.DataArray 'multivariate' (multivar: 2, time: 55115, location: 3)>
array([[[2.4951415e-01, -8.2575524e-01, 2.4951415e-01],

[2.6499695e-01, -4.1112199e-01, 2.6499695e-01],
[-1.9535363e-01, -2.9279764e+00, -1.9535363e-01],
...,
[3.2132244e+00, -2.2834629e-01, 3.2132244e+00],
[1.6713389e+00, 1.7489431e+00, 1.6713389e+00],
[7.5195438e-01, 2.4332016e+00, 7.5195438e-01]],

[[2.7815024e+02, 2.7754898e+02, 2.7815024e+02],
[2.8335815e+02, 2.7690921e+02, 2.8335815e+02],
[2.8153192e+02, 2.7668036e+02, 2.8153192e+02],
...,
[2.8901334e+02, 2.8192789e+02, 2.8901334e+02],
[2.8510699e+02, 2.8142294e+02, 2.8510699e+02],
[2.8404471e+02, 2.8160156e+02, 2.8404471e+02]]], dtype=float32)

Coordinates:
* time (time) object 1950-01-01 00:00:00 ... 2100-12-31 00:00:00
lat (location) float64 49.1 67.8 48.8
lon (location) float64 -123.1 -115.1 -78.2

* location (location) object 'Vancouver' 'Kugluktuk' 'Amos'
(continues on next page)

3.8. Statistical Downscaling and Bias-Adjustment - Advanced tools 87

xclim Documentation, Release 0.39.0

(continued from previous page)

* multivar (multivar) <U6 'pr' 'tasmax'
Attributes: (12/34)

institution: CanESM2
institute_id: CCCma
experiment_id: rcp85
source: CanESM2 2010 atmosphere: CanAM4 (AGCM15i...
model_id: CanESM2
forcing: GHG,Oz,SA,BC,OC,LU,Sl (GHG includes CO2,...
... ...
modeling_realm: atmos
realization: 1
cmor_version: 2.5.4
DODS_EXTRA.Unlimited_Dimension: time
description: Extracted from CMIP5 CanESM2 hist+rcp85 ...
units:

2. Get residuals and trends

The adjustment will be performed on residuals only. The adjusted timeseries sim will be detrended with the LOESS
routine described above. Because of the short length of ref and hist and the potential boundary effects of using
LOESS with them, we compute the 30-year mean. In other words, instead of detrending we are normalizing those
inputs.

While the residuals are adjusted with PrincipalComponents and EmpiricalQuantileMapping, the trend of sim
still needs to be offset according to the means of ref and hist. This is similar to what DetrendedQuantileMapping
does. The offset step could have been done on the trend itself or at the end on scen, it doesn’t really matter. We do it
here because it keeps it close to where the scaling is computed.

[23]: ref_res, ref_norm = sdba.processing.normalize(ref, group=group, kind="+")
hist_res, hist_norm = sdba.processing.normalize(

sim.sel(time=slice("1981", "2010")), group=group, kind="+"
)
scaling = sdba.utils.get_correction(hist_norm, ref_norm, kind="+")

[24]: sim_scaled = sdba.utils.apply_correction(
sim, sdba.utils.broadcast(scaling, sim, group=group), kind="+"

)

loess = sdba.detrending.LoessDetrend(group=group, f=0.2, d=0, kind="+", niter=1)
simfit = loess.fit(sim_scaled)
sim_res = simfit.detrend(sim_scaled)

88 Chapter 3. Examples

xclim Documentation, Release 0.39.0

3. Adjustments

Following, Alavoine et Grenier (2022), we decided to perform the multivariate Principal Components adjustment first
and then re-adjust with the simple quantile-mapping.

[25]: PCA = sdba.adjustment.PrincipalComponents.train(
ref_res, hist_res, group=group, crd_dim="multivar", best_orientation="simple"

)

scen1_res = PCA.adjust(sim_res)

[26]: EQM = sdba.adjustment.EmpiricalQuantileMapping.train(
ref_res,
scen1_res.sel(time=slice("1981", "2010")),
group=group,
nquantiles=50,
kind="+",

)

scen2_res = EQM.adjust(scen1_res, interp="linear", extrapolation="constant")

4. Re-trend and transform back to the physical space

Add back the trend (which includes the scaling), unstack the variables to a dataset and transform pr back to the physical
space. All functions have conserved and handled the attributes, so we don’t need to repeat the additive space bounds.
The annual cycle of both variables on the reference period in Vancouver is plotted to confirm the adjustment add a
positive effect.

[27]: scen = simfit.retrend(scen2_res)
dscen_as = sdba.unstack_variables(scen)
dscen = dscen_as.assign(pr=sdba.processing.from_additive_space(dscen_as.pr))

[28]: dref.tasmax.sel(time=slice("1981", "2010"), location="Vancouver").groupby(
"time.dayofyear"

).mean().plot(label="obs")
dsim.tasmax.sel(time=slice("1981", "2010"), location="Vancouver").groupby(

"time.dayofyear"
).mean().plot(label="raw")
dscen.tasmax.sel(time=slice("1981", "2010"), location="Vancouver").groupby(

"time.dayofyear"
).mean().plot(label="scen")
plt.legend()

[28]: <matplotlib.legend.Legend at 0x7f072cb22b00>

3.8. Statistical Downscaling and Bias-Adjustment - Advanced tools 89

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

[29]: dref.pr.sel(time=slice("1981", "2010"), location="Vancouver").groupby(
"time.dayofyear"

).mean().plot(label="obs")
dsim.pr.sel(time=slice("1981", "2010"), location="Vancouver").groupby(

"time.dayofyear"
).mean().plot(label="raw")
dscen.pr.sel(time=slice("1981", "2010"), location="Vancouver").groupby(

"time.dayofyear"
).mean().plot(label="scen")
plt.legend()

[29]: <matplotlib.legend.Legend at 0x7f072ce031f0>

90 Chapter 3. Examples

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

3.8.7 Tests for sdba

It can be useful to perform diagnostic tests on adjusted simulations to assess if the bias correction method is working
properly or to compare two different bias correction techniques.

A diagnostic test includes calculations of a property (mean, 20-year return value, annual cycle amplitude, . . .) on the
simulation and on the scenario (adjusted simulation), then a measure (bias, relative bias, ratio, . . .) of the difference.
Usually, the property collapse the time dimension of the simulation/scenario and returns one value by grid point.

You’ll find those in xclim.sdba.properties and xclim.sdba.measures, where they are implemented as special
subclasses of xclim’s Indicator, which means they can be worked with the same way as conventional indicators (used
in yaml modules for example).

[30]: from matplotlib import pyplot as plt

import xclim as xc
from xclim import sdba
from xclim.testing import open_dataset

load test data
hist = open_dataset("sdba/CanESM2_1950-2100.nc").sel(time=slice("1950", "1980")).tasmax
ref = open_dataset("sdba/nrcan_1950-2013.nc").sel(time=slice("1950", "1980")).tasmax
sim = (

open_dataset("sdba/CanESM2_1950-2100.nc").sel(time=slice("1980", "2010")).tasmax
) # biased

learn the bias in historical simulation compared to reference
QM = sdba.EmpiricalQuantileMapping.train(

(continues on next page)

3.8. Statistical Downscaling and Bias-Adjustment - Advanced tools 91

xclim Documentation, Release 0.39.0

(continued from previous page)

ref, hist, nquantiles=50, group="time", kind="+"
)

correct the bias in the future
scen = QM.adjust(sim, extrapolation="constant", interp="nearest")
ref_future = (

open_dataset("sdba/nrcan_1950-2013.nc").sel(time=slice("1980", "2010")).tasmax
) # truth

plt.figure(figsize=(15, 5))
lw = 0.3
sim.isel(location=1).plot(label="sim", linewidth=lw)
scen.isel(location=1).plot(label="scen", linewidth=lw)
hist.isel(location=1).plot(label="hist", linewidth=lw)
ref.isel(location=1).plot(label="ref", linewidth=lw)
ref_future.isel(location=1).plot(label="ref_future", linewidth=lw)
leg = plt.legend()
for legobj in leg.legendHandles:

legobj.set_linewidth(2.0)

nbsphinx-code-borderwhite

[31]: # calculate the mean warm Spell Length Distribution
sim_prop = sdba.properties.spell_length_distribution(

da=sim, thresh="28 degC", op=">", stat="mean", group="time"
)

scen_prop = sdba.properties.spell_length_distribution(
da=scen, thresh="28 degC", op=">", stat="mean", group="time"

)

ref_prop = sdba.properties.spell_length_distribution(
da=ref_future, thresh="28 degC", op=">", stat="mean", group="time"

)
measure the difference between the prediction and the reference with an absolute bias␣
→˓of the properties
measure_sim = sdba.measures.bias(sim_prop, ref_prop)
measure_scen = sdba.measures.bias(scen_prop, ref_prop)

plt.figure(figsize=(5, 3))
plt.plot(measure_sim.location, measure_sim.values, ".", label="biased model (sim)")

(continues on next page)

92 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

plt.plot(measure_scen.location, measure_scen.values, ".", label="adjusted model (scen)")
plt.title(

"Bias of the mean of the warm spell \n length distribution compared to observations"
)
plt.legend()
plt.ylim(-2.5, 2.5)

[31]: (-2.5, 2.5)

nbsphinx-code-borderwhite

It is possible the change the ‘group’ of the property from ‘time’ to ‘time.season’ or ‘time.month’. This will return 4 or
12 values per grid point, respectively.

[32]: # calculate the mean warm Spell Length Distribution
sim_prop = sdba.properties.spell_length_distribution(

da=sim, thresh="28 degC", op=">", stat="mean", group="time.season"
)

scen_prop = sdba.properties.spell_length_distribution(
da=scen, thresh="28 degC", op=">", stat="mean", group="time.season"

)

ref_prop = sdba.properties.spell_length_distribution(
da=ref_future, thresh="28 degC", op=">", stat="mean", group="time.season"

)
Properties are often associated with the same measures. This correspondance is␣
→˓implemented in xclim:
measure = sdba.properties.spell_length_distribution.get_measure()
measure_sim = measure(sim_prop, ref_prop)
measure_scen = measure(scen_prop, ref_prop)

fig, axs = plt.subplots(2, 2, figsize=(9, 6))
axs = axs.ravel()
for i in range(4):

(continues on next page)

3.8. Statistical Downscaling and Bias-Adjustment - Advanced tools 93

xclim Documentation, Release 0.39.0

(continued from previous page)

axs[i].plot(
measure_sim.location, measure_sim.values[:, i], ".", label="biased model (sim)"

)
axs[i].plot(

measure_scen.location,
measure_scen.isel(season=i).values,
".",
label="adjusted model (scen)",

)
axs[i].set_title(measure_scen.season.values[i])
axs[i].legend(loc="lower right")
axs[i].set_ylim(-2.5, 2.5)

fig.suptitle(
"Bias of the mean of the warm spell length distribution compared to observations"

)
plt.tight_layout()

nbsphinx-code-borderwhite

3.9 Spatial Analogues examples

xclim provides the xc.analogmodule that allows the finding of spatial analogues. Spatial analogues are maps showing
which areas have a present-day climate that is analogous to the future climate of a given place. This type of map can be
useful for climate adaptation to see how well regions are coping today under specific climate conditions. For example,
officials from a city located in a temperate region that may be expecting more heatwaves in the future can learn from
the experience of another city where heatwaves are a common occurrence, leading to more proactive intervention plans
to better deal with new climate conditions.

Spatial analogues are estimated by comparing the distribution of climate indices computed at the target location over the
future period with the distribution of the same climate indices computed over a reference period for multiple candidate
regions.

94 Chapter 3. Examples

xclim Documentation, Release 0.39.0

[1]: import matplotlib.pyplot as plt

from xclim import analog
from xclim.core.calendar import convert_calendar
from xclim.testing import open_dataset

3.9.1 Input data

The “target” input of the computation is a collection of indices over a given location and for a given time period. Here
we have three indices computed on bias-adjusted daily simulation data from the CanESM2 model, as made available
through the CMIP5 project. We chose to look at the climate of Chibougamau, a small city in northern Québec, for the
2041-2070 period.

[2]: sim = open_dataset(
"SpatialAnalogs/CanESM2_ScenGen_Chibougamau_2041-2070.nc",
branch="spatial-analogs-nb",
decode_timedelta=False,

)
sim

[2]: <xarray.Dataset>
Dimensions: (time: 30)
Coordinates:
* time (time) object 2041-01-01 00:00:00 ...
lon float32 ...
lat float32 ...

Data variables:
tg_mean (time) float32 ...
growing_season_length (time) float32 ...
max_n_day_precipitation_amount_n_5 (time) float32 ...

Attributes:
Conventions: CF-1.5
title: Future climate of Chibougamau, QC - Bias-adjusted data f...
history: 2011-04-13T23:04:41Z CMOR rewrote data to comply with CF...
institution: CCCma (Canadian Centre for Climate Modelling and Analysi...
source: CanESM2 2010 atmosphere: CanAM4 (AGCM15i, T63L35) ocean:...
redistribution: Redistribution prohibited. For internal use only.

The goal is to find regions where the present climate is similar to that simulated future climate. We call “candidates”
the dataset that contains the present-day indices. Here we use gridded observations provided by NRCAN. This is the
same data that was used as a reference for the bias-adjustment of the target simulation, which is essential to ensure the
comparison holds.

A good test to see if the data is appropriate for computing spatial analog is the so-called “self-analog” test. It consists
in computing the analogs using the same time period on both the target and the candidates. The test passes if the best
analog is the same point as the target. Some authors have found that in some cases, a second bias-adjustment over
the indices is needed to ensure that the data passes this test (see Grenier et al. (2019)). However, in this introductory
notebook, we can’t run this test and will simply assume the data is coherent.

[3]: obs = open_dataset(
"SpatialAnalogs/NRCAN_SECan_1981-2010.nc",
branch="spatial-analogs-nb",
decode_timedelta=False,

(continues on next page)

3.9. Spatial Analogues examples 95

https://www.sciencedirect.com/science/article/pii/S2405880719300639

xclim Documentation, Release 0.39.0

(continued from previous page)

)
obs

[3]: <xarray.Dataset>
Dimensions: (time: 30, lon: 276, lat: 84)
Coordinates:
* time (time) datetime64[ns] 1981-01-01
* lon (lon) float32 -82.96 -82.88 ... -60.04
* lat (lat) float32 49.96 49.88 ... 43.04

Data variables:
tg_mean (time, lat, lon) float32 ...
growing_season_length (time, lat, lon) float32 ...
max_n_day_precipitation_amount_n_5 (time, lat, lon) float32 ...

Attributes:
Conventions: CF-1.5
title: NRCAN Gridded observations over southern Quebec
history: 2012-10-22T13:14:41: Convert from original format to Net...
institution: NRCAN
source: ANUSPLIN
redistribution: Redistribution policy unknown. For internal use only.

[4]: obs.tg_mean.isel(time=0).plot()
plt.plot(sim.lon, sim.lat, "ro"); # Plot a point over chibougamau

nbsphinx-code-borderwhite

Let’s plot the timeseries over Chibougamau for both periods to get an idea of the climate change between the two
periods. For the purpose of the plot, we’ll need to convert the calendar of the data as the simulation uses a “noleap”
calendar.

96 Chapter 3. Examples

xclim Documentation, Release 0.39.0

[5]: fig, axs = plt.subplots(nrows=3, figsize=(6, 6), sharex=True)
sim_std = convert_calendar(sim, "default")
obs_chibou = obs.sel(lat=sim.lat, lon=sim.lon, method="nearest")

for ax, var in zip(axs, obs_chibou.data_vars.keys()):
obs_chibou[var].plot(ax=ax, label="Observation")
sim_std[var].plot(ax=ax, label="Simulation")
ax.set_title(obs_chibou[var].long_name)
ax.set_ylabel(obs_chibou[var].units)

fig.tight_layout()

nbsphinx-code-borderwhite

All the work is encapsulated in the xclim.analog.spatial_analogs function. By default, the function expects that
the distribution to be analyzed is along the “time” dimension, like in our case. Inputs are datasets of indices, the target
and the candidates should have the same indices and at least the time variable in common. Normal xarray broadcasting
rules apply for the other dimensions.

There are many metrics available to compute the dissimilarity between the indicator distributions. For our first test, we’ll
use the mean annual temperature (tg_mean) and the simple standardized euclidean distance metric (seuclidean). This
is a very basic metric that only computes the distance between the means. All algorithms used to compare distributions
are available through the xclim.analog.spatial_analogs function. They also live as well-documented functions
in the same module or in the xclim.analog.metrics dictionary.

[6]: results = analog.spatial_analogs(
(continues on next page)

3.9. Spatial Analogues examples 97

xclim Documentation, Release 0.39.0

(continued from previous page)

sim[["tg_mean"]], obs[["tg_mean"]], method="seuclidean"
)

results.plot()
plt.plot(sim.lon, sim.lat, "ro", label="Target")

def plot_best_analog(scores, ax=None):
scores1d = scores.stack(site=["lon", "lat"])
lon, lat = scores1d.isel(site=scores1d.argmin("site")).site.item()
ax = ax or plt.gca()
ax.plot(lon, lat, "r*", label="Best analog")

plot_best_analog(results)
plt.title("Average temperature - Standardized Euclidean distance")
plt.legend();

nbsphinx-code-borderwhite

This shows that the average temperature projected by our simulation for Chibougamau in 2041-2070 will be similar to
the 1981-2010 average temperature of a region approximately extending zonally between 46°N and 47°N. Evidently,
this metric is limited as it only compares the time averages. Let’s run this again with the “Zech-Aslan” metric, one that
compares the whole distribution.

[7]: results = analog.spatial_analogs(
sim[["tg_mean"]], obs[["tg_mean"]], method="zech_aslan"

)

results.plot(center=False)
(continues on next page)

98 Chapter 3. Examples

xclim Documentation, Release 0.39.0

(continued from previous page)

plt.plot(sim.lon, sim.lat, "ro", label="Target")
plot_best_analog(results)
plt.title('Average temperature - Zech-Aslan "energy" metric')
plt.legend();

nbsphinx-code-borderwhite

The new map is quite similar to the previous one, but notice how the scale has changed. Each metric defines its own
scale (see the docstrings), but in all cases, lower values imply less differences between distributions. Notice also how
the best analog has moved. This illustrates a common issue with these computations : there’s a lot of noise in the results
and the absolute minimum may be extremely sensitive and move all over the place.

These univariate analogies are interesting, but the real power of this method is that it can perform multivariate analyses.

[8]: results = analog.spatial_analogs(sim, obs, method="zech_aslan")

results.plot(center=False)
plt.plot(sim.lon, sim.lat, "ro", label="Target")
plot_best_analog(results)
plt.legend()
plt.title("3 indicators - Zech-Aslan");

3.9. Spatial Analogues examples 99

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

As said just above, results depend on the metric used. For example, some of the metrics include some sort of standard-
ization while others don’t. In the latter case, this means the absolute magnitude of the indices influences the results,
i.e. analogies depend on the units. This information is written in the docstring.

Some are also much more efficient than other (for example : seuclidean or zech_aslan, compared to
kolmogorov_smirnov or friedman_rafsky).

[9]: # This cell is slow.
import time

fig, axs = plt.subplots(4, 2, sharex=True, sharey=True, figsize=(10, 10))
for metric, ax in zip(analog.metrics.keys(), axs.flatten()):

start = time.perf_counter()
results = analog.spatial_analogs(sim, obs, method=metric)
print(f"Metric {metric} took {time.perf_counter() - start:.0f} s.")

results.plot(center=False, ax=ax, cbar_kwargs={"label": ""})
ax.plot(sim.lon, sim.lat, "ro", label="Target")
plot_best_analog(results, ax=ax)
ax.set_title(metric)

axs[0, 0].legend()
axs[-1, -1].set_visible(False)
fig.tight_layout();

Metric seuclidean took 1 s.
Metric nearest_neighbor took 7 s.
Metric zech_aslan took 3 s.
Metric szekely_rizzo took 2 s.
Metric friedman_rafsky took 19 s.
Metric kolmogorov_smirnov took 11 s.
Metric kldiv took 10 s.

100 Chapter 3. Examples

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

3.9. Spatial Analogues examples 101

xclim Documentation, Release 0.39.0

102 Chapter 3. Examples

CHAPTER

FOUR

CLIMATE INDICATORS

xclim.core.indicator.Indicator instances essentially perform the same computations as the functions found in
the xclim.indices library, but also run a number of health checks on input data and assign attributes to the output
arrays. So for example, if there are missing values in a time series, indices won’t notice, but indicators will return NaNs
for periods with missing values (depending on the missing values algorithm selected, see Missing values identification).
Indicators also check that the input data has the expected frequency (e.g. daily) and that it is indeed the expected variable
(e.g. a precipitation flux). The output is assigned attributes that conform as much as possible with the CF-Convention.

Indicators are split into realms (atmos, land, seaIce), according to the variables they operate on. See Defining new indi-
cators for instruction on how to create your own indicators. This page lists all indicators with a summary description,
click on the names to get to the complete docstring of each indicator.

4.1 atmos: Atmosphere

4.2 land: Land surface

4.3 seaIce: Sea ice

4.4 Virtual submodules

4.4.1 CF Standard indices

Indicators found here are defined by the team at clix-meta. Adapted documentation from that repository follows:

The repository aims to provide a platform for thinking about, and developing, a unified view of metadata elements
required to describe climate indices (aka climate indicators).

To facilitate data exchange and dissemination the metadata should, as far as possible, follow the Climate and Forecasting
(CF) Conventions. Considering the very rich and diverse flora of climate indices, this is however not always possible. By
collecting a wide range of different indices it is easier to discover any common patterns and features that are currently not
well covered by the CF Conventions. Currently identified issues frequently relate to standard_name and/or cell_methods
which both are controlled vocabularies of the CF Conventions.

103

http://cfconventions.org/
https://github.com/clix-meta/clix-meta

xclim Documentation, Release 0.39.0

4.4.2 ICCLIM indices

The European Climate Assessment & Dataset project (ECAD) defines a set of 26 core climate indices. Those have been
made accessible directly in xclim through their ECAD name for compatibility. However, the methods in this module
are only wrappers around the corresponding methods of xclim.indices. Note that none of the checks performed by the
xclim.utils.Indicator class (like with xclim.atmos indicators)are performed in this module.

4.4.3 ANUCLIM indices

The ANUCLIM (v6.1) software package BIOCLIM sub-module produces a set of bioclimatic parameters derived values
of temperature and precipitation. The methods in this module are wrappers around a subset of corresponding methods
of xclim.indices.

Furthermore, according to the ANUCLIM user-guide [Xu and Hutchinson, 2010], input values should be at a weekly
or monthly frequency. However, the implementation here expands these definitions and can calculate the result with
daily input data.

104 Chapter 4. Climate indicators

https://www.ecad.eu/

CHAPTER

FIVE

CLIMATE INDICES

5.1 Indices library

This module contains climate indices functions operating on xarray.DataArray. Most of these functions operate on
daily time series, but might accept other sampling frequencies as well. All functions perform units checks to make
sure that inputs have the expected dimensions (for example have units of temperature, whether it is celsius, kelvin or
fahrenheit), and set the units attribute of the output DataArray.

The calendar, fire, generic, helpers, run_length and stats submodules provide helpers to simplify the implementation
of the indices.

Note: Indices functions do not perform missing value checks, and usually do not set CF-Convention at-
tributes (long_name, standard_name, description, cell_methods, etc.). These functionalities are provided by
xclim.indicators.Indicator instances found in the xclim.indicators.atmos, xclim.indicators.land
and xclim.indicators.seaIce modules, documented in Climate indicators.

xclim.indices.base_flow_index(q: DataArray, freq: str = 'YS')→ DataArray
Base flow index.

Return the base flow index, defined as the minimum 7-day average flow divided by the mean flow.

Parameters
• q (xarray.DataArray) – Rate of river discharge.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Base flow index.

Notes

Let q = 𝑞0, 𝑞1, . . . , 𝑞𝑛 be the sequence of daily discharge and q the mean flow over the period. The base flow
index is given by:

min(CMA7(q))

q

where CMA7 is the seven days moving average of the daily flow:

CMA7(𝑞𝑖) =

∑︀𝑖+3
𝑗=𝑖−3 𝑞𝑗

7

105

xclim Documentation, Release 0.39.0

xclim.indices.biologically_effective_degree_days(tasmin: DataArray, tasmax: DataArray, lat:
Optional[DataArray] = None, thresh_tasmin: str =
'10 degC', method: str = 'gladstones', low_dtr: str =
'10 degC', high_dtr: str = '13 degC',
max_daily_degree_days: str = '9 degC', start_date:
DayOfYearStr = '04-01', end_date: DayOfYearStr =
'11-01', freq: str = 'YS')→ DataArray

Biologically effective growing degree days.

Growing-degree days with a base of 10°C and an upper limit of 19°C and adjusted for latitudes between 40°N
and 50°N for April to October (Northern Hemisphere; October to April in Southern Hemisphere). A temperature
range adjustment also promotes small and large swings in daily temperature range. Used as a heat-summation
metric in viticulture agroclimatology.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• lat (xarray.DataArray, optional) – Latitude coordinate. If None and method in [“glad-
stones”, “icclim”], a CF-conformant “latitude” field must be available within the passed
DataArray.

• thresh_tasmin (str) – The minimum temperature threshold.

• method ({“gladstones”, “icclim”, “jones”}) – The formula to use for the calculation. The
“gladstones” integrates a daily temperature range and latitude coefficient. End_date should
be “11-01”. The “icclim” method ignores daily temperature range and latitude coefficient.
End date should be “10-01”. The “jones” method integrates axial tilt, latitude, and day-of-
year on coefficient. End_date should be “11-01”.

• low_dtr (str) – The lower bound for daily temperature range adjustment (default: 10°C).

• high_dtr (str) – The higher bound for daily temperature range adjustment (default: 13°C).

• max_daily_degree_days (str) – The maximum amount of biologically effective degrees days
that can be summed daily.

• start_date (DayOfYearStr) – The hemisphere-based start date to consider (north = April,
south = October).

• end_date (DayOfYearStr) – The hemisphere-based start date to consider (north = October,
south = April). This date is non-inclusive.

• freq (str) – Resampling frequency (default: “YS”; For Southern Hemisphere, should be
“AS-JUL”).

Returns
xarray.DataArray, [K days] – Biologically effective growing degree days (BEDD)

Warning: Lat coordinate must be provided if method is “gladstones” or “jones”.

106 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

The tasmax ceiling of 19°C is assumed to be the max temperature beyond which no further gains from daily
temperature occur. Indice originally published in Gladstones [1992].

Let 𝑇𝑋𝑖 and 𝑇𝑁𝑖 be the daily maximum and minimum temperature at day 𝑖, 𝑙𝑎𝑡 the latitude of the point of
interest, 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥 the maximum amount of degrees that can be summed per day (typically, 9). Then the sum
of daily biologically effective growing degree day (BEDD) units between 1 April and 31 October is:

𝐵𝐸𝐷𝐷𝑖 =

October 31∑︁
𝑖=April 1

𝑚𝑖𝑛

(︂(︂
𝑚𝑎𝑥

(︂
𝑇𝑋𝑖 + 𝑇𝑁𝑖)

2
− 10, 0

)︂
* 𝑘

)︂
+ 𝑇𝑅𝑎𝑑𝑗 , 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥

)︂

𝑇𝑅𝑎𝑑𝑗 = 𝑓(𝑇𝑋𝑖, 𝑇𝑁𝑖) =

⎧⎪⎨⎪⎩
0.25(𝑇𝑋𝑖 − 𝑇𝑁𝑖 − 13), if (𝑇𝑋𝑖 − 𝑇𝑁𝑖) > 13

0, if 10 < (𝑇𝑋𝑖 − 𝑇𝑁𝑖) < 13

0.25(𝑇𝑋𝑖 − 𝑇𝑁𝑖 − 10), if (𝑇𝑋𝑖 − 𝑇𝑁𝑖) < 10

𝑘 = 𝑓(𝑙𝑎𝑡) = 1 +

(︂
|𝑙𝑎𝑡|
50

* 0.06, if 40 < |𝑙𝑎𝑡| < 50, else 0
)︂

A second version of the BEDD (method=”icclim”) does not consider 𝑇𝑅𝑎𝑑𝑗 and 𝑘 and employs a different end
date (30 September) [Project team ECA&D and KNMI, 2013]. The simplified formula is as follows:

𝐵𝐸𝐷𝐷𝑖 =

September 30∑︁
𝑖=April 1

𝑚𝑖𝑛

(︂
𝑚𝑎𝑥

(︂
𝑇𝑋𝑖 + 𝑇𝑁𝑖)

2
− 10, 0

)︂
, 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥

)︂

References

Gladstones [1992], Project team ECA&D and KNMI [2013]

xclim.indices.blowing_snow(snd: DataArray, sfcWind: DataArray, snd_thresh: str = '5 cm', sfcWind_thresh:
str = '15 km/h', window: int = 3, freq: str = 'AS-JUL')→ DataArray

Blowing snow days.

Number of days when both snowfall over the last days and daily wind speeds are above respective thresholds.

Parameters
• snd (xarray.DataArray) – Surface snow depth.

• sfcWind (xr.DataArray) – Wind velocity

• snd_thresh (str) – Threshold on net snowfall accumulation over the last window days.

• sfcWind_thresh (str) – Wind speed threshold.

• window (int) – Period over which snow is accumulated before comparing against threshold.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – Number of days when snowfall and wind speeds are above respective thresh-
olds.

xclim.indices.calm_days(sfcWind: DataArray, thresh: str = '2 m s-1', freq: str = 'MS')→ DataArray
Calm days.

The number of days with average near-surface wind speed below threshold (default: 2 m/s).

Parameters

5.1. Indices library 107

xclim Documentation, Release 0.39.0

• sfcWind (xarray.DataArray) – Daily windspeed.

• thresh (str) – Threshold average near-surface wind speed on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Number of days with average near-surface wind speed below thresh-
old.

Notes

Let 𝑊𝑆𝑖𝑗 be the windspeed at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑊𝑆𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑠− 1]

xclim.indices.cffwis_indices(tas: DataArray, pr: DataArray, sfcWind: DataArray, hurs: DataArray, lat:
DataArray, snd: Optional[DataArray] = None, ffmc0: Optional[DataArray] =
None, dmc0: Optional[DataArray] = None, dc0: Optional[DataArray] =
None, season_mask: Optional[DataArray] = None, season_method:
Optional[str] = None, overwintering: bool = False, dry_start: Optional[str] =
None, initial_start_up: bool = True, **params)

Canadian Fire Weather Index System indices.

Computes the 6 fire weather indexes as defined by the Canadian Forest Service: the Drought Code, the Duff-
Moisture Code, the Fine Fuel Moisture Code, the Initial Spread Index, the Build Up Index and the Fire Weather
Index.

Parameters
• tas (xr.DataArray) – Noon temperature.

• pr (xr.DataArray) – Rain fall in open over previous 24 hours, at noon.

• sfcWind (xr.DataArray) – Noon wind speed.

• hurs (xr.DataArray) – Noon relative humidity.

• lat (xr.DataArray) – Latitude coordinate

• snd (xr.DataArray) – Noon snow depth, only used if season_method=’LA08’ is passed.

• ffmc0 (xr.DataArray) – Initial values of the fine fuel moisture code.

• dmc0 (xr.DataArray) – Initial values of the Duff moisture code.

• dc0 (xr.DataArray) – Initial values of the drought code.

• season_mask (xr.DataArray, optional) – Boolean mask, True where/when the fire season is
active.

• season_method ({None, “WF93”, “LA08”, “GFWED”}) – How to compute the start-up
and shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar
to the R fire function. Ignored if season_mask is given.

• overwintering (bool) – Whether to activate DC overwintering or not. If True, either sea-
son_method or season_mask must be given.

• dry_start ({None, ‘CFS’, ‘GFWED’}) – Whether to activate the DC and DMC “dry start”
mechanism or not, see fire_weather_ufunc().

108 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• initial_start_up (bool) – If True (default), gridpoints where the fire season is active on the
first timestep go through a start_up phase for that time step. Otherwise, previous codes must
be given as a continuing fire season is assumed for those points.

• params – Any other keyword parameters as defined in fire_weather_ufunc() and in
default_params.

Returns
• DC (xr.DataArray, [dimensionless])

• DMC (xr.DataArray, [dimensionless])

• FFMC (xr.DataArray, [dimensionless])

• ISI (xr.DataArray, [dimensionless])

• BUI (xr.DataArray, [dimensionless])

• FWI (xr.DataArray, [dimensionless])

Notes

See Natural Resources Canada [n.d.], the xclim.indices.fire module documentation, and the docstring of
fire_weather_ufunc() for more information.

References

Wang, Anderson, and Suddaby [2015]

xclim.indices.clausius_clapeyron_scaled_precipitation(delta_tas: DataArray, pr_baseline:
DataArray, cc_scale_factor: float = 1.07)→
DataArray

Scale precipitation according to the Clausius-Clapeyron relation.

Parameters
• delta_tas (xarray.DataArray) – Difference in temperature between a baseline climatology

and another climatology.

• pr_baseline (xarray.DataArray) – Baseline precipitation to adjust with Clausius-Clapeyron.

• cc_scale_factor (float (default = 1.07)) – Clausius Clapeyron scale factor.

Returns
DataArray – Baseline precipitation scaled to other climatology using Clausius-Clapeyron rela-
tionship.

Notes

The Clausius-Clapeyron equation for water vapour under typical atmospheric conditions states that the saturation
water vapour pressure 𝑒𝑠 changes approximately exponentially with temperature

d𝑒𝑠(𝑇)

d𝑇
≈ 1.07𝑒𝑠(𝑇)

This function assumes that precipitation can be scaled by the same factor.

5.1. Indices library 109

xclim Documentation, Release 0.39.0

Warning: Make sure that delta_tas is computed over a baseline compatible with pr_baseline. So for ex-
ample, if delta_tas is the climatological difference between a baseline and a future period, then pr_baseline
should be precipitations over a period within the same baseline.

xclim.indices.cold_and_dry_days(tas: DataArray, pr: DataArray, tas_per: DataArray, pr_per: DataArray,
freq: str = 'YS')→ DataArray

Cold and dry days.

Returns the total number of days when “Cold” and “Dry” conditions coincide.

Parameters
• tas (xarray.DataArray) – Mean daily temperature values

• pr (xarray.DataArray) – Daily precipitation.

• tas_per (xarray.DataArray) – First quartile of daily mean temperature computed by month.

• pr_per (xarray.DataArray) – First quartile of daily total precipitation computed by month.

Warning: Before computing the percentiles, all the precipitation below 1mm must be
filtered out! Otherwise, the percentiles will include non-wet days.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The total number of days when cold and dry conditions coincide.

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indices.cold_and_wet_days(tas: DataArray, pr: DataArray, tas_per: DataArray, pr_per: DataArray,
freq: str = 'YS')→ DataArray

Cold and wet days.

Returns the total number of days when “cold” and “wet” conditions coincide.

Parameters
• tas (xarray.DataArray) – Mean daily temperature values

• pr (xarray.DataArray) – Daily precipitation.

• tas_per (xarray.DataArray) – First quartile of daily mean temperature computed by month.

• pr_per (xarray.DataArray) – Third quartile of daily total precipitation computed by month.

• freq (str) – Resampling frequency.

110 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Warning: Before computing the percentiles, all the precipitation below 1mm must be filtered out! Other-
wise, the percentiles will include non-wet days.

Returns
xarray.DataArray – The total number of days when cold and wet conditions coincide.

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indices.cold_spell_days(tas: DataArray, thresh: str = '-10 degC', window: int = 5, freq: str =
'AS-JUL', op: str = '<', resample_before_rl: bool = True)→ DataArray

Cold spell days.

The number of days that are part of cold spell events, defined as a sequence of consecutive days with mean daily
temperature below a threshold (default: -10°C).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature below which a cold spell begins.

• window (int) – Minimum number of days with temperature below threshold to qualify as a
cold spell.

• freq (str) – Resampling frequency.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xarray.DataArray, [time] – Cold spell days.

Notes

Let 𝑇𝑖 be the mean daily temperature on day 𝑖, the number of cold spell days during period 𝜑 is given by:

∑︁
𝑖∈𝜑

𝑖+5∏︁
𝑗=𝑖

[𝑇𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

5.1. Indices library 111

xclim Documentation, Release 0.39.0

xclim.indices.cold_spell_duration_index(tasmin: DataArray, tasmin_per: DataArray, window: int = 6,
freq: str = 'YS', resample_before_rl: bool = True, bootstrap:
bool = False, op: str = '<')→ DataArray

Cold spell duration index.

Number of days with at least window consecutive days when the daily minimum temperature is below the tas-
min_per percentiles.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmin_per (xarray.DataArray) – nth percentile of daily minimum temperature with day-
ofyear coordinate.

• window (int) – Minimum number of days with temperature below threshold to qualify as a
cold spell.

• freq (str) – Resampling frequency.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Count of days with at least six consecutive days when the daily min-
imum temperature is below the 10th percentile.

Notes

Let 𝑇𝑁𝑖 be the minimum daily temperature for the day of the year 𝑖 and 𝑇𝑁10𝑖 the 10th percentile of the
minimum daily temperature over the 1961-1990 period for day of the year 𝑖, the cold spell duration index over
period 𝜑 is defined as:

∑︁
𝑖∈𝜑

𝑖+6∏︁
𝑗=𝑖

[𝑇𝑁𝑗 < 𝑇𝑁10𝑗]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

References

From the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI; [Zhang et al., 2011]).

112 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import cold_spell_duration_index
>>> tasmin = xr.open_dataset(path_to_tasmin_file).tasmin.isel(lat=0, lon=0)
>>> tn10 = percentile_doy(tasmin, per=10).sel(percentiles=10)
>>> cold_spell_duration_index(tasmin, tn10)

Note that this example does not use a proper 1961-1990 reference period.

xclim.indices.cold_spell_frequency(tas: DataArray, thresh: str = '-10 degC', window: int = 5, freq: str =
'AS-JUL', op: str = '<', resample_before_rl: bool = True)→
DataArray

Cold spell frequency.

The number of cold spell events, defined as a sequence of consecutive days with mean daily temperature below
a threshold (default: -10℃).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature below which a cold spell begins.

• window (int) – Minimum number of days with temperature below threshold to qualify as a
cold spell.

• freq (str) – Resampling frequency.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run

Returns
xarray.DataArray, [time] – Cold spell frequency.

xclim.indices.continuous_snow_cover_end(snd: DataArray, thresh: str = '2 cm', window: int = 14, freq: str
= 'AS-JUL')→ DataArray

End date of continuous snow cover.

First day after the start of the continuous snow cover when snow depth is below a threshold (default: 2 cm) for
at least N (default: 14) consecutive days.

Warning: The default freq is valid for the northern hemisphere.

Parameters
• snd (xarray.DataArray) – Surface snow thickness.

• thresh (str) – Threshold snow thickness.

• window (int) – Minimum number of days with snow depth below threshold.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – First day after the start of the continuous snow cover when
the snow depth goes below a threshold for a minimum duration. If there is no such day, returns
np.nan.

5.1. Indices library 113

xclim Documentation, Release 0.39.0

References

Chaumont, Mailhot, Diaconescu, Fournier, and Logan [2017]

xclim.indices.continuous_snow_cover_start(snd: DataArray, thresh: str = '2 cm', window: int = 14, freq:
str = 'AS-JUL')→ DataArray

Start date of continuous snow cover.

Day of year when snow depth is above or equal to a threshold (default: 2 cm) for at least N (default: 14) consec-
utive days.

Warning: The default freq is valid for the northern hemisphere.

Parameters
• snd (xarray.DataArray) – Surface snow thickness.

• thresh (str) – Threshold snow thickness.

• window (int) – Minimum number of days with snow depth above or equal to threshold.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – First day of the year when the snow depth is superior to a
threshold for a minimum duration. If there is no such day, returns np.nan.

References

Chaumont, Mailhot, Diaconescu, Fournier, and Logan [2017]

xclim.indices.cool_night_index(tasmin: DataArray, lat: Optional[Union[DataArray, str]] = None, freq: str
= 'YS')→ DataArray

Cool Night Index.

Mean minimum temperature for September (northern hemisphere) or March (Southern hemisphere). Used in
calculating the Géoviticulture Multicriteria Classification System (Tonietto and Carbonneau [2004]).

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• lat (xarray.DataArray or {“north”, “south”}, optional) – Latitude coordinate as an array,
float or string. If None, a CF-conformant “latitude” field must be available within the passed
DataArray.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [degC] – Mean of daily minimum temperature for month of interest.

114 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Given that this indice only examines September and March months, it is possible to send in DataArrays containing
only these timesteps. Users should be aware that due to the missing values checks in wrapped Indicators, datasets
that are missing several months will be flagged as invalid. This check can be ignored by setting the following
context:

Examples

>>> from xclim.indices import cool_night_index
>>> tasmin = xr.open_dataset(path_to_tasmin_file).tasmin
>>> cni = cool_night_index(tasmin)

References

Tonietto and Carbonneau [2004]

xclim.indices.cooling_degree_days(tas: DataArray, thresh: str = '18 degC', freq: str = 'YS')→ DataArray
Cooling degree days.

Returns the sum of degree days above the temperature threshold at which spaces are cooled (default: 18℃).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Temperature threshold above which air is cooled.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time][temperature] – Cooling degree days.

Notes

Let 𝑥𝑖 be the daily mean temperature at day 𝑖. Then the cooling degree days above temperature threshold 𝑡ℎ𝑟𝑒𝑠ℎ
over period 𝜑 is given by: ∑︁

𝑖∈𝜑

(𝑥𝑖 − 𝑡ℎ𝑟𝑒𝑠ℎ[𝑥𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

xclim.indices.corn_heat_units(tasmin: DataArray, tasmax: DataArray, thresh_tasmin: str = '4.44 degC',
thresh_tasmax: str = '10 degC')→ DataArray

Corn heat units.

Temperature-based index used to estimate the development of corn crops. Formula adapted from Bootsma et al.
[1999].

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmin (str) – The minimum temperature threshold needed for corn growth.

5.1. Indices library 115

xclim Documentation, Release 0.39.0

• thresh_tasmax (str) – The maximum temperature threshold needed for corn growth.

Returns
xarray.DataArray, [unitless] – Daily corn heat units.

Notes

Formula used in calculating the Corn Heat Units for the Agroclimatic Atlas of Quebec [Audet et al., 2012].

The thresholds of 4.44°C for minimum temperatures and 10°C for maximum temperatures were selected follow-
ing the assumption that no growth occurs below these values.

Let 𝑇𝑋𝑖 and 𝑇𝑁𝑖 be the daily maximum and minimum temperature at day 𝑖. Then the daily corn heat unit is:

𝐶𝐻𝑈𝑖 =
𝑌 𝑋𝑖 + 𝑌 𝑁𝑖

2

with

𝑌 𝑋𝑖 = 3.33(𝑇𝑋𝑖 − 10)− 0.084(𝑇𝑋𝑖 − 10)2, if 𝑇𝑋𝑖 > 10𝐶

𝑌 𝑁𝑖 = 1.8(𝑇𝑁𝑖 − 4.44), if 𝑇𝑁𝑖 > 4.44𝐶

where 𝑌 𝑋𝑖 and 𝑌 𝑁𝑖 is 0 when 𝑇𝑋𝑖 ≤ 10𝐶 and 𝑇𝑁𝑖 ≤ 4.44𝐶, respectively.

References

Audet, Côté, Bachand, and Mailhot [2012], Bootsma, Tremblay, and Filion [1999]

xclim.indices.daily_pr_intensity(pr: DataArray, thresh: str = '1 mm/day', freq: str = 'YS')→ DataArray
Average daily precipitation intensity.

Return the average precipitation over wet days. Wet days are those with precipitation over a given threshold
(default: 1 mm/day).

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• thresh (str) – Precipitation value over which a day is considered wet.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [precipitation] – The average precipitation over wet days for each period.

Notes

Let p = 𝑝0, 𝑝1, . . . , 𝑝𝑛 be the daily precipitation and 𝑡ℎ𝑟𝑒𝑠ℎ be the precipitation threshold defining wet days.
Then the daily precipitation intensity is defined as:∑︀𝑛

𝑖=0 𝑝𝑖[𝑝𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ]∑︀𝑛
𝑖=0[𝑝𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

116 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Examples

The following would compute for each grid cell of file pr.day.nc the average precipitation fallen over days with
precipitation >= 5 mm at seasonal frequency, i.e. DJF, MAM, JJA, SON, DJF, etc.:

>>> from xclim.indices import daily_pr_intensity
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> daily_int = daily_pr_intensity(pr, thresh="5 mm/day", freq="QS-DEC")

xclim.indices.daily_temperature_range(tasmin: DataArray, tasmax: DataArray, freq: str = 'YS', op:
Union[str, Callable] = 'mean')→ DataArray

Statistics of daily temperature range.

The mean difference between the daily maximum temperature and the daily minimum temperature.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• freq (str) – Resampling frequency.

• op ({‘min’, ‘max’, ‘mean’, ‘std’} or func) – Reduce operation. Can either be a DataArray
method or a function that can be applied to a DataArray.

Returns
xarray.DataArray, [same units as tasmin] – The average variation in daily temperature range for
the given time period.

Notes

For a default calculation using op=’mean’ :

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the mean diurnal
temperature range in period 𝑗 is:

𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=1(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)

𝐼

xclim.indices.daily_temperature_range_variability(tasmin: DataArray, tasmax: DataArray, freq: str =
'YS')→ DataArray

Mean absolute day-to-day variation in daily temperature range.

Mean absolute day-to-day variation in daily temperature range.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmin] – The average day-to-day variation in daily temperature
range for the given time period.

5.1. Indices library 117

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then calculated is
the absolute day-to-day differences in period 𝑗 is:

𝑣𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=2 |(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)− (𝑇𝑋𝑖−1,𝑗 − 𝑇𝑁𝑖−1,𝑗)|

𝐼

xclim.indices.days_over_precip_thresh(pr: DataArray, pr_per: DataArray, thresh: str = '1 mm/day', freq:
str = 'YS', bootstrap: bool = False, op: str = '>')→ DataArray

Number of wet days with daily precipitation over a given percentile.

Number of days over period where the precipitation is above a threshold defining wet days and above a given
percentile for that day.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• pr_per (xarray.DataArray) – Percentile of wet day precipitation flux. Either computed daily
(one value per day of year) or computed over a period (one value per spatial point).

• thresh (str) – Precipitation value over which a day is considered wet.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Count of days with daily precipitation above the given percentile
[days].

Examples

>>> from xclim.indices import days_over_precip_thresh
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> p75 = pr.quantile(0.75, dim="time", keep_attrs=True)
>>> r75p = days_over_precip_thresh(pr, p75)

xclim.indices.days_with_snow(prsn: DataArray, low: str = '0 kg m-2 s-1', high: str = '1E6 kg m-2 s-1', freq:
str = 'AS-JUL')→ DataArray

Days with snow.

Return the number of days where snowfall is within low and high thresholds.

Parameters
• prsn (xr.DataArray) – Solid precipitation flux.

• low (float) – Minimum threshold solid precipitation flux.

• high (float) – Maximum threshold solid precipitation flux.

118 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xarray.DataArray, [time] – Number of days where snowfall is between low and high thresholds.

References

Matthews, Andrey, and Picketts [2017]

xclim.indices.degree_days_exceedance_date(tas: DataArray, thresh: str = '0 degC', sum_thresh: str = '25
K days', op: str = '>', after_date: Optional[DayOfYearStr] =
None, freq: str = 'YS')→ DataArray

Degree-days exceedance date.

Day of year when the sum of degree days exceeds a threshold (default: 25 K days). Degree days are computed
above or below a given temperature threshold (default: 0℃).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base degree-days evaluation.

• sum_thresh (str) – Threshold of the degree days sum.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”}) – If equivalent to ‘>’, degree days
are computed as tas - thresh and if equivalent to ‘<’, they are computed as thresh - tas.

• after_date (str, optional) – Date at which to start the cumulative sum. In “mm-dd” format,
defaults to the start of the sampling period.

• freq (str) – Resampling frequency. If after_date is given, freq should be annual.

Returns
xarray.DataArray, [dimensionless] – Degree-days exceedance date.

Notes

Let 𝑇𝐺𝑖𝑗 be the daily mean temperature at day 𝑖 of period 𝑗, 𝑇 is the reference threshold and 𝑆𝑇 is the sum
threshold. Then, starting at day :math:i_0:, the degree days exceedance date is the first day 𝑘 such that{︃

𝑆𝑇 <
∑︀𝑘

𝑖=𝑖0
max(𝑇𝐺𝑖𝑗 − 𝑇, 0) if 𝑜𝑝 is ’>’

𝑆𝑇 <
∑︀𝑘

𝑖=𝑖0
max(𝑇 − 𝑇𝐺𝑖𝑗 , 0) if 𝑜𝑝 is ’<’

The resulting 𝑘 is expressed as a day of year.

Cumulated degree days have numerous applications including plant and insect phenology. See https://en.
wikipedia.org/wiki/Growing_degree-day for examples (Wikipedia Contributors [2021]).

xclim.indices.drought_code(tas: DataArray, pr: DataArray, lat: DataArray, snd: Optional[DataArray] =
None, dc0: Optional[DataArray] = None, season_mask: Optional[DataArray] =
None, season_method: Optional[str] = None, overwintering: bool = False,
dry_start: Optional[str] = None, initial_start_up: bool = True, **params)

Drought code (FWI component).

The drought code is part of the Canadian Forest Fire Weather Index System. It is a numeric rating of the average
moisture content of organic layers.

Parameters

5.1. Indices library 119

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://en.wikipedia.org/wiki/Growing_degree-day
https://en.wikipedia.org/wiki/Growing_degree-day

xclim Documentation, Release 0.39.0

• tas (xr.DataArray) – Noon temperature.

• pr (xr.DataArray) – Rain fall in open over previous 24 hours, at noon.

• lat (xr.DataArray) – Latitude coordinate

• snd (xr.DataArray) – Noon snow depth.

• dc0 (xr.DataArray) – Initial values of the drought code.

• season_mask (xr.DataArray, optional) – Boolean mask, True where/when the fire season is
active.

• season_method ({None, “WF93”, “LA08”, “GFWED”}) – How to compute the start-up
and shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar
to the R fire function. Ignored if season_mask is given.

• overwintering (bool) – Whether to activate DC overwintering or not. If True, either sea-
son_method or season_mask must be given.

• dry_start ({None, “CFS”, ‘GFWED’}) – Whether to activate the DC and DMC “dry start”
mechanism and which method to use. See fire_weather_ufunc().

• initial_start_up (bool) – If True (default), grid points where the fire season is active on the
first timestep go through a start_up phase for that time step. Otherwise, previous codes must
be given as a continuing fire season is assumed for those points.

• params – Any other keyword parameters as defined in xclim.indices.fire.fire_weather_ufunc
and in default_params.

Returns
xr.DataArray, [dimensionless] – Drought code

Notes

See Natural Resources Canada [n.d.], the xclim.indices.fire module documentation, and the docstring of
fire_weather_ufunc() for more information.

References

Wang, Anderson, and Suddaby [2015]

xclim.indices.dry_days(pr: DataArray, thresh: str = '0.2 mm/d', freq: str = 'YS', op: str = '<')→ DataArray
Dry days.

The number of days with daily precipitation below threshold.

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Number of days with daily precipitation {op} threshold.

120 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Let 𝑃𝑅𝑖𝑗 be the daily precipitation at day 𝑖 of period 𝑗. Then counted is the number of days where:∑︁
𝑃𝑅𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑚/𝑑𝑎𝑦]

xclim.indices.dry_spell_frequency(pr: DataArray, thresh: str = '1.0 mm', window: int = 3, freq: str = 'YS',
resample_before_rl: bool = True, op: str = 'sum')→ DataArray

Return the number of dry periods of n days and more.

Periods during which the accumulated or maximal daily precipitation amount on a window of n days is under
threshold.

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• thresh (str) – Precipitation amount under which a period is considered dry. The value against
which the threshold is compared depends on op .

• window (int) – Minimum length of the spells.

• freq (str) – Resampling frequency.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

• op ({“sum”,”max”}) – Operation to perform on the window. Default is “sum”, which checks
that the sum of accumulated precipitation over the whole window is less than the threshold.
“max” checks that the maximal daily precipitation amount within the window is less than
the threshold. This is the same as verifying that each individual day is below the threshold.

Returns
xarray.DataArray, [unitless] – The {freq} number of dry periods of minimum {window} days.

Examples

>>> from xclim.indices import dry_spell_frequency
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> dsf = dry_spell_frequency(pr=pr, op="sum")
>>> dsf = dry_spell_frequency(pr=pr, op="max")

xclim.indices.dry_spell_total_length(pr: DataArray, thresh: str = '1.0 mm', window: int = 3, op: str =
'sum', freq: str = 'YS', resample_before_rl: bool = True, **indexer)
→ DataArray

Total length of dry spells.

Total number of days in dry periods of a minimum length, during which the maximum or accumulated precipi-
tation within a window of the same length is under a threshold.

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• thresh (str) – Accumulated precipitation value under which a period is considered dry.

• window (int) – Number of days when the maximum or accumulated precipitation is under
threshold.

• op ({“max”, “sum”}) – Reduce operation.

5.1. Indices library 121

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Indexing is
done after finding the dry days, but before finding the spells.

Returns
xarray.DataArray, [days] – The {freq} total number of days in dry periods of minimum {win-
dow} days.

Notes

The algorithm assumes days before and after the timeseries are “wet”, meaning that the condition for being
considered part of a dry spell is stricter on the edges. For example, with window=3 and op=’sum’, the first day
of the series is considered part of a dry spell only if the accumulated precipitation within the first three days is
under the threshold. In comparison, a day in the middle of the series is considered part of a dry spell if any of the
three 3-day periods of which it is part are considered dry (so a total of five days are included in the computation,
compared to only three).

xclim.indices.effective_growing_degree_days(tasmax: DataArray, tasmin: DataArray, *, thresh: str = '5
degC', method: str = 'bootsma', after_date: DayOfYearStr
= '07-01', dim: str = 'time', freq: str = 'YS')→ DataArray

Effective growing degree days.

Growing degree days based on a dynamic start and end of the growing season, as defined in [Bootsma and
Gameda and D.W. McKenney, 2005].

Parameters
• tasmax (xr.DataArray) – Daily mean temperature.

• tasmin (xr.DataArray) – Daily minimum temperature.

• thresh (str) – The minimum temperature threshold.

• method ({“bootsma”, “qian”}) – The window method used to determine the temperature-
based start date. For “bootsma”, the start date is defined as 10 days after the average tem-
perature exceeds a threshold. For “qian”, the start date is based on a weighted 5-day rolling
average, based on :py:func`qian_weighted_mean_average`.

• after_date (str) – Date of the year after which to look for the first frost event. Should have
the format ‘%m-%d’.

• dim (str) – Time dimension.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [K days] – Effective growing degree days (EGDD).

122 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

The effective growing degree days for a given year 𝐸𝐺𝐷𝐷𝑖 can be calculated as follows:

The end date is determined as the day preceding the first day with minimum temperature below 0 degC.

References

Bootsma and Gameda and D.W. McKenney [2005]

xclim.indices.extreme_temperature_range(tasmin: DataArray, tasmax: DataArray, freq: str = 'YS')→
DataArray

Extreme intra-period temperature range.

The maximum of max temperature (TXx) minus the minimum of min temperature (TNn) for the given time
period.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmin] – Extreme intra-period temperature range for the given
time period.

Notes

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the extreme
temperature range in period 𝑗 is:

𝐸𝑇𝑅𝑗 = 𝑚𝑎𝑥(𝑇𝑋𝑖𝑗)−𝑚𝑖𝑛(𝑇𝑁𝑖𝑗)

xclim.indices.fire_season(tas: DataArray, snd: Optional[DataArray] = None, method: str = 'WF93', freq:
Optional[str] = None, temp_start_thresh: str = '12 degC', temp_end_thresh: str =
'5 degC', temp_condition_days: int = 3, snow_condition_days: int = 3,
snow_thresh: str = '0.01 m')

Fire season mask.

Binary mask of the active fire season, defined by conditions on consecutive daily temperatures and, optionally,
snow depths.

Parameters
• tas (xr.DataArray) – Daily surface temperature, cffdrs recommends using maximum daily

temperature.

• snd (xr.DataArray, optional) – Snow depth, used with method == ‘LA08’.

• method ({“WF93”, “LA08”, “GFWED”}) – Which method to use. “LA08” and “GFWED”
need the snow depth.

• freq (str, optional) – If given only the longest fire season for each period defined by this
frequency, Every “seasons” are returned if None, including the short shoulder seasons.

5.1. Indices library 123

xclim Documentation, Release 0.39.0

• temp_start_thresh (str) – Minimal temperature needed to start the season.

• temp_end_thresh (str) – Maximal temperature needed to end the season.

• temp_condition_days (int) – Number of days with temperature above or below the thresh-
olds to trigger a start or an end of the fire season.

• snow_condition_days (int) – Parameters for the fire season determination. See
fire_season(). Temperature is in degC, snow in m. The snow_thresh parameters is also
used when dry_start is set to “GFWED”.

• snow_thresh (str) – Minimal snow depth level to end a fire season, only used with method
“LA08”.

Returns
xr.DataArray – Fire season mask

References

Lawson and Armitage [2008], Wotton and Flannigan [1993]

xclim.indices.fire_weather_indexes(tas: DataArray, pr: DataArray, sfcWind: DataArray, hurs: DataArray,
lat: DataArray, snd: Optional[DataArray] = None, ffmc0:
Optional[DataArray] = None, dmc0: Optional[DataArray] = None,
dc0: Optional[DataArray] = None, season_mask:
Optional[DataArray] = None, season_method: Optional[str] = None,
overwintering: bool = False, dry_start: Optional[str] = None,
initial_start_up: bool = True, **params)

xclim.indices.first_day_above(tasmin: DataArray, **kwargs)→ DataArray

xclim.indices.first_day_below(tasmin: DataArray, **kwargs)→ DataArray

xclim.indices.first_day_temperature_above(tas: DataArray, thresh: str = '0 degC', op: str = '>',
after_date: DayOfYearStr = '01-01', window: int = 1, freq:
str = 'YS')→ DataArray

First day of temperatures superior to a given temperature threshold.

Returns first day of period where temperature is superior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: January 1).

Warning: The default freq and after_date parameters are valid for the northern hemisphere.

Parameters
• tas (xarray.DataArray) – Daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

• after_date (str) – Date of the year after which to look for the first event. Should have the
format ‘%m-%d’.

• window (int) – Minimum number of days with temperature above threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

124 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Returns
xarray.DataArray, [dimensionless] – Day of the year when temperature is superior to a threshold
over a given number of days for the first time. If there is no such day, returns np.nan.

Notes

Let 𝑥𝑖 be the daily mean|max|min temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366.
The first day above temperature threshold is given by the smallest index 𝑖 for which

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be exceeded, and [𝑃] is 1 if 𝑃 is true,
and 0 if false.

xclim.indices.first_day_temperature_below(tas: DataArray, thresh: str = '0 degC', op: str = '<',
after_date: DayOfYearStr = '07-01', window: int = 1, freq:
str = 'YS')→ DataArray

First day of temperatures inferior to a given temperature threshold.

Returns first day of period where temperature is inferior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: July 1).

Warning: The default freq and after_date parameters are valid for the northern hemisphere.

Parameters
• tas (xarray.DataArray) – Daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “>”.

• after_date (str) – Date of the year after which to look for the first event. Should have the
format ‘%m-%d’.

• window (int) – Minimum number of days with temperature below threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when temperature is inferior to a threshold
over a given number of days for the first time. If there is no such day, returns np.nan.

xclim.indices.first_snowfall(prsn: DataArray, thresh: str = '0.5 mm/day', freq: str = 'AS-JUL')→
DataArray

First day with solid precipitation above a threshold.

Returns the first day of a period where the solid precipitation exceeds a threshold (default: 0.5 mm/day).

Warning: The default freq is valid for the northern hemisphere.

Parameters
• prsn (xarray.DataArray) – Solid precipitation flux.

5.1. Indices library 125

xclim Documentation, Release 0.39.0

• thresh (str) – Threshold precipitation flux on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – First day of the year when the solid precipitation is superior
to a threshold. If there is no such day, returns np.nan.

References

CBCL [2020].

xclim.indices.fraction_over_precip_thresh(pr: DataArray, pr_per: DataArray, thresh: str = '1 mm/day',
freq: str = 'YS', bootstrap: bool = False, op: str = '>')→
DataArray

Fraction of precipitation due to wet days with daily precipitation over a given percentile.

Percentage of the total precipitation over period occurring in days when the precipitation is above a threshold
defining wet days and above a given percentile for that day.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• pr_per (xarray.DataArray) – Percentile of wet day precipitation flux. Either computed daily
(one value per day of year) or computed over a period (one value per spatial point).

• thresh (str) – Precipitation value over which a day is considered wet.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [dimensionless] – Fraction of precipitation over threshold during wet days.

xclim.indices.freshet_start(tas: DataArray, thresh='0 degC', window: int = 5, **kwargs)→ DataArray

xclim.indices.frost_days(tasmin: DataArray, thresh: str = '0 degC', freq: str = 'YS')→ DataArray
Frost days index.

Number of days where daily minimum temperatures are below a threshold temperature.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Freezing temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Frost days index.

126 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑁𝑖𝑗 be the daily minimum temperature at day 𝑖 of period 𝑗 and :math`TT` the threshold. Then counted is
the number of days where:

𝑇𝑁𝑖𝑗 < 𝑇𝑇

xclim.indices.frost_free_season_end(tasmin: DataArray, thresh: str = '0.0 degC', mid_date: DayOfYearStr
= '07-01', window: int = 5, freq: str = 'YS')→ DataArray

End of the frost free season.

Day of the year of the start of a sequence of days with minimum temperatures consistently below a threshold
(default: 0℃), after a period of N days (default: 5) with minimum temperatures consistently above the same
threshold.

Warning: The default freq and mid_date parameters are valid for the northern hemisphere.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• mid_date (str) – Date of the year after which to look for the end of the season. Should have
the format ‘%m-%d’.

• window (int) – Minimum number of days with temperature below threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when minimum temperature is inferior to
a threshold over a given number of days for the first time. If there is no such day or if a frost
free season is not detected, returns np.nan. If the frost free season does not end within the time
period, returns the last day of the period.

xclim.indices.frost_free_season_length(tasmin: DataArray, window: int = 5, mid_date:
Optional[DayOfYearStr] = '07-01', thresh: str = '0.0 degC', freq:
str = 'YS')→ DataArray

Frost free season length.

The number of days between the first occurrence of at least N (default: 5) consecutive days with minimum
daily temperature above a threshold (default: 0℃) and the first occurrence of at least N consecutive days with
minimum daily temperature below the same threshold. A mid-date can be given to limit the earliest day the end
of season can take.

Warning: The default freq and mid_date parameters are valid for the northern hemisphere.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• window (int) – Minimum number of days with temperature above threshold to mark the
beginning and end of frost free season.

5.1. Indices library 127

xclim Documentation, Release 0.39.0

• mid_date (str, optional) – Date the must be included in the season. It is the earliest the end
of the season can be. If None, there is no limit.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Frost free season length.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the
first occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 >= 0

and the first subsequent occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 < 0

Examples

>>> from xclim.indices import frost_season_length
>>> tasmin = xr.open_dataset(path_to_tasmin_file).tasmin

For the Northern Hemisphere: >>> ffsl_nh = frost_free_season_length(tasmin, freq=”YS”)

If working in the Southern Hemisphere, one can use: >>> ffsl_sh = frost_free_season_length(tasmin, freq=”AS-
JUL”)

xclim.indices.frost_free_season_start(tasmin: DataArray, thresh: str = '0.0 degC', window: int = 5, freq:
str = 'YS')→ DataArray

Start of the frost free season.

Day of the year of the start of a sequence of days with minimum temperatures consistently above or equal to a
threshold (default: 0℃), after a period of N days (default: 5) with minimum temperatures consistently above the
same threshold.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• window (int) – Minimum number of days with temperature above threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when minimum temperature is superior to
a threshold over a given number of days for the first time. If there is no such day or if a frost free
season is not detected, returns np.nan.

128 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Let 𝑥𝑖 be the daily mean temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366. The start
date of the start of growing season is given by the smallest index 𝑖 for which:

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 >= 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be met or exceeded, and [𝑃] is 1 if 𝑃 is
true, and 0 if false.

xclim.indices.frost_season_length(tasmin: DataArray, window: int = 5, mid_date:
Optional[DayOfYearStr] = '01-01', thresh: str = '0.0 degC', freq: str =
'AS-JUL')→ DataArray

Frost season length.

The number of days between the first occurrence of at least N (default: 5) consecutive days with minimum
daily temperature under a threshold (default: 0℃) and the first occurrence of at least N consecutive days with
minimum daily temperature above the same threshold. A mid-date can be given to limit the earliest day the end
of season can take.

Warning: The default freq and mid_date parameters are valid for the northern hemisphere.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• window (int) – Minimum number of days with temperature below threshold to mark the
beginning and end of frost season.

• mid_date (str, optional) – Date the must be included in the season. It is the earliest the end
of the season can be. If None, there is no limit.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Frost season length.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the
first occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 > 0

and the first subsequent occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 < 0

5.1. Indices library 129

xclim Documentation, Release 0.39.0

Examples

>>> from xclim.indices import frost_season_length
>>> tasmin = xr.open_dataset(path_to_tasmin_file).tasmin

For the Northern Hemisphere: >>> fsl_nh = frost_season_length(tasmin, freq=”AS-JUL”)

If working in the Southern Hemisphere, one can use: >>> fsl_sh = frost_season_length(tasmin, freq=”YS”)

xclim.indices.griffiths_drought_factor(pr: DataArray, smd: DataArray, limiting_func: str = 'xlim')→
DataArray

Griffiths drought factor based on the soil moisture deficit.

The drought factor is a numeric indicator of the forest fire fuel availability in the deep litter bed. It is often used
in the calculation of the McArthur Forest Fire Danger Index. The method implemented here follows Finkele et
al. [2006].

Parameters
• pr (xr.DataArray) – Total rainfall over previous 24 hours [mm/day].

• smd (xarray DataArray) – Daily soil moisture deficit (often KBDI) [mm/day].

• limiting_func ({“xlim”, “discrete”}) – How to limit the values of the drought factor. If
“xlim” (default), use equation (14) in Finkele et al. [2006]. If “discrete”, use equation Eq
(13) in Finkele et al. [2006], but with the lower limit of each category bound adjusted to
match the upper limit of the previous bound.

Returns
df (xr.DataArray) – The limited Griffiths drought factor.

Notes

Calculation of the Griffiths drought factor depends on the rainfall over the previous 20 days. Thus, the first
non-NaN time point in the drought factor returned by this function corresponds to the 20th day of the input data.

References

Finkele, Mills, Beard, and Jones [2006], Griffiths [1999], Holgate, Van DIjk, Cary, and Yebra [2017]

xclim.indices.growing_degree_days(tas: DataArray, thresh: str = '4.0 degC', freq: str = 'YS')→ DataArray
Growing degree-days over threshold temperature value.

The sum of growing degree-days over a given mean daily temperature threshold (default: 4℃).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time][temperature] – The sum of growing degree-days above a given thresh-
old.

130 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then the growing degree days are:

𝐺𝐷4𝑗 =

𝐼∑︁
𝑖=1

(𝑇𝐺𝑖𝑗 − 4|𝑇𝐺𝑖𝑗 > 4)

xclim.indices.growing_season_end(tas: DataArray, thresh: str = '5.0 degC', mid_date: DayOfYearStr =
'07-01', window: int = 5, freq: str = 'YS')→ DataArray

End of the growing season.

Day of the year of the start of a sequence of N (default: 5) days with mean temperatures consistently below a
given threshold (default: 5℃), occurring after a given calendar date (default: July 1).

Warning: The default freq and mid_date parameters are valid for the northern hemisphere.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• mid_date (str) – Date of the year after which to look for the end of the season. Should have
the format ‘%m-%d’.

• window (int) – Minimum number of days with temperature below threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when temperature is inferior to a threshold
over a given number of days for the first time. If there is no such day or if a growing season is
not detected, returns np.nan. If the growing season does not end within the time period, returns
the last day of the period.

xclim.indices.growing_season_length(tas: DataArray, thresh: str = '5.0 degC', window: int = 6, mid_date:
DayOfYearStr = '07-01', freq: str = 'YS')→ DataArray

Growing season length.

The number of days between the first occurrence of at least N (default: 6) consecutive days with mean daily
temperature over a threshold (default: 5℃) and the first occurrence of at least N consecutive days with mean
daily temperature below the same threshold after a certain date, usually July 1st (06-01) in the northern emispher
and January 1st (01-01) in the southern hemisphere.

Warning: The default freq and mid_date parameters are valid for the northern hemisphere.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• window (int) – Minimum number of days with temperature above threshold to mark the
beginning and end of growing season.

5.1. Indices library 131

xclim Documentation, Release 0.39.0

• mid_date (str) – Date of the year after which to look for the end of the season. Should have
the format ‘%m-%d’.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Growing season length.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the first
occurrence of at least 6 consecutive days with:

𝑇𝐺𝑖𝑗 > 5

and the first occurrence after 1 July of at least 6 consecutive days with:

𝑇𝐺𝑖𝑗 < 5

Examples

>>> from xclim.indices import growing_season_length
>>> tas = xr.open_dataset(path_to_tas_file).tas

For the Northern Hemisphere: >>> gsl_nh = growing_season_length(tas, mid_date=”07-01”, freq=”AS”)

If working in the Southern Hemisphere, one can use: >>> gsl_sh = growing_season_length(tas, mid_date=”01-
01”, freq=”AS-JUL”)

References

Project team ECA&D and KNMI [2013]

xclim.indices.growing_season_start(tas: DataArray, thresh: str = '5.0 degC', window: int = 5, freq: str =
'YS')→ DataArray

Start of the growing season.

Day of the year of the start of a sequence of days with mean daily temperatures consistently above or equal to a
given threshold (default: 5℃).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• window (int) – Minimum number of days with temperature above threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when temperature is superior to a threshold
over a given number of days for the first time. If there is no such day or if a growing season is
not detected, returns np.nan.

132 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Let 𝑥𝑖 be the daily mean temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366. The start
date of the start of growing season is given by the smallest index 𝑖 for which:

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 >= 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be met or exceeded, and [𝑃] is 1 if 𝑃 is
true, and 0 if false.

xclim.indices.heat_index(tas: DataArray, hurs: DataArray)→ DataArray
Heat index.

Perceived temperature after relative humidity is taken into account [Blazejczyk et al., 2012]. The index is only
valid for temperatures above 20°C.

Parameters
• tas (xr.DataArray) – Temperature. The equation assumes an instantaneous value.

• hurs (xr.DataArray) – Relative humidity. The equation assumes an instantaneous value.

Returns
xr.DataArray, [temperature] – Heat index for moments with temperature above 20°C.

References

Blazejczyk, Epstein, Jendritzky, Staiger, and Tinz [2012]

Notes

While both the humidex and the heat index are calculated using dew point the humidex uses a dew point of 7 °C
(45 °F) as a base, whereas the heat index uses a dew point base of 14 °C (57 °F). Further, the heat index uses
heat balance equations which account for many variables other than vapour pressure, which is used exclusively
in the humidex calculation.

xclim.indices.heat_wave_frequency(tasmin: DataArray, tasmax: DataArray, thresh_tasmin: str = '22.0
degC', thresh_tasmax: str = '30 degC', window: int = 3, freq: str = 'YS',
op: str = '>', resample_before_rl: bool = True)→ DataArray

Heat wave frequency.

Number of heat waves over a given period. A heat wave is defined as an event where the minimum and maximum
daily temperature both exceed specific thresholds over a minimum number of days.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmin (str) – The minimum temperature threshold needed to trigger a heatwave
event.

• thresh_tasmax (str) – The maximum temperature threshold needed to trigger a heatwave
event.

• window (int) – Minimum number of days with temperatures above thresholds to qualify as
a heatwave.

5.1. Indices library 133

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xarray.DataArray, [dimensionless] – Number of heatwave at the requested frequency.

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indices.heat_wave_index(tasmax: DataArray, thresh: str = '25.0 degC', window: int = 5, freq: str =
'YS', op: str = '>')→ DataArray

Heat wave index.

Number of days that are part of a heatwave, defined as five or more consecutive days over a threshold of 25℃.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh (str) – Threshold temperature on which to designate a heatwave.

• window (int) – Minimum number of days with temperature above threshold to qualify as a
heatwave.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
DataArray, [time] – Heat wave index.

xclim.indices.heat_wave_max_length(tasmin: DataArray, tasmax: DataArray, thresh_tasmin: str = '22.0
degC', thresh_tasmax: str = '30 degC', window: int = 3, freq: str =
'YS', op: str = '>', resample_before_rl: bool = True)→ DataArray

Heat wave max length.

Maximum length of heat waves over a given period. A heat wave is defined as an event where the minimum and
maximum daily temperature both exceeds specific thresholds over a minimum number of days.

By definition heat_wave_max_length must be >= window.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

134 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• thresh_tasmin (str) – The minimum temperature threshold needed to trigger a heatwave
event.

• thresh_tasmax (str) – The maximum temperature threshold needed to trigger a heatwave
event.

• window (int) – Minimum number of days with temperatures above thresholds to qualify as
a heatwave.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xarray.DataArray, [time] – Maximum length of heatwave at the requested frequency.

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be: thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indices.heat_wave_total_length(tasmin: DataArray, tasmax: DataArray, thresh_tasmin: str = '22.0
degC', thresh_tasmax: str = '30 degC', window: int = 3, freq: str =
'YS', op: str = '>', resample_before_rl: bool = True)→ DataArray

Heat wave total length.

Total length of heat waves over a given period. A heat wave is defined as an event where the minimum and
maximum daily temperature both exceeds specific thresholds over a minimum number of days. This the sum of
all days in such events.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmin (str) – The minimum temperature threshold needed to trigger a heatwave
event.

• thresh_tasmax (str) – The maximum temperature threshold needed to trigger a heatwave
event.

• window (int) – Minimum number of days with temperatures above thresholds to qualify as
a heatwave.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

5.1. Indices library 135

xclim Documentation, Release 0.39.0

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xarray.DataArray, [time] – Total length of heatwave at the requested frequency.

Notes

See notes and references of heat_wave_max_length

xclim.indices.heating_degree_days(tas: DataArray, thresh: str = '17.0 degC', freq: str = 'YS')→ DataArray
Heating degree days.

Sum of degree days below the temperature threshold (default: 17℃) at which spaces are heated.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time][temperature] – Heating degree days index.

Notes

This index intentionally differs from its ECA&D [Project team ECA&D and KNMI, 2013] equivalent: HD17.
In HD17, values below zero are not clipped before the sum. The present definition should provide a better
representation of the energy demand for heating buildings to the given threshold.

Let 𝑇𝐺𝑖𝑗 be the daily mean temperature at day 𝑖 of period 𝑗. Then the heating degree days are:

𝐻𝐷17𝑗 =

𝐼∑︁
𝑖=1

(17− 𝑇𝐺𝑖𝑗)|𝑇𝐺𝑖𝑗 < 17)

xclim.indices.high_precip_low_temp(pr: DataArray, tas: DataArray, pr_thresh: str = '0.4 mm/d',
tas_thresh: str = '-0.2 degC', freq: str = 'YS')→ DataArray

Number of days with precipitation above threshold and temperature below threshold.

Number of days when precipitation is greater or equal to some threshold, and temperatures are colder than some
threshold. This can be used for example to identify days with the potential for freezing rain or icing conditions.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• tas (xarray.DataArray) – Daily mean, minimum or maximum temperature.

• pr_thresh (str) – Precipitation threshold to exceed.

• tas_thresh (str) – Temperature threshold not to exceed.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Count of days with high precipitation and low temperatures.

136 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Example

To compute the number of days with intense rainfall while minimum temperatures dip below -0.2C:
>>> pr = xr.open_dataset(path_to_pr_file).pr >>> tasmin = xr.open_dataset(path_to_tasmin_file).tasmin >>>
high_precip_low_temp(. . . pr, tas=tasmin, pr_thresh=”10 mm/d”, tas_thresh=”-0.2 degC” . . .)

xclim.indices.hot_spell_frequency(tasmax: DataArray, thresh_tasmax: str = '30 degC', window: int = 3,
freq: str = 'YS', op: str = '>')→ DataArray

Hot spell frequency.

Number of hot spells over a given period. A hot spell is defined as an event where the maximum daily temperature
exceeds a specific threshold (default: 30℃) over a minimum number of days (default: 3).

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmax (str) – The maximum temperature threshold needed to trigger a heatwave
event.

• window (int) – Minimum number of days with temperatures above thresholds to qualify as
a heatwave.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [dimensionless] – Number of heatwave at the wanted frequency

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indices.hot_spell_max_length(tasmax: DataArray, thresh_tasmax: str = '30 degC', window: int = 1,
freq: str = 'YS', op: str = '>')→ DataArray

Longest hot spell.

Longest spell of high temperatures over a given period. The longest series of consecutive days with tasmax at or
above 30°C. Here, there is no minimum threshold for number of days in a row that must be reached or exceeded
to count as a spell. A year with zero +30°C days will return a longest spell value of zero.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmax (str) – The maximum temperature threshold needed to trigger a heatwave
event.

5.1. Indices library 137

xclim Documentation, Release 0.39.0

• window (int) – Minimum number of days with temperatures above thresholds to qualify as
a heatwave.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Maximum length of continuous hot days at the wanted frequency.

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indices.huglin_index(tas: DataArray, tasmax: DataArray, lat: Optional[DataArray] = None, thresh:
str = '10 degC', method: str = 'smoothed', start_date: DayOfYearStr = '04-01',
end_date: DayOfYearStr = '10-01', freq: str = 'YS')→ DataArray

Huglin Heliothermal Index.

Growing-degree days with a base of 10°C and adjusted for latitudes between 40°N and 50°N for April-September
(Northern Hemisphere; October-March in Southern Hemisphere). Originally proposed in Huglin [1978]. Used
as a heat-summation metric in viticulture agroclimatology.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• lat (xarray.DataArray) – Latitude coordinate. If None, a CF-conformant “latitude” field
must be available within the passed DataArray.

• thresh (str) – The temperature threshold.

• method ({“smoothed”, “icclim”, “jones”}) – The formula to use for the latitude coefficient
calculation.

• start_date (DayOfYearStr) – The hemisphere-based start date to consider (north = April,
south = October).

• end_date (DayOfYearStr) – The hemisphere-based start date to consider (north = October,
south = April). This date is non-inclusive.

• freq (str) – Resampling frequency (default: “YS”; For Southern Hemisphere, should be
“AS-JUL”).

Returns
xarray.DataArray, [unitless] – Huglin heliothermal index (HI).

138 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖 and 𝑇𝐺𝑖 be the daily maximum and mean temperature at day 𝑖 and 𝑇𝑡ℎ𝑟𝑒𝑠ℎ the base threshold needed
for heat summation (typically, 10 degC). A day-length multiplication, 𝑘, based on latitude, 𝑙𝑎𝑡, is also considered.
Then the Huglin heliothermal index for dates between 1 April and 30 September is:

𝐻𝐼 =

September 30∑︁
𝑖=April 1

(︂
𝑇𝑋𝑖 + 𝑇𝐺𝑖)

2
− 𝑇𝑡ℎ𝑟𝑒𝑠ℎ

)︂
* 𝑘

For the smoothed method, the day-length multiplication factor, 𝑘, is calculated as follows:

𝑘 = 𝑓(𝑙𝑎𝑡) =

⎧⎪⎨⎪⎩
1, if |𝑙𝑎𝑡| <= 40

1 + ((𝑎𝑏𝑠(𝑙𝑎𝑡)− 40)/10) * 0.06, if 40 < |𝑙𝑎𝑡| <= 50

𝑁𝑎𝑁, if |𝑙𝑎𝑡| > 50

For compatibility with ICCLIM, end_date should be set to 11-01, method should be set to icclim. The day-length
multiplication factor, 𝑘, is calculated as follows:

𝑘 = 𝑓(𝑙𝑎𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0, if |𝑙𝑎𝑡| <= 40

1.02, if 40 < |𝑙𝑎𝑡| <= 42

1.03, if 42 < |𝑙𝑎𝑡| <= 44

1.04, if 44 < |𝑙𝑎𝑡| <= 46

1.05, if 46 < |𝑙𝑎𝑡| <= 48

1.06, if 48 < |𝑙𝑎𝑡| <= 50

𝑁𝑎𝑁, if |𝑙𝑎𝑡| > 50

A more robust day-length calculation based on latitude, calendar, day-of-year, and obliquity is available with
method=”jones”. See: xclim.indices.generic.day_lengths() or Hall and Jones [2010] for more infor-
mation.

References

Hall and Jones [2010], Huglin [1978]

xclim.indices.humidex(tas: DataArray, tdps: Optional[DataArray] = None, hurs: Optional[DataArray] =
None)→ DataArray

Humidex index.

The humidex indicates how hot the air feels to an average person, accounting for the effect of humidity. It can be
loosely interpreted as the equivalent perceived temperature when the air is dry.

Parameters
• tas (xarray.DataArray) – Air temperature.

• tdps (xarray.DataArray,) – Dewpoint temperature.

• hurs (xarray.DataArray) – Relative humidity.

Returns
xarray.DataArray, [temperature] – The humidex index.

5.1. Indices library 139

xclim Documentation, Release 0.39.0

Notes

The humidex is usually computed using hourly observations of dry bulb and dewpoint temperatures. It is com-
puted using the formula based on Masterton and Richardson [1979]:

𝑇 +
5

9
[𝑒− 10]

where 𝑇 is the dry bulb air temperature (°C). The term 𝑒 can be computed from the dewpoint temperature
𝑇𝑑𝑒𝑤𝑝𝑜𝑖𝑛𝑡 in °K:

𝑒 = 6.112× exp(5417.7530

(︂
1

273.16
− 1

𝑇dewpoint

)︂
where the constant 5417.753 reflects the molecular weight of water, latent heat of vaporization, and the universal
gas constant [Mekis et al., 2015]. Alternatively, the term 𝑒 can also be computed from the relative humidity h
expressed in percent using Sirangelo et al. [2020]:

𝑒 =
ℎ

100
× 6.112 * 107.5𝑇/(𝑇+237.7).

The humidex comfort scale [Canada, 2011] can be interpreted as follows:

• 20 to 29 : no discomfort;

• 30 to 39 : some discomfort;

• 40 to 45 : great discomfort, avoid exertion;

• 46 and over : dangerous, possible heat stroke;

Please note that while both the humidex and the heat index are calculated using dew point, the humidex uses a
dew point of 7 °C (45 °F) as a base, whereas the heat index uses a dew point base of 14 °C (57 °F). Further, the
heat index uses heat balance equations which account for many variables other than vapour pressure, which is
used exclusively in the humidex calculation.

References

Canada [2011], Masterton and Richardson [1979], Mekis, Vincent, Shephard, and Zhang [2015], Sirangelo,
Caloiero, Coscarelli, Ferrari, and Fusto [2020]

xclim.indices.ice_days(tasmax: DataArray, thresh: str = '0 degC', freq: str = 'YS')→ DataArray
Number of ice/freezing days.

Number of days when daily maximum temperatures are below a threshold.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh (str) – Freezing temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Number of ice/freezing days.

140 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖𝑗 be the daily maximum temperature at day 𝑖 of period 𝑗, and :math`TT` the threshold. Then counted is
the number of days where:

𝑇𝑋𝑖𝑗 < 𝑇𝑇

xclim.indices.isothermality(tasmin: DataArray, tasmax: DataArray, freq: str = 'YS')→ DataArray
Isothermality.

The mean diurnal temperature range divided by the annual temperature range.

Parameters
• tasmin (xarray.DataArray) – Average daily minimum temperature at daily, weekly, or

monthly frequency.

• tasmax (xarray.DataArray) – Average daily maximum temperature at daily, weekly, or
monthly frequency.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [%] – Isothermality

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the output with input
data with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior
to calling the function.

References

Xu and Hutchinson [2010]

xclim.indices.jetstream_metric_woollings(ua: xarray.DataArray)
Strength and latitude of jetstream.

Identify latitude and strength of maximum smoothed zonal wind speed in the region from 15 to 75°N and -60 to
0°E, using the formula outlined in [Woollings et al., 2010]. Wind is smoothened using a Lanczos filter approach.

Warning: This metric expects eastward wind component (u) to be on a regular grid (i.e. Plate Carree, 1D
lat and lon)

Parameters
ua (xarray.DataArray) – Eastward wind component (u) at between 750 and 950 hPa.

Returns
(xarray.DataArray, xarray.DataArray) – Daily time series of latitude of jetstream and Daily time
series of strength of jetstream.

5.1. Indices library 141

xclim Documentation, Release 0.39.0

References

Woollings, Hannachi, and Hoskins [2010]

xclim.indices.keetch_byram_drought_index(pr: DataArray, tasmax: DataArray, pr_annual: DataArray,
kbdi0: Optional[DataArray] = None)→ DataArray

Keetch-Byram drought index (KBDI) for soil moisture deficit.

The KBDI indicates the amount of water necessary to bring the soil moisture content back to field capacity. It is
often used in the calculation of the McArthur Forest Fire Danger Index. The method implemented here follows
Finkele et al. [2006] but limits the maximum KBDI to 203.2 mm, rather than 200 mm, in order to align best with
the majority of the literature.

Parameters
• pr (xr.DataArray) – Total rainfall over previous 24 hours [mm/day].

• tasmax (xr.DataArray) – Maximum temperature near the surface over previous 24 hours
[degC].

• pr_annual (xr.DataArray) – Mean (over years) annual accumulated rainfall [mm/year].

• kbdi0 (xr.DataArray, optional) – Previous KBDI values used to initialise the KBDI calcu-
lation [mm/day]. Defaults to 0.

Returns
xr.DataArray – Keetch-Byram drought index.

Notes

This method implements the method described in Finkele et al. [2006] (section 2.1.1) for calculating the KBDI
with one small difference: in Finkele et al. [2006] the maximum KBDI is limited to 200 mm to represent the
maximum field capacity of the soil (8 inches according to Keetch and Byram [1968]). However, it is more
common in the literature to limit the KBDI to 203.2 mm which is a more accurate conversion from inches to
mm. In this function, the KBDI is limited to 203.2 mm.

References

Dolling, Chu, and Fujioka [2005], Finkele, Mills, Beard, and Jones [2006], Holgate, Van DIjk, Cary, and Yebra
[2017], Keetch and Byram [1968]

xclim.indices.last_snowfall(prsn: DataArray, thresh: str = '0.5 mm/day', freq: str = 'AS-JUL')→ DataArray
Last day with solid precipitation above a threshold.

Returns the last day of a period where the solid precipitation exceeds a threshold (default: 0.5 mm/day).

Warning: The default freq is valid for the northern hemisphere.

Parameters
• prsn (xarray.DataArray) – Solid precipitation flux.

• thresh (str) – Threshold precipitation flux on which to base evaluation.

• freq (str) – Resampling frequency.

142 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Returns
xarray.DataArray, [dimensionless] – Last day of the year when the solid precipitation is superior
to a threshold. If there is no such day, returns np.nan.

References

CBCL [2020].

xclim.indices.last_spring_frost(tas: DataArray, thresh: str = '0 degC', before_date: DayOfYearStr =
'07-01', window: int = 1, freq: str = 'YS')→ DataArray

Last day of temperatures inferior to a threshold temperature.

Returns last day of period where a temperature is inferior to a threshold over a given number of days (default: 1)
and limited to a final calendar date (default: July 1).

Warning: The default freq and before_date parameters are valid for the northern hemisphere.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• before_date (str,) – Date of the year before which to look for the final frost event. Should
have the format ‘%m-%d’.

• window (int) – Minimum number of days with temperature below threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when temperature is inferior to a threshold
over a given number of days for the first time. If there is no such day, returns np.nan.

xclim.indices.latitude_temperature_index(tas: DataArray, lat: Optional[DataArray] = None, lat_factor:
float = 75, freq: str = 'YS')→ DataArray

Latitude-Temperature Index.

Mean temperature of the warmest month with a latitude-based scaling factor [Jackson and Cherry, 1988]. Used
for categorizing wine-growing regions.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• lat (xarray.DataArray, optional) – Latitude coordinate. If None, a CF-conformant “latitude”
field must be available within the passed DataArray.

• lat_factor (float) – Latitude factor. Maximum poleward latitude. Default: 75.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [unitless] – Latitude Temperature Index.

5.1. Indices library 143

xclim Documentation, Release 0.39.0

Notes

The latitude factor of 75 is provided for examining the poleward expansion of wine-growing climates under
scenarios of climate change (modified from Kenny and Shao [1992]). For comparing 20th century/observed
historical records, the original scale factor of 60 is more appropriate.

Let 𝑇𝑛𝑗 be the average temperature for a given month 𝑗, 𝑙𝑎𝑡𝑓 be the latitude factor, and 𝑙𝑎𝑡 be the latitude of the
area of interest. Then the Latitude-Temperature Index (𝐿𝑇𝐼) is:

𝐿𝑇𝐼 = 𝑚𝑎𝑥(𝑇𝑁𝑗 : 𝑗 = 1..12)(𝑙𝑎𝑡𝑓 − |𝑙𝑎𝑡|)

References

Jackson and Cherry [1988], Kenny and Shao [1992]

xclim.indices.liquid_precip_ratio(pr: DataArray, prsn: Optional[DataArray] = None, tas:
Optional[DataArray] = None, thresh: str = '0 degC', freq: str =
'QS-DEC')→ DataArray

Ratio of rainfall to total precipitation.

The ratio of total liquid precipitation over the total precipitation. If solid precipitation is not provided, it is
approximated with pr, tas and thresh, using the snowfall_approximation function with method ‘binary’.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• prsn (xarray.DataArray, optional) – Mean daily solid precipitation flux.

• tas (xarray.DataArray, optional) – Mean daily temperature.

• thresh (str) – Threshold temperature under which precipitation is assumed to be solid.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Ratio of rainfall to total precipitation.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

𝑃𝑅𝑤𝑒𝑡𝑖𝑗

See also:
winter_rain_ratio

xclim.indices.max_1day_precipitation_amount(pr: DataArray, freq: str = 'YS')→ DataArray
Highest 1-day precipitation amount for a period (frequency).

Resample the original daily total precipitation temperature series by taking the max over each period.

Parameters
• pr (xarray.DataArray) – Daily precipitation values.

144 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as pr] – The highest 1-period precipitation flux value at the given
time frequency.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day i, then for a period j:

𝑃𝑅𝑥𝑖𝑗 = 𝑚𝑎𝑥(𝑃𝑅𝑖𝑗)

Examples

The following would compute for each grid cell the highest 1-day total at an annual frequency:

>>> from xclim.indices import max_1day_precipitation_amount
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> rx1day = max_1day_precipitation_amount(pr, freq="YS")

xclim.indices.max_n_day_precipitation_amount(pr: DataArray, window: int = 1, freq: str = 'YS')→
DataArray

Highest precipitation amount cumulated over a n-day moving window.

Calculate the n-day rolling sum of the original daily total precipitation series and determine the maximum value
over each period.

Parameters
• pr (xarray.DataArray) – Daily precipitation values.

• window (int) – Window size in days.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [length] – The highest cumulated n-period precipitation value at the given
time frequency.

Examples

The following would compute for each grid cell the highest 5-day total precipitation at an annual frequency:

>>> from xclim.indices import max_n_day_precipitation_amount
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> out = max_n_day_precipitation_amount(pr, window=5, freq="YS")

xclim.indices.max_pr_intensity(pr: DataArray, window: int = 1, freq: str = 'YS')→ DataArray
Highest precipitation intensity over a n-hour moving window.

Calculate the n-hour rolling average of the original hourly total precipitation series and determine the maximum
value over each period.

Parameters
• pr (xarray.DataArray) – Hourly precipitation values.

5.1. Indices library 145

xclim Documentation, Release 0.39.0

• window (int) – Window size in hours.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as pr] – The highest cumulated n-hour precipitation intensity at
the given time frequency.

Examples

The following would compute the maximum 6-hour precipitation intensity at an annual frequency:

>>> from xclim.indices import max_pr_intensity
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> out = max_pr_intensity(pr, window=5, freq="YS")

xclim.indices.maximum_consecutive_dry_days(pr: DataArray, thresh: str = '1 mm/day', freq: str = 'YS')→
DataArray

Maximum number of consecutive dry days.

Return the maximum number of consecutive days within the period where precipitation is below a certain thresh-
old (default: 1 mm/day).

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• thresh (str) – Threshold precipitation on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – The maximum number of consecutive dry days (precipitation <
threshold per period).

Notes

Let p = 𝑝0, 𝑝1, . . . , 𝑝𝑛 be a daily precipitation series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold under which a day is considered
dry. Then let s be the sorted vector of indices 𝑖 where [𝑝𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑝𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where
the precipitation crosses the threshold. Then the maximum number of consecutive dry days is given by

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑝𝑠𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indices.maximum_consecutive_frost_days(tasmin: DataArray, thresh: str = '0.0 degC', freq: str =
'AS-JUL')→ DataArray

Maximum number of consecutive frost days (Tn < 0℃).

The maximum number of consecutive days within the period where the minimum daily temperature is under a
given threshold (default: 0°C).

Warning: The default freq is valid for the northern hemisphere.

Parameters

146 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – The maximum number of consecutive frost days (tasmin < threshold
per period).

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a minimum daily temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold below which a day is
considered a frost day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that is,
the days where the temperature crosses the threshold. Then the maximum number of consecutive frost days is
given by

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indices.maximum_consecutive_frost_free_days(tasmin: DataArray, thresh: str = '0 degC', freq: str
= 'YS')→ DataArray

Maximum number of consecutive frost free days (Tn >= 0℃).

Return the maximum number of consecutive days within the period where the minimum daily temperature is
above or equal to a certain threshold (default: 0℃).

Warning: The default freq is valid for the northern hemisphere.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – The maximum number of consecutive frost free days (tasmin >=
threshold per period).

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a daily minimum temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold above or equal to which
a day is considered a frost free day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 <= 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 <=
𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where the temperature crosses the threshold. Then the maximum number of consecutive
frost free days is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 >= 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

5.1. Indices library 147

xclim Documentation, Release 0.39.0

xclim.indices.maximum_consecutive_tx_days(tasmax: DataArray, thresh: str = '25 degC', freq: str = 'YS')
→ DataArray

Maximum number of consecutive days with tasmax above a threshold (summer days).

Return the maximum number of consecutive days within the period where the maximum daily temperature is
above a certain threshold (default: 25℃).

Parameters
• tasmax (xarray.DataArray) – Max daily temperature.

• thresh (str) – Threshold temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – The maximum number of days with tasmax > thresh per periods
(summer days).

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a daily maximum temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold above which a day is
considered a summer day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that
is, the days where the temperature crosses the threshold. Then the maximum number of consecutive tx_days
(summer days) is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indices.maximum_consecutive_wet_days(pr: DataArray, thresh: str = '1 mm/day', freq: str = 'YS',
resample_before_rl: bool = True)→ DataArray

Consecutive wet days.

Returns the maximum number of consecutive days with precipitation above a given threshold (default: 1
mm/day).

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• thresh (str) – Threshold precipitation on which to base evaluation.

• freq (str) – Resampling frequency.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xarray.DataArray, [time] – The maximum number of consecutive wet days.

148 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Let x = 𝑥0, 𝑥1, . . . , 𝑥𝑛 be a daily precipitation series and s be the sorted vector of indices 𝑖 where [𝑝𝑖 >
𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑝𝑖+1 > 𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where the precipitation crosses the wet day threshold. Then the
maximum number of consecutive wet days is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑥𝑠𝑗 > 0∘𝐶]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indices.mcarthur_forest_fire_danger_index(drought_factor: DataArray, tasmax: DataArray,
hurs: DataArray, sfcWind: DataArray)

McArthur forest fire danger index (FFDI) Mark 5.

The FFDI is a numeric indicator of the potential danger of a forest fire.

Parameters
• drought_factor (xr.DataArray) – The drought factor, often the daily Griffiths drought factor

(see griffiths_drought_factor()).

• tasmax (xr.DataArray) – The daily maximum temperature near the surface, or similar. Dif-
ferent applications have used different inputs here, including the previous/current day’s max-
imum daily temperature at a height of 2m, and the daily mean temperature at a height of 2m.

• hurs (xr.DataArray) – The relative humidity near the surface and near the time of the max-
imum daily temperature, or similar. Different applications have used different inputs here,
including the mid-afternoon relative humidity at a height of 2m, and the daily mean relative
humidity at a height of 2m.

• sfcWind (xr.DataArray) – The wind speed near the surface and near the time of the maximum
daily temperature, or similar. Different applications have used different inputs here, including
the mid-afternoon wind speed at a height of 10m, and the daily mean wind speed at a height
of 10m.

Returns
xr.DataArray – The McArthur forest fire danger index.

References

Dowdy [2018], Holgate, Van DIjk, Cary, and Yebra [2017], Noble, Gill, and Bary [1980]

xclim.indices.mean_radiant_temperature(rsds: DataArray, rsus: DataArray, rlds: DataArray, rlus:
DataArray, stat: str = 'average')→ DataArray

Mean radiant temperature.

The mean radiant temperature is the incidence of radiation on the body from all directions.

Parameters
• rsds (xr.DataArray) – Surface Downwelling Shortwave Radiation

• rsus (xr.DataArray) – Surface Upwelling Shortwave Radiation

• rlds (xr.DataArray) – Surface Downwelling Longwave Radiation

• rlus (xr.DataArray) – Surface Upwelling Longwave Radiation

5.1. Indices library 149

xclim Documentation, Release 0.39.0

• stat ({‘average’, ‘instant’, ‘sunlit’}) – Which statistic to apply. If “average”, the average of
the cosine of the solar zenith angle is calculated. If “instant”, the instantaneous cosine of the
solar zenith angle is calculated. If “sunlit”, the cosine of the solar zenith angle is calculated
during the sunlit period of each interval. If “instant”, the instantaneous cosine of the solar
zenith angle is calculated. This is necessary if mrt is not None.

Returns
xarray.DataArray, [K] – Mean radiant temperature

Warning: There are some issues in the calculation of mrt in polar regions.

Notes

This code was inspired by the thermofeel package [Brimicombe et al., 2021].

References

Di Napoli, Hogan, and Pappenberger [2020]

xclim.indices.melt_and_precip_max(snw: DataArray, pr: DataArray, window: int = 3, freq: str = 'AS-JUL')
→ DataArray

Maximum snow melt and precipitation.

The maximum snow melt plus precipitation over a given number of days expressed in snow water equivalent.

Parameters
• snw (xarray.DataArray) – Snow amount (mass per area).

• pr (xarray.DataArray) – Daily precipitation flux.

• window (int) – Number of days during which the water input is accumulated.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The maximum snow melt plus precipitation over a given number of days for
each period. [mass/area].

xclim.indices.multiday_temperature_swing(tasmin: DataArray, tasmax: DataArray, thresh_tasmin: str =
'0 degC', thresh_tasmax: str = '0 degC', window: int = 1, op:
str = 'mean', op_tasmin: str = '<=', op_tasmax: str = '>', freq:
str = 'YS', resample_before_rl: bool = True)→ DataArray

Statistics of consecutive diurnal temperature swing events.

A diurnal swing of max and min temperature event is when Tmax > thresh_tasmax and Tmin <= thresh_tasmin.
This indice finds all days that constitute these events and computes statistics over the length and frequency of
these events.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmin (str) – The temperature threshold needed to trigger a freeze event.

• thresh_tasmax (str) – The temperature threshold needed to trigger a thaw event.

150 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• window (int) – The minimal length of spells to be included in the statistics.

• op ({‘mean’, ‘sum’, ‘max’, ‘min’, ‘std’, ‘count’}) – The statistical operation to use when
reducing the list of spell lengths.

• op_tasmin ({“<”, “<=”, “lt”, “le”}) – Comparison operation for tasmin. Default: “<=”.

• op_tasmax ({“>”, “>=”, “gt”, “ge”}) – Comparison operation for tasmax. Default: “>”.

• freq (str) – Resampling frequency.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xarray.DataArray, [time] – {freq} {op} length of diurnal temperature cycles exceeding thresh-
olds.

Notes

Let 𝑇𝑋𝑖 be the maximum temperature at day 𝑖 and 𝑇𝑁𝑖 be the daily minimum temperature at day 𝑖. Then freeze
thaw spells during a given period are consecutive days where:

𝑇𝑋𝑖 > 0 ∧ 𝑇𝑁𝑖 < 0

This indice returns a given statistic of the found lengths, optionally dropping those shorter than the window
argument. For example, window=1 and op=’sum’ returns the same value as daily_freezethaw_cycles().

xclim.indices.potential_evapotranspiration(tasmin: Optional[DataArray] = None, tasmax:
Optional[DataArray] = None, tas: Optional[DataArray] =
None, lat: Optional[DataArray] = None, hurs:
Optional[DataArray] = None, rsds: Optional[DataArray] =
None, rsus: Optional[DataArray] = None, rlds:
Optional[DataArray] = None, rlus: Optional[DataArray] =
None, sfcwind: Optional[DataArray] = None, method: str =
'BR65', peta: float = 0.00516409319477, petb: float =
0.0874972822289)→ DataArray

Potential evapotranspiration.

The potential for water evaporation from soil and transpiration by plants if the water supply is sufficient, according
to a given method.

Parameters
• tasmin (xarray.DataArray, optional) – Minimum daily temperature.

• tasmax (xarray.DataArray, optional) – Maximum daily temperature.

• tas (xarray.DataArray, optional) – Mean daily temperature.

• lat (xarray.DataArray, optional) – Latitude. If not given, it is sought on tasmin or tas using
cf-xarray accessors.

• hurs (xarray.DataArray, optional) – Relative humidity.

• rsds (xarray.DataArray, optional) – Surface Downwelling Shortwave Radiation

• rsus (xarray.DataArray, optional) – Surface Upwelling Shortwave Radiation

• rlds (xarray.DataArray, optional) – Surface Downwelling Longwave Radiation

• rlus (xarray.DataArray, optional) – Surface Upwelling Longwave Radiation

5.1. Indices library 151

xclim Documentation, Release 0.39.0

• sfcwind (xarray.DataArray, optional) – Surface wind velocity (at 10 m)

• method ({“baierrobertson65”, “BR65”, “hargreaves85”, “HG85”, “thornthwaite48”,
“TW48”, “mcguinnessbordne05”, “MB05”, “allen98”, “FAO_PM98”}) – Which method
to use, see notes.

• peta (float) – Used only with method MB05 as 𝑎 for calculation of PET, see Notes section.
Default value resulted from calibration of PET over the UK.

• petb (float) – Used only with method MB05 as 𝑏 for calculation of PET, see Notes section.
Default value resulted from calibration of PET over the UK.

Returns
xarray.DataArray

Notes

Available methods are:

• “baierrobertson65” or “BR65”, based on Baier and Robertson [1965]. Requires tasmin and tasmax, daily
[D] freq.

• “hargreaves85” or “HG85”, based on George H. Hargreaves and Zohrab A. Samani [1985]. Requires tasmin
and tasmax, daily [D] freq. (optional: tas can be given in addition of tasmin and tasmax).

• “mcguinnessbordne05” or “MB05”, based on Tanguy et al. [2018]. Requires tas, daily [D] freq, with
latitudes ‘lat’.

• “thornthwaite48” or “TW48”, based on Thornthwaite [1948]. Requires tasmin and tasmax, monthly [MS]
or daily [D] freq. (optional: tas can be given instead of tasmin and tasmax).

• “allen98” or “FAO_PM98”, based on Allen et al. [1998]. Modification of Penman-Monteith method.
Requires tasmin and tasmax, relative humidity, radiation flux and wind speed (10 m wind will be converted
to 2 m).

The McGuinness-Bordne [McGuinness and Borone, 1972] equation is:

𝑃𝐸𝑇 [𝑚𝑚𝑑𝑎𝑦−1] = 𝑎 * 𝑆0

𝜆
𝑇𝑎 + 𝑏 * 𝑆0𝜆

where 𝑎 and 𝑏 are empirical parameters; 𝑆0 is the extraterrestrial radiation [MJ m-2 day-1], assuming a solar
constant of 1367 W m-2;
𝑙𝑎𝑚𝑏𝑑𝑎 is the latent heat of vaporisation [MJ kg-1] and 𝑇𝑎 is the air temperature [°C]. The equation was originally
derived for the USA, with 𝑎 = 0.0147 and 𝑏 = 0.07353. The default parameters used here are calibrated for the
UK, using the method described in Tanguy et al. [2018].

Methods “BR65”, “HG85” and “MB05” use an approximation of the extraterrestrial radiation. See
extraterrestrial_solar_radiation().

References

Allen, Pereira, Raes, and Smith [1998], Baier and Robertson [1965], McGuinness and Borone [1972], Tanguy,
Prudhomme, Smith, and Hannaford [2018], Thornthwaite [1948], George H. Hargreaves and Zohrab A. Samani
[1985]

xclim.indices.prcptot(pr: DataArray, thresh: str = '0 mm/d', freq: str = 'YS')→ DataArray
Accumulated total precipitation.

152 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

The total accumulated precipitation from days where precipitation exceeds a given amount. A threshold is pro-
vided in order to allow the option of reducing the impact of days with trace precipitation amounts on period
totals.

Parameters
• pr (xarray.DataArray) – Total precipitation flux [mm d-1], [mm week-1], [mm month-1] or

similar.

• thresh (str) – Threshold over which precipitation starts being cumulated.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [length] – Total {freq} precipitation.

xclim.indices.prcptot_warmcold_quarter(pr: DataArray, tas: DataArray, op: Optional[str] = None, freq:
str = 'YS')→ DataArray

Total precipitation of warmest/coldest quarter.

The warmest (or coldest) quarter of the year is determined, and the total precipitation of this period is calculated.
If the input data frequency is daily (“D) or weekly (“W”), quarters are defined as 13-week periods, otherwise are
3 months.

Parameters
• pr (xarray.DataArray) – Total precipitation rate at daily, weekly, or monthly frequency.

• tas (xarray.DataArray) – Mean temperature at daily, weekly, or monthly frequency.

• op ({‘warmest’, ‘coldest’}) – Operation to perform: ‘warmest’ calculate for the warmest
quarter ; ‘coldest’ calculate for the coldest quarter.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [mm] – Precipitation of {op} quarter

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

Xu and Hutchinson [2010]

xclim.indices.prcptot_wetdry_period(pr: DataArray, *, op: str, freq: str = 'YS')→ DataArray
Precipitation of the wettest/driest day, week, or month, depending on the time step.

The wettest (or driest) period is determined, and the total precipitation of this period is calculated.

Parameters
• pr (xarray.DataArray) – Total precipitation flux [mm d-1], [mm week-1], [mm month-1] or

similar.

• op ({‘wettest’, ‘driest’}) – Operation to perform : ‘wettest’ calculate the wettest period ;
‘driest’ calculate the driest period.

5.1. Indices library 153

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [length] – Precipitation of {op} period

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

Xu and Hutchinson [2010]

xclim.indices.prcptot_wetdry_quarter(pr: DataArray, op: Optional[str] = None, freq: str = 'YS')→
DataArray

Total precipitation of wettest/driest quarter.

The wettest (or driest) quarter of the year is determined, and the total precipitation of this period is calculated. If
the input data frequency is daily (“D”) or weekly (“W”) quarters are defined as 13-week periods, otherwise are
three (3) months.

Parameters
• pr (xarray.DataArray) – Total precipitation rate at daily, weekly, or monthly frequency.

• op ({‘wettest’, ‘driest’}) – Operation to perform : ‘wettest’ calculate the wettest quarter ;
‘driest’ calculate the driest quarter.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [length] – Precipitation of {op} quarter

Examples

The following would compute for each grid cell of file pr.day.nc the annual wettest quarter total precipitation:

>>> from xclim.indices import prcptot_wetdry_quarter
>>> p = xr.open_dataset(path_to_pr_file)
>>> pr_warm_qrt = prcptot_wetdry_quarter(pr=p.pr, op="wettest")

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

154 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

References

Xu and Hutchinson [2010]

xclim.indices.precip_accumulation(pr: DataArray, tas: Optional[DataArray] = None, phase: Optional[str]
= None, thresh: str = '0 degC', freq: str = 'YS')→ DataArray

Accumulated total (liquid and/or solid) precipitation.

Resample the original daily mean precipitation flux and accumulate over each period. If a daily temperature is
provided, the phase keyword can be used to sum precipitation of a given phase only. When the temperature is
under the given threshold, precipitation is assumed to be snow, and liquid rain otherwise. This indice is agnostic
to the type of daily temperature (tas, tasmax or tasmin) given.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• tas (xarray.DataArray, optional) – Mean, maximum or minimum daily temperature.

• phase ({None, ‘liquid’, ‘solid’}) – Which phase to consider, “liquid” or “solid”, if None
(default), both are considered.

• thresh (str) – Threshold of tas over which the precipication is assumed to be liquid rain.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [length] – The total daily precipitation at the given time frequency for the
given phase.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

If tas and phase are given, the corresponding phase precipitation is estimated before computing the accumulation,
using one of snowfall_approximation or rain_approximation with the binary method.

Examples

The following would compute, for each grid cell of a dataset, the total precipitation at the seasonal frequency, ie
DJF, MAM, JJA, SON, DJF, etc.:

>>> from xclim.indices import precip_accumulation
>>> pr_day = xr.open_dataset(path_to_pr_file).pr
>>> prcp_tot_seasonal = precip_accumulation(pr_day, freq="QS-DEC")

xclim.indices.precip_seasonality(pr: DataArray, freq: str = 'YS')→ DataArray
Precipitation Seasonality (C of V).

The annual precipitation Coefficient of Variation (C of V) expressed in percent. Calculated as the standard
deviation of precipitation values for a given year expressed as a percentage of the mean of those values.

Parameters

5.1. Indices library 155

xclim Documentation, Release 0.39.0

• pr (xarray.DataArray) – Total precipitation rate at daily, weekly, or monthly frequency. Units
need to be defined as a rate (e.g. mm d-1, mm week-1).

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [%] – Precipitation coefficient of variation

Examples

The following would compute for each grid cell of file pr.day.nc the annual precipitation seasonality:

>>> import xclim.indices as xci
>>> p = xr.open_dataset(path_to_pr_file).pr
>>> pday_seasonality = xci.precip_seasonality(p)
>>> p_weekly = xci.precip_accumulation(p, freq="7D")

Input units need to be a rate >>> p_weekly.attrs[“units”] = “mm/week” >>> pweek_seasonality =
xci.precip_seasonality(p_weekly)

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

If input units are in mm s-1 (or equivalent), values are converted to mm/day to avoid potentially small denominator
values.

References

Xu and Hutchinson [2010]

xclim.indices.qian_weighted_mean_average(tas: DataArray, dim: str = 'time')→ DataArray
Binomial smoothed, five-day weighted mean average temperature.

Calculates a five-day weighted moving average with emphasis on temperatures closer to day of interest.

Parameters
• tas (xr.DataArray) – Daily mean temperature.

• dim (str) – Time dimension.

Returns
xr.DataArray, [same as tas] – Binomial smoothed, five-day weighted mean average temperature.

156 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Qian Modified Weighted Mean Indice originally proposed in [Qian et al., 2010], based on [Bootsma and Gameda
and D.W. McKenney, 2005].

Let 𝑋𝑛 be the average temperature for day 𝑛 and 𝑋𝑡 be the daily mean temperature on day 𝑡. Then the weighted
mean average can be calculated as follows:

𝑋𝑛 =
𝑋𝑛−2 + 4𝑋𝑛−1 + 6𝑋𝑛 + 4𝑋𝑛+1 +𝑋𝑛+2

16

References

Bootsma and Gameda and D.W. McKenney [2005], Qian, Zhang, Chen, Feng, and O’Brien [2010]

xclim.indices.rain_approximation(pr: DataArray, tas: DataArray, thresh: str = '0 degC', method: str =
'binary')→ DataArray

Rainfall approximation from total precipitation and temperature.

Liquid precipitation estimated from precipitation and temperature according to a given method. This is a conve-
nience method based on snowfall_approximation(), see the latter for details.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• tas (xarray.DataArray, optional) – Mean, maximum, or minimum daily temperature.

• thresh (str,) – Threshold temperature, used by method “binary”.

• method ({“binary”, “brown”, “auer”}) – Which method to use when approximating snow-
fall from total precipitation. See notes.

Returns
xarray.DataArray, [same units as pr] – Liquid precipitation rate.

Notes

This method computes the snowfall approximation and subtracts it from the total precipitation to estimate the
liquid rain precipitation.

See also:
snowfall_approximation

xclim.indices.rain_on_frozen_ground_days(pr: DataArray, tas: DataArray, thresh: str = '1 mm/d', freq: str
= 'YS')→ DataArray

Number of rain on frozen ground events.

Number of days with rain above a threshold after a series of seven days below freezing temperature. Precipitation
is assumed to be rain when the temperature is above 0℃.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Precipitation threshold to consider a day as a rain event.

• freq (str) – Resampling frequency.

5.1. Indices library 157

xclim Documentation, Release 0.39.0

Returns
xarray.DataArray, [time] – The number of rain on frozen ground events per period.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation and 𝑇𝐺𝑖 be the mean daily temperature of day 𝑖. Then for a period 𝑗,
rain on frozen grounds days are counted where:

𝑃𝑅𝑖 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑚]

and where

𝑇𝐺𝑖0

is true for continuous periods where 𝑖7

xclim.indices.rb_flashiness_index(q: DataArray, freq: str = 'YS')→ DataArray
Richards-Baker flashiness index.

Measures oscillations in flow relative to total flow, quantifying the frequency and rapidity of short term changes
in flow, based on Baker et al. [2004].

Parameters
• q (xarray.DataArray) – Rate of river discharge.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – R-B Index.

Notes

Let q = 𝑞0, 𝑞1, . . . , 𝑞𝑛 be the sequence of daily discharge, the R-B Index is given by:∑︀𝑛
𝑖=1 |𝑞𝑖 − 𝑞𝑖−1|∑︀𝑛

𝑖=1 𝑞𝑖

References

Baker, Richards, Loftus, and Kramer [2004]

xclim.indices.relative_humidity(tas: DataArray, tdps: Optional[DataArray] = None, huss:
Optional[DataArray] = None, ps: Optional[DataArray] = None,
ice_thresh: Optional[str] = None, method: str = 'sonntag90',
invalid_values: str = 'clip')→ DataArray

Relative humidity.

Compute relative humidity from temperature and either dewpoint temperature or specific humidity and pressure
through the saturation vapour pressure.

Parameters
• tas (xr.DataArray) – Temperature array

• tdps (xr.DataArray) – Dewpoint temperature, if specified, overrides huss and ps.

• huss (xr.DataArray) – Specific humidity.

158 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• ps (xr.DataArray) – Air Pressure.

• ice_thresh (str) – Threshold temperature under which to switch to equations in reference to
ice instead of water. If None (default) everything is computed with reference to water. Does
nothing if ‘method’ is “bohren98”.

• method ({“bohren98”, “goffgratch46”, “sonntag90”, “tetens30”, “wmo08”}) – Which
method to use, see notes of this function and of saturation_vapor_pressure().

• invalid_values ({“clip”, “mask”, None}) – What to do with values outside the 0-100 range.
If “clip” (default), clips everything to 0 - 100, if “mask”, replaces values outside the range
by np.nan, and if None, does nothing.

Returns
xr.DataArray, [%] – Relative humidity.

Notes

In the following, let 𝑇 , 𝑇𝑑, 𝑞 and 𝑝 be the temperature, the dew point temperature, the specific humidity and the
air pressure.

For the “bohren98” method : This method does not use the saturation vapour pressure directly, but rather uses
an approximation of the ratio of 𝑒𝑠𝑎𝑡(𝑇𝑑)

𝑒𝑠𝑎𝑡(𝑇) . With 𝐿 the enthalpy of vaporization of water and 𝑅𝑤 the gas constant
for water vapour, the relative humidity is computed as:

𝑅𝐻 = 𝑒
−𝐿(𝑇−𝑇𝑑)

𝑅𝑤𝑇𝑇𝑑

From Bohren and Albrecht [1998], formula taken from Lawrence [2005]. 𝐿 = 2.5 × 10−6 J kg-1, exact for
𝑇 = 273.15 K, is used.

Other methods: With 𝑤, 𝑤𝑠𝑎𝑡, 𝑒𝑠𝑎𝑡 the mixing ratio, the saturation mixing ratio and the saturation vapour
pressure. If the dewpoint temperature is given, relative humidity is computed as:

𝑅𝐻 = 100
𝑒𝑠𝑎𝑡(𝑇𝑑)

𝑒𝑠𝑎𝑡(𝑇)

Otherwise, the specific humidity and the air pressure must be given so relative humidity can be computed as:

𝑅𝐻 = 100
𝑤

𝑤𝑠𝑎𝑡
𝑤 =

𝑞

1− 𝑞
𝑤𝑠𝑎𝑡 = 0.622

𝑒𝑠𝑎𝑡
𝑃 − 𝑒𝑠𝑎𝑡

The methods differ by how 𝑒𝑠𝑎𝑡 is computed. See the doc of xclim.core.utils.
saturation_vapor_pressure().

Examples

>>> from xclim.indices import relative_humidity
>>> rh = relative_humidity(
... tas=tas_dataset,
... tdps=tdps_dataset,
... huss=huss_dataset,
... ps=ps_dataset,
... ice_thresh="0 degC",
... method="wmo08",
... invalid_values="clip",
...)

5.1. Indices library 159

xclim Documentation, Release 0.39.0

References

Bohren and Albrecht [1998], Lawrence [2005]

xclim.indices.rprctot(pr: DataArray, prc: DataArray, thresh: str = '1.0 mm/day', freq: str = 'YS')→
DataArray

Proportion of accumulated precipitation arising from convective processes.

Return the proportion of total accumulated precipitation due to convection on days with total precipitation ex-
ceeding a given threshold (default: 1.0 mm/day) during the given period.

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• prc (xarray.DataArray) – Daily convective precipitation.

• thresh (str) – Precipitation value over which a day is considered wet.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – The proportion of the total precipitation accounted for by
convective precipitation for each period.

xclim.indices.saturation_vapor_pressure(tas: DataArray, ice_thresh: Optional[str] = None, method: str
= 'sonntag90')→ DataArray

Saturation vapour pressure from temperature.

Parameters
• tas (xr.DataArray) – Temperature array.

• ice_thresh (str) – Threshold temperature under which to switch to equations in reference to
ice instead of water. If None (default) everything is computed with reference to water.

• method ({“goffgratch46”, “sonntag90”, “tetens30”, “wmo08”, “its90”}) – Which method
to use, see notes.

Returns
xarray.DataArray, [Pa] – Saturation vapour pressure.

Notes

In all cases implemented here 𝑙𝑜𝑔(𝑒𝑠𝑎𝑡) is an empirically fitted function (usually a polynomial) where coefficients
can be different when ice is taken as reference instead of water. Available methods are:

• “goffgratch46” or “GG46”, based on Goff and Gratch [1946], values and equation taken from Vömel [2016].

• “sonntag90” or “SO90”, taken from SONNTAG [1990].

• “tetens30” or “TE30”, based on Tetens [1930], values and equation taken from Vömel [2016].

• “wmo08” or “WMO08”, taken from World Meteorological Organization [2008].

• “its90” or “ITS90”, taken from Hardy [1998].

160 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Examples

>>> from xclim.indices import saturation_vapor_pressure
>>> rh = saturation_vapor_pressure(
... tas=tas_dataset, ice_thresh="0 degC", method="wmo08"
...)

References

Goff and Gratch [1946], Hardy [1998], SONNTAG [1990], Tetens [1930], Vömel [2016], World Meteorological
Organization [2008]

xclim.indices.sea_ice_area(siconc: DataArray, areacello: DataArray, thresh: str = '15 pct')→ DataArray
Total sea ice area.

Sea ice area measures the total sea ice covered area where sea ice concentration is above a threshold, usually set
to 15%.

Parameters
• siconc (xarray.DataArray) – Sea ice concentration (area fraction).

• areacello (xarray.DataArray) – Grid cell area (usually over the ocean).

• thresh (str) – Minimum sea ice concentration for a grid cell to contribute to the sea ice
extent.

Returns
xarray.DataArray, [length]^2 – Sea ice area.

Notes

To compute sea ice area over a subregion, first mask or subset the input sea ice concentration data.

References

“What is the difference between sea ice area and extent?” - NSIDC [2008]

xclim.indices.sea_ice_extent(siconc: DataArray, areacello: DataArray, thresh: str = '15 pct')→ DataArray
Total sea ice extent.

Sea ice extent measures the ice-covered area, where a region is considered ice-covered if its sea ice concentration
is above a threshold, usually set to 15%.

Parameters
• siconc (xarray.DataArray) – Sea ice concentration (area fraction).

• areacello (xarray.DataArray) – Grid cell area.

• thresh (str) – Minimum sea ice concentration for a grid cell to contribute to the sea ice
extent.

Returns
xarray.DataArray, [length]^2 – Sea ice extent.

5.1. Indices library 161

xclim Documentation, Release 0.39.0

Notes

To compute sea ice area over a subregion, first mask or subset the input sea ice concentration data.

References

“What is the difference between sea ice area and extent?” - NSIDC [2008]

xclim.indices.sfcwind_2_uas_vas(sfcWind: DataArray, sfcWindfromdir: DataArray)→
tuple[xarray.DataArray, xarray.DataArray]

Eastward and northward wind components from the wind speed and direction.

Compute the eastward and northward wind components from the wind speed and direction.

Parameters
• sfcWind (xr.DataArray) – Wind velocity

• sfcWindfromdir (xr.DataArray) – Direction from which the wind blows, following the me-
teorological convention where 360 stands for North.

Returns
• uas (xr.DataArray, [m s-1]) – Eastward wind velocity.

• vas (xr.DataArray, [m s-1]) – Northward wind velocity.

Examples

>>> from xclim.indices import sfcwind_2_uas_vas
>>> uas, vas = sfcwind_2_uas_vas(
... sfcWind=sfcWind_dataset, sfcWindfromdir=sfcWindfromdir_dataset
...)

xclim.indices.snd_max_doy(snd: DataArray, freq: str = 'AS-JUL')→ DataArray
Maximum snow depth day of year.

Day of year when surface snow reaches its peak value. If snow depth is 0 over entire period, return NaN.

Parameters
• snd (xarray.DataArray) – Surface snow depth.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The day of year at which snow depth reaches its maximum value.

xclim.indices.snow_cover_duration(snd: DataArray, thresh: str = '2 cm', freq: str = 'AS-JUL')→ DataArray
Number of days with snow depth above a threshold.

Number of days where surface snow depth is greater or equal to given threshold (default: 2 cm).

Warning: The default freq is valid for the northern hemisphere.

Parameters
• snd (xarray.DataArray) – Surface snow thickness.

162 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• thresh (str) – Threshold snow thickness.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Number of days where snow depth is greater than or equal to thresh-
old.

xclim.indices.snow_depth(snd: DataArray, freq: str = 'YS')→ DataArray
Mean of daily average snow depth.

Resample the original daily mean snow depth series by taking the mean over each period.

Parameters
• snd (xarray.DataArray) – Mean daily snow depth.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as snd] – The mean daily snow depth at the given time frequency

xclim.indices.snow_melt_we_max(snw: DataArray, window: int = 3, freq: str = 'AS-JUL')→ DataArray
Maximum snow melt.

The maximum snow melt over a given number of days expressed in snow water equivalent.

Parameters
• snw (xarray.DataArray) – Snow amount (mass per area).

• window (int) – Number of days during which the melt is accumulated.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The maximum snow melt over a given number of days for each period.
[mass/area].

xclim.indices.snowfall_approximation(pr: DataArray, tas: DataArray, thresh: str = '0 degC', method: str =
'binary')→ DataArray

Snowfall approximation from total precipitation and temperature.

Solid precipitation estimated from precipitation and temperature according to a given method.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• tas (xarray.DataArray, optional) – Mean, maximum, or minimum daily temperature.

• thresh (str,) – Threshold temperature, used by method “binary”.

• method ({“binary”, “brown”, “auer”}) – Which method to use when approximating snow-
fall from total precipitation. See notes.

Returns
xarray.DataArray, [same units as pr] – Solid precipitation flux.

5.1. Indices library 163

xclim Documentation, Release 0.39.0

Notes

The following methods are available to approximate snowfall and are drawn from the Canadian Land Surface
Scheme [Melton, 2019, Verseghy, 2009].

• 'binary' : When the temperature is under the freezing threshold, precipitation is assumed to be solid.
The method is agnostic to the type of temperature used (mean, maximum or minimum).

• 'brown' : The phase between the freezing threshold goes from solid to liquid linearly over a range of 2°C
over the freezing point.

• 'auer' : The phase between the freezing threshold goes from solid to liquid as a degree six polynomial
over a range of 6°C over the freezing point.

References

Melton [2019], Verseghy [2009]

xclim.indices.snw_max(snw: DataArray, freq: str = 'AS-JUL')→ DataArray
Maximum snow amount.

The maximum daily snow amount.

Parameters
• snw (xarray.DataArray) – Snow amount (mass per area).

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The maximum snow amount over a given number of days for each period.
[mass/area].

xclim.indices.snw_max_doy(snw: DataArray, freq: str = 'AS-JUL')→ DataArray
Maximum snow amount day of year.

Day of year when surface snow amount reaches its peak value. If snow amount is 0 over entire period, return
NaN.

Parameters
• snw (xarray.DataArray) – Surface snow amount.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The day of year at which snow amount reaches its maximum value.

xclim.indices.specific_humidity(tas: DataArray, hurs: DataArray, ps: DataArray, ice_thresh:
Optional[str] = None, method: str = 'sonntag90', invalid_values:
Optional[str] = None)→ DataArray

Specific humidity from temperature, relative humidity and pressure.

Specific humidity is the ratio between the mass of water vapour and the mass of moist air [World Meteorological
Organization, 2008].

Parameters
• tas (xr.DataArray) – Temperature array

• hurs (xr.DataArray) – Relative Humidity.

• ps (xr.DataArray) – Air Pressure.

164 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• ice_thresh (str) – Threshold temperature under which to switch to equations in reference to
ice instead of water. If None (default) everything is computed with reference to water.

• method ({“goffgratch46”, “sonntag90”, “tetens30”, “wmo08”}) – Which method to use,
see notes of this function and of saturation_vapor_pressure().

• invalid_values ({“clip”, “mask”, None}) – What to do with values larger than the saturation
specific humidity and lower than 0. If “clip” (default), clips everything to 0 - q_sat if “mask”,
replaces values outside the range by np.nan, if None, does nothing.

Returns
xarray.DataArray, [dimensionless] – Specific humidity.

Notes

In the following, let 𝑇 , ℎ𝑢𝑟𝑠 (in %) and 𝑝 be the temperature, the relative humidity and the air pressure. With
𝑤, 𝑤𝑠𝑎𝑡, 𝑒𝑠𝑎𝑡 the mixing ratio, the saturation mixing ratio and the saturation vapour pressure, specific humidity
𝑞 is computed as:

𝑤𝑠𝑎𝑡 = 0.622
𝑒𝑠𝑎𝑡

𝑃 − 𝑒𝑠𝑎𝑡
𝑤 = 𝑤𝑠𝑎𝑡 * ℎ𝑢𝑟𝑠/100𝑞 = 𝑤/(1 + 𝑤)

The methods differ by how 𝑒𝑠𝑎𝑡 is computed. See xclim.core.utils.saturation_vapor_pressure().

If invalid_values is not None, the saturation specific humidity 𝑞𝑠𝑎𝑡 is computed as:

𝑞𝑠𝑎𝑡 = 𝑤𝑠𝑎𝑡/(1 + 𝑤𝑠𝑎𝑡)

Examples

>>> from xclim.indices import specific_humidity
>>> rh = specific_humidity(
... tas=tas_dataset,
... hurs=hurs_dataset,
... ps=ps_dataset,
... ice_thresh="0 degC",
... method="wmo08",
... invalid_values="mask",
...)

References

World Meteorological Organization [2008]

xclim.indices.specific_humidity_from_dewpoint(tdps: DataArray, ps: DataArray, method: str =
'sonntag90')→ DataArray

Specific humidity from dewpoint temperature and air pressure.

Specific humidity is the ratio between the mass of water vapour and the mass of moist air [World Meteorological
Organization, 2008].

Parameters
• tdps (xr.DataArray) – Dewpoint temperature array.

• ps (xr.DataArray) – Air pressure array.

5.1. Indices library 165

xclim Documentation, Release 0.39.0

• method ({“goffgratch46”, “sonntag90”, “tetens30”, “wmo08”}) – Method to compute the
saturation vapour pressure.

Returns
xarray.DataArray, [dimensionless] – Specific humidity.

Notes

If 𝑒 is the water vapour pressure, and 𝑝 the total air pressure, then specific humidity is given by

𝑞 = 𝑚𝑤𝑒/(𝑚𝑎(𝑝− 𝑒) +𝑚𝑤𝑒)

where 𝑚𝑤 and 𝑚𝑎 are the molecular weights of water and dry air respectively. This formula is often written with
= 𝑚𝑤/𝑚𝑎, which simplifies to 𝑞 = 𝑒/(𝑝− 𝑒(1−)).

Examples

>>> from xclim.indices import specific_humidity_from_dewpoint
>>> rh = specific_humidity_from_dewpoint(
... tdps=tas_dataset,
... ps=ps_dataset,
... method="wmo08",
...)

References

World Meteorological Organization [2008]

xclim.indices.standardized_precipitation_evapotranspiration_index(wb: DataArray, wb_cal:
DataArray, freq: str = 'MS',
window: int = 1, dist: str =
'gamma', method: str =
'APP')→ DataArray

Standardized Precipitation Evapotranspiration Index (SPEI).

Precipitation minus potential evapotranspiration data (PET) fitted to a statistical distribution (dist), transformed
to a cdf, and inverted back to a gaussian normal pdf. The potential evapotranspiration is calculated with a given
method (method).

Parameters
• wb (xarray.DataArray) – Daily water budget (pr - pet).

• wb_cal (xarray.DataArray) – Daily water budget used for calibration.

• freq (str) – Resampling frequency. A monthly or daily frequency is expected.

• window (int) – Averaging window length relative to the resampling frequency. For example,
if freq=”MS”, i.e. a monthly resampling, the window is an integer number of months.

• dist ({‘gamma’, ‘fisk’}) – Name of the univariate distribution. (see scipy.stats).

• method ({‘APP’, ‘ML’}) – Name of the fitting method, such as ML (maximum likelihood),
APP (approximate). The approximate method uses a deterministic function that doesn’t
involve any optimization. Available methods vary with the distribution: ‘gamma’:{‘APP’,
‘ML’}, ‘fisk’:{‘ML’}

166 Chapter 5. Climate indices

https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

xclim Documentation, Release 0.39.0

Returns
xarray.DataArray – Standardized Precipitation Evapotranspiration Index.

See also:
standardized_precipitation_index

Notes

See Standardized Precipitation Index (SPI) for more details on usage.

xclim.indices.standardized_precipitation_index(pr: DataArray, pr_cal: DataArray, freq: str = 'MS',
window: int = 1, dist: str = 'gamma', method: str =
'APP')→ DataArray

Standardized Precipitation Index (SPI).

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• pr_cal (xarray.DataArray) – Daily precipitation used for calibration. Usually this is a tem-
poral subset of pr over some reference period.

• freq (str) – Resampling frequency. A monthly or daily frequency is expected.

• window (int) – Averaging window length relative to the resampling frequency. For example,
if freq=”MS”, i.e. a monthly resampling, the window is an integer number of months.

• dist ({“gamma”, “fisk”}) – Name of the univariate distribution. (see scipy.stats).

• method ({‘APP’, ‘ML’}) – Name of the fitting method, such as ML (maximum likelihood),
APP (approximate). The approximate method uses a deterministic function that doesn’t in-
volve any optimization.

Returns
xarray.DataArray, [unitless] – Standardized Precipitation Index.

Notes

The length N of the N-month SPI is determined by choosing the window = N. Supported statistical distributions
are: [“gamma”]

Example

>>> from datetime import datetime
>>> from xclim.indices import standardized_precipitation_index
>>> ds = xr.open_dataset(path_to_pr_file)
>>> pr = ds.pr
>>> pr_cal = pr.sel(time=slice(datetime(1990, 5, 1), datetime(1990, 8, 31)))
>>> spi_3 = standardized_precipitation_index(
... pr, pr_cal, freq="MS", window=3, dist="gamma", method="ML"
...) # Computing SPI-3 months using a gamma distribution for the fit

5.1. Indices library 167

https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

xclim Documentation, Release 0.39.0

References

McKee, Doesken, and Kleist [1993]

xclim.indices.tas(tasmin: DataArray, tasmax: DataArray)→ DataArray
Average temperature from minimum and maximum temperatures.

We assume a symmetrical distribution for the temperature and retrieve the average value as Tg = (Tx + Tn) / 2

Parameters
• tasmin (xarray.DataArray) – Minimum (daily) temperature

• tasmax (xarray.DataArray) – Maximum (daily) temperature

Returns
xarray.DataArray – Mean (daily) temperature [same units as tasmin]

Examples

>>> from xclim.indices import tas
>>> tas = tas(tasmin_dataset, tasmax_dataset)

xclim.indices.temperature_seasonality(tas: DataArray, freq: str = 'YS')→ DataArray
Temperature seasonality (coefficient of variation).

The annual temperature coefficient of variation expressed in percent. Calculated as the standard deviation of
temperature values for a given year expressed as a percentage of the mean of those temperatures.

Parameters
• tas (xarray.DataArray) – Mean temperature at daily, weekly, or monthly frequency.

• freq (str) – Resampling frequency.

Returns
• xarray.DataArray, [%] – Mean temperature coefficient of variation

• freq (str) – Resampling frequency.

Examples

The following would compute for each grid cell of file tas.day.nc the annual temperature seasonality:

>>> import xclim.indices as xci
>>> t = xr.open_dataset(path_to_tas_file).tas
>>> tday_seasonality = xci.temperature_seasonality(t)
>>> t_weekly = xci.tg_mean(t, freq="7D")
>>> tweek_seasonality = xci.temperature_seasonality(t_weekly)

168 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

For this calculation, the mean in degrees Kelvin is used. This avoids the possibility of having to divide by zero,
but it does mean that the values are usually quite small.

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

Xu and Hutchinson [2010]

xclim.indices.tg10p(tas: DataArray, tas_per: DataArray, freq: str = 'YS', bootstrap: bool = False, op: str =
'<')→ DataArray

Number of days with daily mean temperature below the 10th percentile.

Number of days with daily mean temperature below the 10th percentile.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• tas_per (xarray.DataArray) – 10th percentile of daily mean temperature.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Count of days with daily mean temperature below the 10th percentile
[days].

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tg10p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> tas_per = percentile_doy(tas, per=10).sel(percentiles=10)
>>> cold_days = tg10p(tas, tas_per)

5.1. Indices library 169

xclim Documentation, Release 0.39.0

xclim.indices.tg90p(tas: DataArray, tas_per: DataArray, freq: str = 'YS', bootstrap: bool = False, op: str =
'>')→ DataArray

Number of days with daily mean temperature over the 90th percentile.

Number of days with daily mean temperature over the 90th percentile.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• tas_per (xarray.DataArray) – 90th percentile of daily mean temperature.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Count of days with daily mean temperature below the 10th percentile
[days].

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tg90p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> tas_per = percentile_doy(tas, per=90).sel(percentiles=90)
>>> hot_days = tg90p(tas, tas_per)

xclim.indices.tg_days_above(tas: DataArray, thresh: str = '10.0 degC', freq: str = 'YS', op: str = '>')
Number of days with tas above a threshold.

Number of days where mean daily temperature exceeds a threshold (default: 10℃).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Number of days where tas {op} threshold.

170 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝐺𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices.tg_days_below(tas: DataArray, thresh: str = '10.0 degC', freq: str = 'YS', op: str = '<')
Number of days with tas below a threshold.

Number of days where mean daily temperature is below a threshold (default: 10℃).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Number of days where tas {op} threshold.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝐺𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices.tg_max(tas: DataArray, freq: str = 'YS')→ DataArray
Highest mean temperature.

The maximum of daily mean temperature.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tas] – Maximum of daily minimum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then the maximum daily mean temperature for period
𝑗 is:

𝑇𝑁𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑁𝑖𝑗)

xclim.indices.tg_mean(tas: DataArray, freq: str = 'YS')→ DataArray
Mean of daily average temperature.

Resample the original daily mean temperature series by taking the mean over each period.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

5.1. Indices library 171

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tas] – The mean daily temperature at the given time frequency

Notes

Let 𝑇𝑁𝑖 be the mean daily temperature of day 𝑖, then for a period 𝑝 starting at day 𝑎 and finishing on day 𝑏:

𝑇𝐺𝑝 =

∑︀𝑏
𝑖=𝑎 𝑇𝑁𝑖

𝑏− 𝑎+ 1

Examples

The following would compute for each grid cell of file tas.day.nc the mean temperature at the seasonal frequency,
i.e. DJF, MAM, JJA, SON, DJF, etc.:

>>> from xclim.indices import tg_mean
>>> t = xr.open_dataset(path_to_tas_file).tas
>>> tg = tg_mean(t, freq="QS-DEC")

xclim.indices.tg_mean_warmcold_quarter(tas: DataArray, op: Optional[str] = None, freq: str = 'YS')→
DataArray

Mean temperature of warmest/coldest quarter.

The warmest (or coldest) quarter of the year is determined, and the mean temperature of this period is calculated.
If the input data frequency is daily (“D”) or weekly (“W”), quarters are defined as 13-week periods, otherwise
as three (3) months.

Parameters
• tas (xarray.DataArray) – Mean temperature at daily, weekly, or monthly frequency.

• op (str {‘warmest’, ‘coldest’}) – Operation to perform: ‘warmest’ calculate the warmest
quarter; ‘coldest’ calculate the coldest quarter.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same as tas] – Mean temperature of {op} quarter

Examples

The following would compute for each grid cell of file tas.day.nc the annual temperature of the warmest quarter
mean temperature:

>>> from xclim.indices import tg_mean_warmcold_quarter
>>> t = xr.open_dataset(path_to_tas_file)
>>> t_warm_qrt = tg_mean_warmcold_quarter(tas=t.tas, op="warmest")

172 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

Xu and Hutchinson [2010]

xclim.indices.tg_mean_wetdry_quarter(tas: DataArray, pr: DataArray, op: Optional[str] = None, freq: str
= 'YS')→ DataArray

Mean temperature of wettest/driest quarter.

The wettest (or driest) quarter of the year is determined, and the mean temperature of this period is calculated.
If the input data frequency is daily (“D”) or weekly (“W”), quarters are defined as 13-week periods, otherwise
are 3 months.

Parameters
• tas (xarray.DataArray) – Mean temperature at daily, weekly, or monthly frequency.

• pr (xarray.DataArray) – Total precipitation rate at daily, weekly, or monthly frequency.

• op ({‘wettest’, ‘driest’}) – Operation to perform: ‘wettest’ calculate for the wettest quarter;
‘driest’ calculate for the driest quarter.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same as tas] – Mean temperature of {op} quarter

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

Xu and Hutchinson [2010]

xclim.indices.tg_min(tas: DataArray, freq: str = 'YS')→ DataArray
Lowest mean temperature.

Minimum of daily mean temperature.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tas] – Minimum of daily minimum temperature.

5.1. Indices library 173

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝐺𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then the minimum daily mean temperature for period 𝑗
is:

𝑇𝐺𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝐺𝑖𝑗)

xclim.indices.tn10p(tasmin: DataArray, tasmin_per: DataArray, freq: str = 'YS', bootstrap: bool = False, op:
str = '<')→ DataArray

Number of days with daily minimum temperature below the 10th percentile.

Number of days with daily minimum temperature below the 10th percentile.

Parameters
• tasmin (xarray.DataArray) – Mean daily temperature.

• tasmin_per (xarray.DataArray) – 10th percentile of daily minimum temperature.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Count of days with daily minimum temperature below the 10th per-
centile [days].

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tn10p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> tas_per = percentile_doy(tas, per=10).sel(percentiles=10)
>>> cold_days = tn10p(tas, tas_per)

xclim.indices.tn90p(tasmin: DataArray, tasmin_per: DataArray, freq: str = 'YS', bootstrap: bool = False, op:
str = '>')→ DataArray

Number of days with daily minimum temperature over the 90th percentile.

Number of days with daily minimum temperature over the 90th percentile.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmin_per (xarray.DataArray) – 90th percentile of daily minimum temperature.

174 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Count of days with daily minimum temperature below the 10th per-
centile [days].

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tn90p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> tas_per = percentile_doy(tas, per=90).sel(percentiles=90)
>>> hot_days = tn90p(tas, tas_per)

xclim.indices.tn_days_above(tasmin: DataArray, thresh: str = '20.0 degC', freq: str = 'YS', op: str = '>')
Number of days with tasmin above a threshold (number of tropical nights).

Number of days where minimum daily temperature exceeds a threshold (default: 20℃).

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Number of days where tasmin {op} threshold.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices.tn_days_below(tasmin: DataArray, thresh: str = '-10.0 degC', freq: str = 'YS', op: str = '<')→
DataArray

Number of days with tasmin below a threshold.

Number of days where minimum daily temperature is below a threshold (default: -10℃).

5.1. Indices library 175

xclim Documentation, Release 0.39.0

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Number of days where tasmin {op} threshold.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices.tn_max(tasmin: DataArray, freq: str = 'YS')→ DataArray
Highest minimum temperature.

The maximum of daily minimum temperature.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmin] – Maximum of daily minimum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then the maximum daily minimum temperature for
period 𝑗 is:

𝑇𝑁𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑁𝑖𝑗)

xclim.indices.tn_mean(tasmin: DataArray, freq: str = 'YS')→ DataArray
Mean minimum temperature.

Mean of daily minimum temperature.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmin] – Mean of daily minimum temperature.

176 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then mean values in period 𝑗 are given by:

𝑇𝑁𝑖𝑗 =

∑︀𝐼
𝑖=1 𝑇𝑁𝑖𝑗

𝐼

xclim.indices.tn_min(tasmin: DataArray, freq: str = 'YS')→ DataArray
Lowest minimum temperature.

Minimum of daily minimum temperature.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmin] – Minimum of daily minimum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then the minimum daily minimum temperature for
period 𝑗 is:

𝑇𝑁𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝑁𝑖𝑗)

xclim.indices.tropical_nights(tasmin: DataArray, thresh: str = '20.0 degC', freq: str = 'YS')→ DataArray
Tropical nights.

The number of days with minimum daily temperature above threshold (default: 20℃).

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Number of days with minimum daily temperature above threshold.

Notes

Let 𝑇𝑁𝑖𝑗 be the daily minimum temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

Warning: The tropical_nights indice is being deprecated in favour of tn_days_above with thresh=”20
degC” by default. The indicator reflects this change. This indice will be removed in a future version of
xclim.

5.1. Indices library 177

xclim Documentation, Release 0.39.0

xclim.indices.tx10p(tasmax: DataArray, tasmax_per: DataArray, freq: str = 'YS', bootstrap: bool = False, op:
str = '<')→ DataArray

Number of days with daily maximum temperature below the 10th percentile.

Number of days with daily maximum temperature below the 10th percentile.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• tasmax_per (xarray.DataArray) – 10th percentile of daily maximum temperature.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Count of days with daily maximum temperature below the 10th per-
centile [days].

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tx10p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> tasmax_per = percentile_doy(tas, per=10).sel(percentiles=10)
>>> cold_days = tx10p(tas, tasmax_per)

xclim.indices.tx90p(tasmax: DataArray, tasmax_per: DataArray, freq: str = 'YS', bootstrap: bool = False, op:
str = '>')→ DataArray

Number of days with daily maximum temperature over the 90th percentile.

Number of days with daily maximum temperature over the 90th percentile.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• tasmax_per (xarray.DataArray) – 90th percentile of daily maximum temperature.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

178 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Count of days with daily maximum temperature below the 10th per-
centile [days].

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tx90p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> tasmax_per = percentile_doy(tas, per=90).sel(percentiles=90)
>>> hot_days = tx90p(tas, tasmax_per)

xclim.indices.tx_days_above(tasmax: DataArray, thresh: str = '25.0 degC', freq: str = 'YS', op: str = '>')→
DataArray

Number of days with tasmax above a threshold (number of summer days).

Number of days where maximum daily temperature exceeds a threshold (default: 25℃).

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Number of days where tasmax {op} threshold (number of summer
days).

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices.tx_days_below(tasmax: DataArray, thresh: str = '25.0 degC', freq: str = 'YS', op: str = '<')
Number of days with tmax below a threshold.

Number of days where maximum daily temperature is below a threshold (default: 25℃).

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

5.1. Indices library 179

xclim Documentation, Release 0.39.0

Returns
xarray.DataArray, [time] – Number of days where tasmin {op} threshold.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices.tx_max(tasmax: DataArray, freq: str = 'YS')→ DataArray
Highest max temperature.

The maximum value of daily maximum temperature.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmax] – Maximum value of daily maximum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then the maximum daily maximum temperature
for period 𝑗 is:

𝑇𝑋𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑋𝑖𝑗)

xclim.indices.tx_mean(tasmax: DataArray, freq: str = 'YS')→ DataArray
Mean max temperature.

The mean of daily maximum temperature.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmax] – Mean of daily maximum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then mean values in period 𝑗 are given by:

𝑇𝑋𝑖𝑗 =

∑︀𝐼
𝑖=1 𝑇𝑋𝑖𝑗

𝐼

xclim.indices.tx_min(tasmax: DataArray, freq: str = 'YS')→ DataArray
Lowest max temperature.

The minimum of daily maximum temperature.

Parameters

180 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• tasmax (xarray.DataArray) – Maximum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmax] – Minimum of daily maximum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then the minimum daily maximum temperature for
period 𝑗 is:

𝑇𝑋𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝑋𝑖𝑗)

xclim.indices.tx_tn_days_above(tasmin: DataArray, tasmax: DataArray, thresh_tasmin: str = '22 degC',
thresh_tasmax: str = '30 degC', freq: str = 'YS', op: str = '>')→ DataArray

Number of days with both hot maximum and minimum daily temperatures.

The number of days per period with tasmin above a threshold and tasmax above another threshold.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmin (str) – Threshold temperature for tasmin on which to base evaluation.

• thresh_tasmax (str) – Threshold temperature for tasmax on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – the number of days with tasmin > thresh_tasmin and tasmax >
thresh_tasmax per period.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗, 𝑇𝑁𝑖𝑗 the daily minimum temperature at day 𝑖 of
period 𝑗, 𝑇𝑋𝑡ℎ𝑟𝑒𝑠ℎ the threshold for maximum daily temperature, and 𝑇𝑁𝑡ℎ𝑟𝑒𝑠ℎ the threshold for minimum
daily temperature. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 > 𝑇𝑋𝑡ℎ𝑟𝑒𝑠ℎ[]

and where:

𝑇𝑁𝑖𝑗 > 𝑇𝑁𝑡ℎ𝑟𝑒𝑠ℎ[]

xclim.indices.uas_vas_2_sfcwind(uas: DataArray, vas: DataArray, calm_wind_thresh: str = '0.5 m/s')→
tuple[xarray.DataArray, xarray.DataArray]

Wind speed and direction from the eastward and northward wind components.

Computes the magnitude and angle of the wind vector from its northward and eastward components, following
the meteorological convention that sets calm wind to a direction of 0° and northerly wind to 360°.

Parameters
• uas (xr.DataArray) – Eastward wind velocity

5.1. Indices library 181

xclim Documentation, Release 0.39.0

• vas (xr.DataArray) – Northward wind velocity

• calm_wind_thresh (str) – The threshold under which winds are considered “calm” and for
which the direction is set to 0. On the Beaufort scale, calm winds are defined as < 0.5 m/s.

Returns
• wind (xr.DataArray, [m s-1]) – Wind velocity

• wind_from_dir (xr.DataArray, [°]) – Direction from which the wind blows, following the
meteorological convention where 360 stands for North and 0 for calm winds.

Examples

>>> from xclim.indices import uas_vas_2_sfcwind
>>> sfcwind = uas_vas_2_sfcwind(
... uas=uas_dataset, vas=vas_dataset, calm_wind_thresh="0.5 m/s"
...)

Notes

Winds with a velocity less than calm_wind_thresh are given a wind direction of 0°, while stronger northerly
winds are set to 360°.

xclim.indices.universal_thermal_climate_index(tas: DataArray, hurs: DataArray, sfcWind: DataArray,
mrt: Optional[DataArray] = None, rsds:
Optional[DataArray] = None, rsus:
Optional[DataArray] = None, rlds:
Optional[DataArray] = None, rlus:
Optional[DataArray] = None, stat: str = 'average',
mask_invalid: bool = True)→ DataArray

Universal thermal climate index (UTCI).

The UTCI is the equivalent temperature for the environment derived from a reference environment and is used
to evaluate heat stress in outdoor spaces.

Parameters
• tas (xarray.DataArray) – Mean temperature

• hurs (xarray.DataArray) – Relative Humidity

• sfcWind (xarray.DataArray) – Wind velocity

• mrt (xarray.DataArray, optional) – Mean radiant temperature

• rsds (xr.DataArray, optional) – Surface Downwelling Shortwave Radiation This is necessary
if mrt is not None.

• rsus (xr.DataArray, optional) – Surface Upwelling Shortwave Radiation This is necessary if
mrt is not None.

• rlds (xr.DataArray, optional) – Surface Downwelling Longwave Radiation This is necessary
if mrt is not None.

• rlus (xr.DataArray, optional) – Surface Upwelling Longwave Radiation This is necessary if
mrt is not None.

182 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• stat ({‘average’, ‘instant’, ‘sunlit’}) – Which statistic to apply. If “average”, the average of
the cosine of the solar zenith angle is calculated. If “instant”, the instantaneous cosine of the
solar zenith angle is calculated. If “sunlit”, the cosine of the solar zenith angle is calculated
during the sunlit period of each interval. If “instant”, the instantaneous cosine of the solar
zenith angle is calculated. This is necessary if mrt is not None.

• mask_invalid (bool) – If True (default), UTCI values are NaN where any of the inputs are
outside their validity ranges : -50°C < tas < 50°C, -30°C < tas - mrt < 30°C and 0.5 m/s <
sfcWind < 17.0 m/s.

Returns
xarray.DataArray – Universal Thermal Climate Index.

Notes

The calculation uses water vapour partial pressure, which is derived from relative humidity and saturation vapour
pressure computed according to the ITS-90 equation.

This code was inspired by the pythermalcomfort and thermofeel packages.

Notes

See: http://www.utci.org/utcineu/utcineu.php

References

Bröde [2009], Błażejczyk, Jendritzky, Bröde, Fiala, Havenith, Epstein, Psikuta, and Kampmann [2013]

xclim.indices.warm_and_dry_days(tas: DataArray, pr: DataArray, tas_per: DataArray, pr_per: DataArray,
freq: str = 'YS')→ DataArray

Warm and dry days.

Returns the total number of days when “warm” and “Dry” conditions coincide.

Parameters
• tas (xarray.DataArray) – Mean daily temperature values

• pr (xarray.DataArray) – Daily precipitation.

• tas_per (xarray.DataArray) – Third quartile of daily mean temperature computed by month.

• pr_per (xarray.DataArray) – First quartile of daily total precipitation computed by month.

Warning: Before computing the percentiles, all the precipitation below 1mm must be
filtered out! Otherwise, the percentiles will include non-wet days.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, – The total number of days when warm and dry conditions coincide.

5.1. Indices library 183

http://www.utci.org/utcineu/utcineu.php

xclim Documentation, Release 0.39.0

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indices.warm_and_wet_days(tas: DataArray, pr: DataArray, tas_per: DataArray, pr_per: DataArray,
freq: str = 'YS')→ DataArray

Warm and wet days.

Returns the total number of days when “warm” and “wet” conditions coincide.

Parameters
• tas (xarray.DataArray) – Mean daily temperature values

• pr (xarray.DataArray) – Daily precipitation.

• tas_per (xarray.DataArray) – Third quartile of daily mean temperature computed by month.

• pr_per (xarray.DataArray) – Third quartile of daily total precipitation computed by month.

Warning: Before computing the percentiles, all the precipitation below 1mm must be
filtered out! Otherwise, the percentiles will include non-wet days.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The total number of days when warm and wet conditions coincide.

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indices.warm_day_frequency(tasmax: DataArray, thresh: str = '30 degC', freq: str = 'YS', op: str =
'>')→ DataArray

Frequency of extreme warm days.

Return the number of days with maximum daily temperature exceeding threshold (default: 30℃) per period.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

184 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Number of days with tasmax {op} threshold per period.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices.warm_night_frequency(tasmin: DataArray, thresh: str = '22 degC', freq: str = 'YS', op: str =
'>')→ DataArray

Frequency of extreme warm nights.

Return the number of days with minimum daily temperature exceeding threshold (default: 22℃) per period.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Number of days with tasmin {op} threshold per period.

xclim.indices.warm_spell_duration_index(tasmax: DataArray, tasmax_per: DataArray, window: int = 6,
freq: str = 'YS', resample_before_rl: bool = True, bootstrap:
bool = False, op: str = '>')→ DataArray

Warm spell duration index.

Number of days inside spells of a minimum number of consecutive days when the daily maximum temperature
is above the 90th percentile. The 90th percentile should be computed for a 5-day moving window, centered on
each calendar day in the 1961-1990 period.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• tasmax_per (xarray.DataArray) – percentile(s) of daily maximum temperature.

• window (int) – Minimum number of days with temperature above threshold to qualify as a
warm spell.

• freq (str) – Resampling frequency.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

5.1. Indices library 185

xclim Documentation, Release 0.39.0

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Warm spell duration index.

References

From the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI; [Zhang et al., 2011]).
Used in Alexander, Zhang, Peterson, Caesar, Gleason, Klein Tank, Haylock, Collins, Trewin, Rahimzadeh,
Tagipour, Rupa Kumar, Revadekar, Griffiths, Vincent, Stephenson, Burn, Aguilar, Brunet, Taylor, New, Zhai,
Rusticucci, and Vazquez-Aguirre [2006]

Examples

Note that this example does not use a proper 1961-1990 reference period.

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import warm_spell_duration_index

>>> tasmax = xr.open_dataset(path_to_tasmax_file).tasmax.isel(lat=0, lon=0)
>>> tasmax_per = percentile_doy(tasmax, per=90).sel(percentiles=90)
>>> warm_spell_duration_index(tasmax, tasmax_per)

xclim.indices.water_budget(pr: DataArray, evspsblpot: Optional[DataArray] = None, tasmin:
Optional[DataArray] = None, tasmax: Optional[DataArray] = None, tas:
Optional[DataArray] = None, lat: Optional[DataArray] = None, hurs:
Optional[DataArray] = None, rsds: Optional[DataArray] = None, rsus:
Optional[DataArray] = None, rlds: Optional[DataArray] = None, rlus:
Optional[DataArray] = None, sfcwind: Optional[DataArray] = None, method:
str = 'BR65')→ DataArray

Precipitation minus potential evapotranspiration.

Precipitation minus potential evapotranspiration as a measure of an approximated surface water budget, where
the potential evapotranspiration can be calculated with a given method.

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• evspsblpot (xarray.DataArray, optional) – Potential evapotranspiration

• tasmin (xarray.DataArray, optional) – Minimum daily temperature.

• tasmax (xarray.DataArray, optional) – Maximum daily temperature.

• tas (xarray.DataArray, optional) – Mean daily temperature.

• lat (xarray.DataArray, optional) – Latitude coordinate, needed if evspsblpot is not given. If
None, a CF-conformant “latitude” field must be available within the pr DataArray.

• hurs (xarray.DataArray, optional) – Relative humidity.

• rsds (xarray.DataArray, optional) – Surface Downwelling Shortwave Radiation

• rsus (xarray.DataArray, optional) – Surface Upwelling Shortwave Radiation

• rlds (xarray.DataArray, optional) – Surface Downwelling Longwave Radiation

• rlus (xarray.DataArray, optional) – Surface Upwelling Longwave Radiation

186 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• sfcwind (xarray.DataArray, optional) – Surface wind velocity (at 10 m)

• method (str) – Method to use to calculate the potential evapotranspiration.

See also:
xclim.indicators.atmos.potential_evapotranspiration

Returns
xarray.DataArray – Precipitation minus potential evapotranspiration.

xclim.indices.wetdays(pr: DataArray, thresh: str = '1.0 mm/day', freq: str = 'YS', op: str = '>=')→ DataArray
Wet days.

Return the total number of days during period with precipitation over threshold (default: 1.0 mm/day).

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• thresh (str) – Precipitation value over which a day is considered wet.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>=”.

Returns
xarray.DataArray, [time] – The number of wet days for each period [day].

Examples

The following would compute for each grid cell of file pr.day.nc the number days with precipitation over 5 mm
at the seasonal frequency, i.e. DJF, MAM, JJA, SON, DJF, etc.:

>>> from xclim.indices import wetdays
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> wd = wetdays(pr, thresh="5 mm/day", freq="QS-DEC")

xclim.indices.wetdays_prop(pr: DataArray, thresh: str = '1.0 mm/day', freq: str = 'YS', op: str = '>=')→
DataArray

Proportion of wet days.

Return the proportion of days during period with precipitation over threshold (default: 1.0 mm/day).

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• thresh (str) – Precipitation value over which a day is considered wet.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>=”.

Returns
xarray.DataArray, [time] – The proportion of wet days for each period [1].

5.1. Indices library 187

xclim Documentation, Release 0.39.0

Examples

The following would compute for each grid cell of file pr.day.nc the proportion of days with precipitation over 5
mm at the seasonal frequency, i.e. DJF, MAM, JJA, SON, DJF, etc.:

>>> from xclim.indices import wetdays_prop
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> wd = wetdays_prop(pr, thresh="5 mm/day", freq="QS-DEC")

xclim.indices.wind_chill_index(tas: DataArray, sfcWind: DataArray, method: str = 'CAN', mask_invalid:
bool = True)

Wind chill index.

The Wind Chill Index is an estimation of how cold the weather feels to the average person. It is computed from
the air temperature and the 10-m wind. As defined by the Environment and Climate Change Canada (Mekis,
Vincent, Shephard, and Zhang [2015]), two equations exist, the conventional one and one for slow winds (usually
< 5 km/h), see Notes.

Parameters
• tas (xarray.DataArray) – Surface air temperature.

• sfcWind (xarray.DataArray) – Surface wind speed (10 m).

• method ({‘CAN’, ‘US’}) – If “CAN” (default), a “slow wind” equation is used where winds
are slower than 5 km/h, see Notes.

• mask_invalid (bool) – Whether to mask values when the inputs are outside their validity
range. or not. If True (default), points where the temperature is above a threshold are masked.
The threshold is 0°C for the canadian method and 50°F for the american one. With the latter
method, points where sfcWind < 3 mph are also masked.

Returns
xarray.DataArray, [degC] – Wind Chill Index.

Notes

Following the calculations of Environment and Climate Change Canada, this function switches from the stan-
dardized index to another one for slow winds. The standard index is the same as used by the National Weather
Service of the USA [US Department of Commerce, n.d.]. Given a temperature at surface 𝑇 (in °C) and 10-m
wind speed 𝑉 (in km/h), the Wind Chill Index 𝑊 (dimensionless) is computed as:

𝑊 = 13.12 + 0.6125 * 𝑇 − 11.37 * 𝑉 0.16 + 0.3965 * 𝑇 * 𝑉 0.16

Under slow winds (𝑉 < 5 km/h), and using the canadian method, it becomes:

𝑊 = 𝑇 +
−1.59 + 0.1345 * 𝑇

5
* 𝑉

Both equations are invalid for temperature over 0°C in the canadian method.

The american Wind Chill Temperature index (WCT), as defined by USA’s National Weather Service, is computed
when method=’US’. In that case, the maximal valid temperature is 50°F (10 °C) and minimal wind speed is 3
mph (4.8 km/h).

For more information, see:

• National Weather Service FAQ: [US Department of Commerce, n.d.].

• The New Wind Chill Equivalent Temperature Chart: [Osczevski and Bluestein, 2005].

188 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

References

Mekis, Vincent, Shephard, and Zhang [2015], US Department of Commerce [n.d.]

xclim.indices.windy_days(sfcWind: DataArray, thresh: str = '10.8 m s-1', freq: str = 'MS')→ DataArray
Windy days.

The number of days with average near-surface wind speed above threshold (default: 10.8 m/s).

Parameters
• sfcWind (xarray.DataArray) – Daily average near-surface wind speed.

• thresh (str) – Threshold average near-surface wind speed on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Number of days with average near-surface wind speed above thresh-
old.

Notes

Let 𝑊𝑆𝑖𝑗 be the windspeed at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑊𝑆𝑖𝑗 >= 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑠− 1]

xclim.indices.winter_rain_ratio(*, pr: DataArray, prsn: Optional[DataArray] = None, tas:
Optional[DataArray] = None, freq: str = 'QS-DEC')→ DataArray

Ratio of rainfall to total precipitation during winter.

The ratio of total liquid precipitation over the total precipitation over the winter months (DJF). If solid precipita-
tion is not provided, then precipitation is assumed solid if the temperature is below 0°C.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• prsn (xarray.DataArray, optional) – Mean daily solid precipitation flux.

• tas (xarray.DataArray, optional) – Mean daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – Ratio of rainfall to total precipitation during winter months (DJF).

xclim.indices.winter_storm(snd: DataArray, thresh: str = '25 cm', freq: str = 'AS-JUL')→ DataArray
Days with snowfall over threshold.

Number of days with snowfall accumulation greater or equal to threshold (default: 25 cm).

Warning: The default freq is valid for the northern hemisphere.

Parameters
• snd (xarray.DataArray) – Surface snow depth.

• thresh (str) – Threshold on snowfall accumulation require to label an event a winter storm.

• freq (str) – Resampling frequency.

5.1. Indices library 189

xclim Documentation, Release 0.39.0

Returns
xarray.DataArray – Number of days per period identified as winter storms.

Notes

Snowfall accumulation is estimated by the change in snow depth.

5.2 Indices submodules

5.2.1 Generic indices submodule

Helper functions for common generic actions done in the computation of indices.

xclim.indices.generic.aggregate_between_dates(data: DataArray, start: Union[DataArray,
DayOfYearStr], end: Union[DataArray, DayOfYearStr],
op: str = 'sum', freq: Optional[str] = None)→
DataArray

Aggregate the data over a period between start and end dates and apply the operator on the aggregated data.

Parameters
• data (xr.DataArray) – Data to aggregate between start and end dates.

• start (xr.DataArray or DayOfYearStr) – Start dates (as day-of-year) for the aggregation pe-
riods.

• end (xr.DataArray or DayOfYearStr) – End (as day-of-year) dates for the aggregation peri-
ods.

• op ({‘min’, ‘max’, ‘sum’, ‘mean’, ‘std’}) – Operator.

• freq (str, optional) – Resampling frequency defining the periods as defined in https://pandas.
pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default: None.

Returns
xr.DataArray, [dimensionless] – Aggregated data between the start and end dates. If the end date
is before the start date, returns np.nan. If there is no start and/or end date, returns np.nan.

xclim.indices.generic.compare(left: DataArray, op: str, right: float | int | numpy.ndarray | xarray.DataArray,
constrain: Optional[Sequence[str]] = None)→ DataArray

Compare a dataArray to a threshold using given operator.

Parameters
• left (xr.DataArray) – A DatArray being evaluated against right.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• right (float, int, np.ndarray, or xr.DataArray) – A value or array-like being evaluated against
left`.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Returns
xr.DataArray – Boolean mask of the comparison.

190 Chapter 5. Climate indices

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

xclim.indices.generic.count_level_crossings(low_data: DataArray, high_data: DataArray, threshold:
str, freq: str, *, op_low: str = '<', op_high: str = '>=')→
DataArray

Calculate the number of times low_data is below threshold while high_data is above threshold.

First, the threshold is transformed to the same standard_name and units as the input data, then the thresholding
is performed, and finally, the number of occurrences is counted.

Parameters
• low_data (xr.DataArray) – Variable that must be under the threshold.

• high_data (xr.DataArray) – Variable that must be above the threshold.

• threshold (str) – Quantity.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• op_low ({“<”, “<=”, “lt”, “le”}) – Comparison operator for low_data. Default: “<”.

• op_high ({“>”, “>=”, “gt”, “ge”}) – Comparison operator for high_data. Default: “>=”.

Returns
xr.DataArray

xclim.indices.generic.count_occurrences(data: DataArray, threshold: str, freq: str, op: str, constrain:
Optional[Sequence[str]] = None)→ DataArray

Calculate the number of times some condition is met.

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, then this counts the number of times data <
threshold. Finally, count the number of occurrences when condition is met.

Parameters
• data (xr.DataArray) – An array.

• threshold (str) – Quantity.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Returns
xr.DataArray

xclim.indices.generic.cumulative_difference(data: DataArray, threshold: str, op: str, freq:
Optional[str] = None)→ DataArray

Calculate the cumulative difference below/above a given value threshold.

Parameters
• data (xr.DataArray) – Data for which to determine the cumulative difference.

• threshold (str) – The value threshold.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”}) – Logical operator. e.g. arr > thresh.

5.2. Indices submodules 191

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

• freq (str, optional) – Resampling frequency defining the periods as defined in https://pandas.
pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. If None, no resam-
pling is performed. Default: None.

Returns
xr.DataArray

xclim.indices.generic.default_freq(**indexer)→ str
Return the default frequency.

xclim.indices.generic.degree_days(data: DataArray, threshold: str, op: str, freq=None)→ DataArray

xclim.indices.generic.diurnal_temperature_range(low_data: DataArray, high_data: DataArray,
reducer: str, freq: str)→ DataArray

Calculate the diurnal temperature range and reduce according to a statistic.

Parameters
• low_data (xr.DataArray) – The lowest daily temperature (tasmin).

• high_data (xr.DataArray) – The highest daily temperature (tasmax).

• reducer ({‘max’, ‘min’, ‘mean’, ‘sum’}) – Reducer.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xr.DataArray

xclim.indices.generic.domain_count(da: DataArray, low: float, high: float, freq: str)→ DataArray
Count number of days where value is within low and high thresholds.

A value is counted if it is larger than low, and smaller or equal to high, i.e. in]low, high].

Parameters
• da (xr.DataArray) – Input data.

• low (float) – Minimum threshold value.

• high (float) – Maximum threshold value.

• freq (str) – Resampling frequency defining the periods defined in https://pandas.pydata.org/
pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xr.DataArray – The number of days where value is within [low, high] for each period.

xclim.indices.generic.doymax(da: DataArray)→ DataArray
Return the day of year of the maximum value.

xclim.indices.generic.doymin(da: DataArray)→ DataArray
Return the day of year of the minimum value.

xclim.indices.generic.extreme_temperature_range(low_data: DataArray, high_data: DataArray, freq:
str)→ DataArray

Calculate the extreme temperature range as the maximum of daily maximum temperature minus the minimum
of daily minimum temperature.

Parameters
• low_data (xr.DataArray) – The lowest daily temperature (tasmin).

192 Chapter 5. Climate indices

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

• high_data (xr.DataArray) – The highest daily temperature (tasmax).

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xr.DataArray

xclim.indices.generic.first_day_threshold_reached(data: DataArray, *, threshold: str, op: str,
after_date: DayOfYearStr, window: int = 1, freq:
str = 'YS', constrain: Optional[Sequence[str]] =
None)→ DataArray

First day of values exceeding threshold.

Returns first day of period where values reach or exceed a threshold over a given number of days, limited to a
starting calendar date.

Parameters
• data (xarray.DataArray) – Dataset being evaluated.

• threshold (str) – Threshold on which to base evaluation.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• after_date (str) – Date of the year after which to look for the first event. Should have the
format ‘%m-%d’.

• window (int) – Minimum number of days with values above threshold needed for evaluation.
Default: 1.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default: “YS”.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Returns
xarray.DataArray, [dimensionless] – Day of the year when value reaches or exceeds a threshold
over a given number of days for the first time. If there is no such day, returns np.nan.

xclim.indices.generic.first_occurrence(data: DataArray, threshold: str, freq: str, op: str, constrain:
Optional[Sequence[str]] = None)→ DataArray

Calculate the first time some condition is met.

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding is
performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, locate the first occurrence
when condition is met.

Parameters
• data (xr.DataArray) – Input data.

• threshold (str) – Quantity.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• constrain (sequence of str, optional) – Optionally allowed conditions.

5.2. Indices submodules 193

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

Returns
xr.DataArray

xclim.indices.generic.get_daily_events(da: DataArray, threshold: float, op: str, constrain:
Optional[Sequence[str]] = None)→ DataArray

Return a 0/1 mask when a condition is True or False.

Parameters
• da (xr.DataArray) – Input data.

• threshold (float) – Threshold value.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Notes

The function returns:

• 1 where operator(da, da_value) is True

• 0 where operator(da, da_value) is False

• nan where da is nan

Returns
xr.DataArray

xclim.indices.generic.get_op(op: str, constrain: Optional[Sequence[str]] = None)→ Callable
Get python’s comparing function according to its name of representation and validate allowed usage.

Accepted op string are keys and values of xclim.indices.generic.binary_ops.

Parameters
• op (str) – Operator.

• constrain (sequence of str, optional) – A tuple of allowed operators.

xclim.indices.generic.interday_diurnal_temperature_range(low_data: DataArray, high_data:
DataArray, freq: str)→ DataArray

Calculate the average absolute day-to-day difference in diurnal temperature range.

Parameters
• low_data (xr.DataArray) – The lowest daily temperature (tasmin).

• high_data (xr.DataArray) – The highest daily temperature (tasmax).

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xr.DataArray

xclim.indices.generic.last_occurrence(data: DataArray, threshold: str, freq: str, op: str, constrain:
Optional[Sequence[str]] = None)→ DataArray

194 Chapter 5. Climate indices

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

Calculate the last time some condition is met.

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding is
performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, locate the last occurrence
when condition is met.

Parameters
• data (xr.DataArray) – Input data.

• threshold (str) – Quantity.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Returns
xr.DataArray

xclim.indices.generic.select_resample_op(da: DataArray, op: str, freq: str = 'YS', **indexer)→
DataArray

Apply operation over each period that is part of the index selection.

Parameters
• da (xr.DataArray) – Input data.

• op (str {‘min’, ‘max’, ‘mean’, ‘std’, ‘var’, ‘count’, ‘sum’, ‘argmax’, ‘argmin’} or func) –
Reduce operation. Can either be a DataArray method or a function that can be applied to a
DataArray.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• indexer ({dim: indexer, }, optional) – Time attribute and values over which to subset the
array. For example, use season=’DJF’ to select winter values, month=1 to select January, or
month=[6,7,8] to select summer months. If not indexer is given, all values are considered.

Returns
xr.DataArray – The maximum value for each period.

xclim.indices.generic.spell_length(data: DataArray, threshold: str, reducer: str, freq: str, op: str)→
DataArray

Calculate statistics on lengths of spells.

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

Parameters
• data (xr.DataArray) – Input data.

• threshold (str) – Quantity.

• reducer ({‘max’, ‘min’, ‘mean’, ‘sum’}) – Reducer.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

5.2. Indices submodules 195

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

Returns
xr.DataArray

xclim.indices.generic.statistics(data: DataArray, reducer: str, freq: str)→ DataArray
Calculate a simple statistic of the data.

Parameters
• data (xr.DataArray) – Input data.

• reducer ({‘max’, ‘min’, ‘mean’, ‘sum’}) – Reducer.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xr.DataArray

xclim.indices.generic.temperature_sum(data: DataArray, op: str, threshold: str, freq: str)→ DataArray
Calculate the temperature sum above/below a threshold.

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, the sum is calculated
for those data values that fulfill the condition after subtraction of the threshold value. If the sum is for values
below the threshold the result is multiplied by -1.

Parameters
• data (xr.DataArray) – Input data.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”}) – Logical operator. e.g. arr > thresh.

• threshold (str) – Quantity.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xr.DataArray

xclim.indices.generic.threshold_count(da: DataArray, op: str, threshold: float | int | xarray.DataArray,
freq: str, constrain: Optional[Sequence[str]] = None)→
DataArray

Count number of days where value is above or below threshold.

Parameters
• da (xr.DataArray) – Input data.

• op ({“>”, “<”, “>=”, “<=”, “gt”, “lt”, “ge”, “le”}) – Logical operator. e.g. arr > thresh.

• threshold (Union[float, int]) – Threshold value.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Returns
xr.DataArray – The number of days meeting the constraints for each period.

196 Chapter 5. Climate indices

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

xclim.indices.generic.thresholded_statistics(data: DataArray, op: str, threshold: str, reducer: str,
freq: str, constrain: Optional[Sequence[str]] = None)→
DataArray

Calculate a simple statistic of the data for which some condition is met.

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding is
performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, the statistic is calculated
for those data values that fulfill the condition.

Parameters
• data (xr.DataArray) – Input data.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• threshold (str) – Quantity.

• reducer ({‘max’, ‘min’, ‘mean’, ‘sum’}) – Reducer.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• constrain (sequence of str, optional) – Optionally allowed conditions. Default: None.

Returns
xr.DataArray

5.2.2 Helper functions submodule

Functions that encapsulate some geophysical logic but could be shared by many indices.

xclim.indices.helpers.cosine_of_solar_zenith_angle(declination: DataArray, lat: DataArray, lon:
Optional[DataArray] = None, time_correction:
Optional[DataArray] = None, hours:
Optional[DataArray] = None, interval:
Optional[int] = None, stat: str = 'integral')→
DataArray

Cosine of the solar zenith angle.

The solar zenith angle is the angle between a vertical line (perpendicular to the ground) and the sun rays. This
function computes a daily statistic of its cosine : its integral from sunrise to sunset or the average over the
same period. Based on Kalogirou [2014]. In addition, it computes instantaneous values of its cosine. Based on
Di Napoli et al. [2020].

Parameters
• declination (xr.DataArray) – Solar declination. See solar_declination().

• lat (xr.DataArray) – Latitude.

• lon (xr.DataArray, optional) – Longitude. This is necessary if stat is “instant”, “interval” or
“sunlit”.

• time_correction (xr.DataArray, optional) – Time correction for solar angle. See
time_correction_for_solar_angle() This is necessary if stat is “instant”.

• hours (xr.DataArray, optional) – Watch time hours. This is necessary if stat is “instant”,
“interval” or “sunlit”.

5.2. Indices submodules 197

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

• interval (int, optional) – Time interval between two time steps in hours This is necessary if
stat is “interval” or “sunlit”.

• stat ({‘integral’, ‘average’, ‘instant’, ‘interval’, ‘sunlit’}) – Which daily statistic to return. If
“integral”, this returns the integral of the cosine of the zenith angle from sunrise to sunset. If
“average”, the integral is divided by the “duration” from sunrise to sunset. If “instant”, this
returns the instantaneous cosine of the zenith angle. If “interval”, this returns the cosine of
the zenith angle during each interval. If “sunlit”, this returns the cosine of the zenith angle
during the sunlit period of each interval.

Returns
xr.DataArray, [rad] or [dimensionless] – Cosine of the solar zenith angle. If stat is “integral”,
dimensions can be said to be “time” as the integral is on the hour angle. For seconds, multiply
by the number of seconds in a complete day cycle (24*60*60) and divide by 2.

Notes

This code was inspired by the thermofeel and PyWBGT package.

References

Di Napoli, Hogan, and Pappenberger [2020], Kalogirou [2014]

xclim.indices.helpers.day_lengths(dates: DataArray, lat: DataArray, method: str = 'spencer')→
DataArray

Day-lengths according to latitude and day of year.

See solar_declination() for the approximation used to compute the solar declination angle. Based on Kalo-
girou [2014].

Parameters
• dates (xr.DataArray) – Daily datetime data. This function makes no sense with data of other

frequency.

• lat (xarray.DataArray) – Latitude coordinate.

• method ({‘spencer’, ‘simple’}) – Which approximation to use when computing the solar
declination angle. See solar_declination().

Returns
xarray.DataArray, [hours] – Day-lengths in hours per individual day.

References

Kalogirou [2014]

xclim.indices.helpers.distance_from_sun(dates: DataArray)→ DataArray
Sun-earth distance.

The distance from sun to earth in astronomical units.

Parameters
dates (xr.DataArray) – Series of dates and time of days.

Returns
xr.DataArray, [astronomical units] – Sun-earth distance.

198 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

References

TODO: Find a way to reference this U.S. Naval Observatory:Astronomical Almanac. Washington, D.C.: U.S.
Government Printing Office (1985).

xclim.indices.helpers.eccentricity_correction_factor(day_angle: DataArray, method='spencer')
Eccentricity correction factor of the Earth’s orbit.

The squared ratio of the mean distance Earth-Sun to the distance at a specific moment. As approximated by
Spencer [1971].

Parameters
• day_angle (xr.DataArray) – Assuming the earth makes a full circle in a year, this is the

angle covered from the beginning of the year up to that timestep. Also called the “julian day
fraction”. See datetime_to_decimal_year().

• method (str) – Which approximation to use. The default (“spencer”) uses the first five terms
of the fourier series of the eccentricity, while “simple” approximates with only the first two.

Returns
xr.DataArray, [dimensionless] – Eccentricity correction factor.

References

Perrin [1975], Spencer [1971]

xclim.indices.helpers.extraterrestrial_solar_radiation(times: DataArray, lat: DataArray,
solar_constant: str = '1361 W m-2',
method='spencer')→ DataArray

Extraterrestrial solar radiation.

This is the daily energy received on a surface parallel to the ground at the mean distance of the earth to the sun.
It neglects the effect of the atmosphere. Computation is based on Kalogirou [2014] and the default solar constant
is taken from Matthes et al. [2017].

Parameters
• times (xr.DataArray) – Daily datetime data. This function makes no sense with data of other

frequency.

• lat (xr.DataArray) – Latitude.

• solar_constant (str) – The solar constant, the energy received on earth from the sun per
surface per time.

• method ({‘spencer’, ‘simple’}) – Which method to use when computing the solar
declination and the eccentricity correction factor. See solar_declination() and
eccentricity_correction_factor().

Returns
Extraterrestrial solar radiation, [J m-2 d-1]

5.2. Indices submodules 199

xclim Documentation, Release 0.39.0

References

Kalogirou [2014], Matthes, Funke, Andersson, Barnard, Beer, Charbonneau, Clilverd, Dudok de Wit, Haberre-
iter, Hendry, Jackman, Kretzschmar, Kruschke, Kunze, Langematz, Marsh, Maycock, Misios, Rodger, Scaife,
Seppälä, Shangguan, Sinnhuber, Tourpali, Usoskin, van de Kamp, Verronen, and Versick [2017]

xclim.indices.helpers.solar_declination(day_angle: DataArray, method='spencer')→ DataArray
Solar declination.

The angle between the sun rays and the earth’s equator, in radians, as approximated by Spencer [1971] or assum-
ing the orbit is a circle.

Parameters
• day_angle (xr.DataArray) – Assuming the earth makes a full circle in a year, this is the

angle covered from the beginning of the year up to that timestep. Also called the “julian day
fraction”. See datetime_to_decimal_year().

• method ({‘spencer’, ‘simple’}) – Which approximation to use. The default (“spencer”) uses
the first 7 terms of the Fourier series representing the observed declination, while “simple”
assumes the orbit is a circle with a fixed obliquity and that the solstice/equinox happen at
fixed angles on the orbit (the exact calendar date changes for leap years).

Returns
xr.DataArray, [rad] – Solar declination angle.

References

Spencer [1971]

xclim.indices.helpers.time_correction_for_solar_angle(day_angle: DataArray)→ DataArray
Time correction for solar angle.

Every 1° of angular rotation on earth is equal to 4 minutes of time. The time correction is needed to adjust local
watch time to solar time.

Parameters
day_angle (xr.DataArray) – Assuming the earth makes a full circle in a year, this is the angle
covered from the beginning of the year up to that timestep. Also called the “julian day fraction”.
See datetime_to_decimal_year().

Returns
xr.DataArray, [rad] – Time correction of solar angle.

References

Di Napoli, Hogan, and Pappenberger [2020]

xclim.indices.helpers.wind_speed_height_conversion(ua: DataArray, h_source: str, h_target: str,
method: str = 'log')→ DataArray

Wind speed at two meters.

Parameters
• ua (xarray.DataArray) – Wind speed at height h

• h_source (str) – Height of the input wind speed ua (e.g. h == “10 m” for a wind speed at
10 meters)

200 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• h_target (str) – Height of the output wind speed

• method ({“log”}) – Method used to convert wind speed from one height to another

Returns
xarray.DataArray – Wind speed at height h_target

References

Allen, Pereira, Raes, and Smith [1998]

TODO: Remove default values from Run length algorithms submodule ===============================

Computation of statistics on runs of True values in boolean arrays.

xclim.indices.run_length.first_run(da: DataArray, window: int, dim: str = 'time', freq: Optional[str] =
None, coord: str | bool | None = False, ufunc_1dim: str | bool =
'from_context')→ DataArray

Return the index of the first item of the first run of at least a given length.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive run to accumulate values. When equal to
1, an optimized version of the algorithm is used.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• freq (str) – Resampling frequency.

• coord (Optional[str]) – If not False, the function returns values along dim instead of indexes.
If dim has a datetime dtype, coord can also be a str of the name of the DateTimeAccessor
object to use (ex: ‘dayofyear’).

• ufunc_1dim (Union[str, bool]) – Use the 1d ‘ufunc’ version of this function : default (auto)
will attempt to select optimal usage based on number of data points. Using 1D_ufunc=True
is typically more efficient for DataArray with a small number of grid points. Ignored when
window=1. It can be modified globally through the “run_length_ufunc” global option.

Returns
xr.DataArray – Index (or coordinate if coord is not False) of first item in first valid run. Returns
np.nan if there are no valid runs.

xclim.indices.run_length.first_run_1d(arr: Sequence[int | float], window: int)→ int | np.nan
Return the index of the first item of a run of at least a given length.

Parameters
• arr (Sequence[Union[int, float]]) – Input array.

• window (int) – Minimum duration of consecutive run to accumulate values.

Returns
int or np.nan – Index of first item in first valid run. Returns np.nan if there are no valid runs.

xclim.indices.run_length.first_run_after_date(da: DataArray, window: int, date:
Optional[DayOfYearStr] = '07-01', dim: str = 'time',
coord: bool | str | None = 'dayofyear')→ DataArray

Return the index of the first item of the first run after a given date.

Parameters

5.2. Indices submodules 201

xclim Documentation, Release 0.39.0

• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive run to accumulate values.

• date (DayOfYearStr) – The date after which to look for the run.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• coord (Optional[Union[bool, str]]) – If not False, the function returns values along dim
instead of indexes. If dim has a datetime dtype, coord can also be a str of the name of the
DateTimeAccessor object to use (ex: ‘dayofyear’).

Returns
xr.DataArray – Index (or coordinate if coord is not False) of first item in the first valid run.
Returns np.nan if there are no valid runs.

xclim.indices.run_length.first_run_ufunc(x: Union[DataArray, Sequence[bool]], window: int, dim: str)
→ DataArray

Dask-parallel version of first_run_1d, ie: the first entry in array of consecutive true values.

Parameters
• x (Union[xr.DataArray, Sequence[bool]]) – Input array (bool).

• window (int) – Minimum run length.

• dim (str) – The dimension along which the runs are found.

Returns
xr.DataArray – A function operating along the time dimension of a dask-array.

xclim.indices.run_length.index_of_date(time: DataArray, date: Optional[Union[DateStr, DayOfYearStr]],
max_idxs: Optional[int] = None, default: int = 0)→ ndarray

Get the index of a date in a time array.

Parameters
• time (xr.DataArray) – An array of datetime values, any calendar.

• date (DayOfYearStr or DateStr, optional) – A string in the “yyyy-mm-dd” or “mm-dd” for-
mat. If None, returns default.

• max_idxs (int, optional) – Maximum number of returned indexes.

• default (int) – Index to return if date is None.

Raises
ValueError – If there are most instances of date in time than max_idxs.

Returns
numpy.ndarray – 1D array of integers, indexes of date in time.

xclim.indices.run_length.keep_longest_run(da: DataArray, dim: str = 'time', freq: Optional[str] = None)
→ DataArray

Keep the longest run along a dimension.

Parameters
• da (xr.DataArray) – Boolean array.

• dim (str) – Dimension along which to check for the longest run.

• freq (str) – Resampling frequency.

202 Chapter 5. Climate indices

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

Returns
xr.DataArray, [bool] – Boolean array similar to da but with only one run, the (first) longest.

xclim.indices.run_length.last_run(da: DataArray, window: int, dim: str = 'time', freq: Optional[str] =
None, coord: str | bool | None = False, ufunc_1dim: str | bool =
'from_context')→ DataArray

Return the index of the last item of the last run of at least a given length.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive run to accumulate values. When equal to
1, an optimized version of the algorithm is used.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• freq (str) – Resampling frequency.

• coord (Optional[str]) – If not False, the function returns values along dim instead of indexes.
If dim has a datetime dtype, coord can also be a str of the name of the DateTimeAccessor
object to use (ex: ‘dayofyear’).

• ufunc_1dim (Union[str, bool]) – Use the 1d ‘ufunc’ version of this function : default (auto)
will attempt to select optimal usage based on number of data points. Using 1D_ufunc=True
is typically more efficient for a DataArray with a small number of grid points. Ignored when
window=1. It can be modified globally through the “run_length_ufunc” global option.

Returns
xr.DataArray – Index (or coordinate if coord is not False) of last item in last valid run. Returns
np.nan if there are no valid runs.

xclim.indices.run_length.last_run_before_date(da: DataArray, window: int, date: DayOfYearStr =
'07-01', dim: str = 'time', coord: bool | str | None =
'dayofyear')→ DataArray

Return the index of the last item of the last run before a given date.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive run to accumulate values.

• date (DayOfYearStr) – The date before which to look for the last event.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• coord (Optional[Union[bool, str]]) – If not False, the function returns values along dim
instead of indexes. If dim has a datetime dtype, coord can also be a str of the name of the
DateTimeAccessor object to use (ex: ‘dayofyear’).

Returns
xr.DataArray – Index (or coordinate if coord is not False) of last item in last valid run. Returns
np.nan if there are no valid runs.

xclim.indices.run_length.lazy_indexing(da: DataArray, index: DataArray, dim: Optional[str] = None)
→ DataArray

Get values of da at indices index in a NaN-aware and lazy manner.

Parameters
• da (xr.DataArray) – Input array. If not 1D, dim must be given and must not appear in index.

5.2. Indices submodules 203

xclim Documentation, Release 0.39.0

• index (xr.DataArray) – N-d integer indices, if da is not 1D, all dimensions of index must be
in da

• dim (str, optional) – Dimension along which to index, unused if da is 1D, should not be
present in index.

Returns
xr.DataArray – Values of da at indices index.

xclim.indices.run_length.longest_run(da: DataArray, dim: str = 'time', freq: Optional[str] = None,
ufunc_1dim: str | bool = 'from_context', index: str = 'first')→
DataArray

Return the length of the longest consecutive run of True values.

Parameters
• da (xr.DataArray) – N-dimensional array (boolean).

• dim (str) – Dimension along which to calculate consecutive run; Default: ‘time’.

• freq (str) – Resampling frequency.

• ufunc_1dim (Union[str, bool]) – Use the 1d ‘ufunc’ version of this function : default (auto)
will attempt to select optimal usage based on number of data points. Using 1D_ufunc=True is
typically more efficient for DataArray with a small number of grid points. It can be modified
globally through the “run_length_ufunc” global option.

• index ({‘first’, ‘last’}) – If ‘first’, the run length is indexed with the first element in the run.
If ‘last’, with the last element in the run.

Returns
xr.DataArray, [int] – Length of the longest run of True values along dimension (int).

xclim.indices.run_length.npts_opt = 9000

Arrays with less than this number of data points per slice will trigger the use of the ufunc version of run lengths
algorithms.

xclim.indices.run_length.resample_and_rl(da: DataArray, resample_before_rl: bool, compute, *args,
freq: str, dim: str = 'time', **kwargs)→ xarray.DataArray |
xarray.Dataset

Wrap run length algorithms to control if resampling occurs before or after the algorithms.

If resample_before_rl is ‘from_context’, the parameter is read from xclim’s global (or context) options.

Parameters
• da (xr.DataArray) – N-dimensional array (boolean).

• resample_before_rl (bool) – Determines whether if input arrays of runs da should be sep-
arated in period before or after the run length algorithms are applied

• compute – Run length function to apply

• args – Positional arguments needed in compute

• dim (str) – The dimension along which to find runs.

• freq (str) – Resampling frequency.

• kwargs – Keyword arguments needed in compute

Returns
xr.DataArray – Output of compute resampled according to frequency {freq}.

204 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

xclim.indices.run_length.rle(da: DataArray, dim: str = 'time', index: str = 'first')→ DataArray
Generate basic run length function.

Parameters
• da (xr.DataArray) – Input array.

• dim (str) – Dimension name.

• index ({‘first’, ‘last’}) – If ‘first’ (default), the run length is indexed with the first element in
the run. If ‘last’, with the last element in the run.

Returns
xr.DataArray – Values are 0 where da is False (out of runs).

xclim.indices.run_length.rle_1d(arr: Union[int, float, bool, Sequence[int | float | bool]])→
tuple[numpy.array, numpy.array, numpy.array]

Return the length, starting position and value of consecutive identical values.

Parameters
arr (Sequence[Union[int, float, bool]]) – Array of values to be parsed.

Returns
• values (np.array) – The values taken by arr over each run.

• run lengths (np.array) – The length of each run.

• start position (np.array) – The starting index of each run.

Examples

>>> from xclim.indices.run_length import rle_1d
>>> a = [1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3]
>>> rle_1d(a)
(array([1, 2, 3]), array([2, 4, 6]), array([0, 2, 6]))

xclim.indices.run_length.rle_statistics(da: DataArray, reducer: str, window: int, dim: str = 'time', freq:
Optional[str] = None, ufunc_1dim: str | bool = 'from_context',
index: str = 'first')→ DataArray

Return the length of consecutive run of True values, according to a reducing operator.

Parameters
• da (xr.DataArray) – N-dimensional array (boolean).

• reducer (str) – Name of the reducing function.

• window (int) – Minimal length of consecutive runs to be included in the statistics.

• dim (str) – Dimension along which to calculate consecutive run; Default: ‘time’.

• freq (str) – Resampling frequency.

• ufunc_1dim (Union[str, bool]) – Use the 1d ‘ufunc’ version of this function : default (auto)
will attempt to select optimal usage based on number of data points. Using 1D_ufunc=True is
typically more efficient for DataArray with a small number of grid points. It can be modified
globally through the “run_length_ufunc” global option.

• index ({‘first’, ‘last’}) – If ‘first’ (default), the run length is indexed with the first element in
the run. If ‘last’, with the last element in the run.

5.2. Indices submodules 205

xclim Documentation, Release 0.39.0

Returns
xr.DataArray, [int] – Length of runs of True values along dimension, according to the reducing
function (float) If there are no runs (but the data is valid), returns 0.

xclim.indices.run_length.run_bounds(mask: DataArray, dim: str = 'time', coord: bool | str = True)
Return the start and end dates of boolean runs along a dimension.

Parameters
• mask (xr.DataArray) – Boolean array.

• dim (str) – Dimension along which to look for runs.

• coord (bool or str) – If True, return values of the coordinate, if a string, returns values from
dim.dt.<coord>. If False, return indexes.

Returns
xr.DataArray – With dim reduced to “events” and “bounds”. The events dim is as long as needed,
padded with NaN or NaT.

xclim.indices.run_length.run_end_after_date(da: DataArray, window: int, date: DayOfYearStr = '07-01',
dim: str = 'time', coord: bool | str | None = 'dayofyear')→
DataArray

Return the index of the first item after the end of a run after a given date.

The run must begin before the date.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive run to accumulate values.

• date (str) – The date after which to look for the end of a run.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• coord (Optional[Union[bool, str]]) – If not False, the function returns values along dim
instead of indexes. If dim has a datetime dtype, coord can also be a str of the name of the
DateTimeAccessor object to use (ex: ‘dayofyear’).

Returns
xr.DataArray – Index (or coordinate if coord is not False) of last item in last valid run. Returns
np.nan if there are no valid runs.

xclim.indices.run_length.season(da: DataArray, window: int, date: Optional[DayOfYearStr] = None, dim:
str = 'time', coord: str | bool | None = False)→ Dataset

Return the bounds of a season (along dim).

A “season” is a run of True values that may include breaks under a given length (window). The start is computed
as the first run of window True values, then end as the first subsequent run of window False values. If a date is
passed, it must be included in the season.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive values to start and end the season.

• date (DayOfYearStr, optional) – The date (in MM-DD format) that a run must include to be
considered valid.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

206 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• coord (Optional[str]) – If not False, the function returns values along dim instead of indexes.
If dim has a datetime dtype, coord can also be a str of the name of the DateTimeAccessor
object to use (ex: ‘dayofyear’).

Returns
xr.Dataset – “dim” is reduced to “season_bnds” with 2 elements : season start and season end,
both indices of da[dim].

Notes

The run can include holes of False or NaN values, so long as they do not exceed the window size.

If a date is given, the season start and end are forced to be on each side of this date. This means that even if the
“real” season has been over for a long time, this is the date used in the length calculation. Example : Length of
the “warm season”, where T > 25°C, with date = 1st August. Let’s say the temperature is over 25 for all June,
but July and august have very cold temperatures. Instead of returning 30 days (June), the function will return 61
days (July + June).

xclim.indices.run_length.season_length(da: DataArray, window: int, date: Optional[DayOfYearStr] =
None, dim: str = 'time')→ DataArray

Return the length of the longest semi-consecutive run of True values (optionally including a given date).

A “season” is a run of True values that may include breaks under a given length (window). The start is computed
as the first run of window True values, then end as the first subsequent run of window False values. If a date is
passed, it must be included in the season.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive values to start and end the season.

• date (DayOfYearStr, optional) – The date (in MM-DD format) that a run must include to be
considered valid.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

Returns
xr.DataArray, [int] – Length of the longest run of True values along a given dimension (inclusive
of a given date) without breaks longer than a given length.

Notes

The run can include holes of False or NaN values, so long as they do not exceed the window size.

If a date is given, the season start and end are forced to be on each side of this date. This means that even if the
“real” season has been over for a long time, this is the date used in the length calculation. Example : Length of
the “warm season”, where T > 25°C, with date = 1st August. Let’s say the temperature is over 25 for all June,
but July and august have very cold temperatures. Instead of returning 30 days (June), the function will return 61
days (July + June).

xclim.indices.run_length.statistics_run_1d(arr: Sequence[bool], reducer: str, window: int)→ int
Return statistics on lengths of run of identical values.

Parameters
• arr (Sequence[bool]) – Input array (bool)

• reducer ({‘mean’, ‘sum’, ‘min’, ‘max’, ‘std’}) – Reducing function name.

5.2. Indices submodules 207

xclim Documentation, Release 0.39.0

• window (int) – Minimal length of runs to be included in the statistics

Returns
int – Statistics on length of runs.

xclim.indices.run_length.statistics_run_ufunc(x: Union[DataArray, Sequence[bool]], reducer: str,
window: int, dim: str = 'time')→ DataArray

Dask-parallel version of statistics_run_1d, ie: the {reducer} number of consecutive true values in array.

Parameters
• x (Sequence[bool]) – Input array (bool)

• reducer ({‘min’, ‘max’, ‘mean’, ‘sum’, ‘std’}) – Reducing function name.

• window (int) – Minimal length of runs.

• dim (str) – The dimension along which the runs are found.

Returns
xr.DataArray – A function operating along the time dimension of a dask-array.

xclim.indices.run_length.suspicious_run(arr: DataArray, dim: str = 'time', window: int = 10, op: str =
'>', thresh: Optional[float] = None)→ DataArray

Return True where the array contains has runs of identical values, vectorized version.

In opposition to other run length functions, here the output has the same shape as the input.

Parameters
• arr (xr.DataArray) – Array of values to be parsed.

• dim (str) – Dimension along which to check for runs (default: “time”).

• window (int) – Minimum run length.

• op ({“>”, “>=”, “==”, “<”, “<=”, “eq”, “gt”, “lt”, “gteq”, “lteq”}) – Operator for
threshold comparison, defaults to “>”.

• thresh (float, optional) – Threshold above which values are checked for identical values.

Returns
xarray.DataArray

xclim.indices.run_length.suspicious_run_1d(arr: ndarray, window: int = 10, op: str = '>', thresh:
Optional[float] = None)→ ndarray

Return True where the array contains a run of identical values.

Parameters
• arr (numpy.ndarray) – Array of values to be parsed.

• window (int) – Minimum run length.

• op ({“>”, “>=”, “==”, “<”, “<=”, “eq”, “gt”, “lt”, “gteq”, “lteq”, “ge”, “le”}) –
Operator for threshold comparison. Defaults to “>”.

• thresh (float, optional) – Threshold compared against which values are checked for identical
values.

Returns
numpy.ndarray – Whether or not the data points are part of a run of identical values.

208 Chapter 5. Climate indices

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

xclim.indices.run_length.use_ufunc(ufunc_1dim: bool | str, da: DataArray, dim: str = 'time', freq:
Optional[str] = None, index: str = 'first')→ bool

Return whether the ufunc version of run length algorithms should be used with this DataArray or not.

If ufunc_1dim is ‘from_context’, the parameter is read from xclim’s global (or context) options. If it is ‘auto’,
this returns False for dask-backed array and for arrays with more than npts_opt points per slice along dim.

Parameters
• ufunc_1dim ({‘from_context’, ‘auto’, True, False}) – The method for handling the ufunc

parameters.

• da (xr.DataArray) – Input array.

• dim (str) – The dimension along which to find runs.

• index ({‘first’, ‘last’}) – If ‘first’ (default), the run length is indexed with the first element in
the run. If ‘last’, with the last element in the run.

Returns
bool – If ufunc_1dim is “auto”, returns True if the array is on dask or too large. Otherwise,
returns ufunc_1dim.

xclim.indices.run_length.windowed_run_count(da: DataArray, window: int, dim: str = 'time', freq:
Optional[str] = None, ufunc_1dim: str | bool =
'from_context', index: str = 'first')→ DataArray

Return the number of consecutive true values in array for runs at least as long as given duration.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum run length. When equal to 1, an optimized version of the algorithm
is used.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• freq (str) – Resampling frequency.

• ufunc_1dim (Union[str, bool]) – Use the 1d ‘ufunc’ version of this function : default (auto)
will attempt to select optimal usage based on number of data points. Using 1D_ufunc=True
is typically more efficient for DataArray with a small number of grid points. Ignored when
window=1. It can be modified globally through the “run_length_ufunc” global option.

• index ({‘first’, ‘last’}) – If ‘first’, the run length is indexed with the first element in the run.
If ‘last’, with the last element in the run.

Returns
xr.DataArray, [int] – Total number of True values part of a consecutive runs of at least window
long.

xclim.indices.run_length.windowed_run_count_1d(arr: Sequence[bool], window: int)→ int
Return the number of consecutive true values in array for runs at least as long as given duration.

Parameters
• arr (Sequence[bool]) – Input array (bool).

• window (int) – Minimum duration of consecutive run to accumulate values.

Returns
int – Total number of true values part of a consecutive run at least window long.

5.2. Indices submodules 209

xclim Documentation, Release 0.39.0

xclim.indices.run_length.windowed_run_count_ufunc(x: Union[DataArray, Sequence[bool]], window:
int, dim: str)→ DataArray

Dask-parallel version of windowed_run_count_1d, ie: the number of consecutive true values in array for runs at
least as long as given duration.

Parameters
• x (Sequence[bool]) – Input array (bool).

• window (int) – Minimum duration of consecutive run to accumulate values.

• dim (str) – Dimension along which to calculate windowed run.

Returns
xr.DataArray – A function operating along the time dimension of a dask-array.

xclim.indices.run_length.windowed_run_events(da: DataArray, window: int, dim: str = 'time', freq:
Optional[str] = None, ufunc_1dim: str | bool =
'from_context', index: str = 'first')→ DataArray

Return the number of runs of a minimum length.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum run length. When equal to 1, an optimized version of the algorithm
is used.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• freq (str) – Resampling frequency.

• ufunc_1dim (Union[str, bool]) – Use the 1d ‘ufunc’ version of this function : default (auto)
will attempt to select optimal usage based on number of data points. Using 1D_ufunc=True
is typically more efficient for DataArray with a small number of grid points. Ignored when
window=1. It can be modified globally through the “run_length_ufunc” global option.

• index ({‘first’, ‘last’}) – If ‘first’, the run length is indexed with the first element in the run.
If ‘last’, with the last element in the run.

Returns
xr.DataArray, [int] – Number of distinct runs of a minimum length (int).

xclim.indices.run_length.windowed_run_events_1d(arr: Sequence[bool], window: int)→ DataArray
Return the number of runs of a minimum length.

Parameters
• arr (Sequence[bool]) – Input array (bool).

• window (int) – Minimum run length.

Returns
xr.DataArray, [int] – Number of distinct runs of a minimum length.

xclim.indices.run_length.windowed_run_events_ufunc(x: Union[DataArray, Sequence[bool]], window:
int, dim: str)→ DataArray

Dask-parallel version of windowed_run_events_1d, ie: the number of runs at least as long as given duration.

Parameters
• x (Sequence[bool]) – Input array (bool).

• window (int) – Minimum run length.

210 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• dim (str) – Dimension along which to calculate windowed run.

Returns
xr.DataArray – A function operating along the time dimension of a dask-array.

5.2.3 Fire indices submodule

Indices related to fire and fire weather. Currently, submodules exist for calculating indices from the Canadian Forest
Fire Weather Index System and the McArthur Forest Fire Danger (Mark 5) System. All fire indices can be accessed
from the xclim.indices module.

Canadian Forest Fire Weather Index System

This submodule defines the xclim.indices.fire.fire_season(), xclim.indices.fire.drought_code()
and xclim.indices.fire.cffwis_indices() indices, which are used by the eponym indicators. Users should
read this module’s documentation and the one of fire_weather_ufunc(). They should also consult the information
available at Natural Resources Canada [n.d.].

First adapted from Matlab code CalcFWITimeSeriesWithStartup.m from GFWED [Wang et al., 2015] made for using
MERRA2 data, which was a translation of FWI.vba of the Canadian Fire Weather Index system. Then, updated and
synchronized with the R code of the cffdrs package. When given the correct parameters, the current code has an error
below 3% when compared with the Field et al. [2015] data.

Parts of the code and of the documentation in this submodule are directly taken from Cantin et al. [2014] which was
published with the GPLv2 license.

Fire season

Fire weather indexes are iteratively computed, each day’s value depending on the previous day indexes. Additionally
and optionally, the codes are “shut down” (set to NaN) in winter. There are a few ways of computing this shut down and
the subsequent spring start-up. The fire_season function allows for full control of that, replicating the fireSeason method
in the R package. It produces a mask to be given a season_mask in the indicators. However, the fire_weather_ufunc and
the indicators also accept a season_method parameter so the fire season can be computed inside the iterator. Passing
season_method=None switches to an “always on” mode replicating the fire method of the R package.

The fire season determination is based on three consecutive daily maximum temperature thresholds [Lawson and Ar-
mitage, 2008, Wotton and Flannigan, 1993]. A “GFWED” method is also implemented. There, the 12h LST temper-
ature is used instead of the daily maximum. The current implementation is slightly different from the description in
Field et al. [2015], but it replicates the Matlab code when temp_start_thresh and temp_end_thresh are both set to 6
degC. In xclim, the number of consecutive days, the start and end temperature thresholds and the snow depth threshold
can all be modified.

Overwintering

Additionaly, overwintering of the drought code is also directly implemented in fire_weather_ufunc(). The last
drought_code of the season is kept in “winter” (where the fire season mask is False) and the precipitation is accumulated
until the start of the next season. The first drought code is computed as a function of these instead of using the default
DCStart value. Parameters to _overwintering_drought_code() are listed below. The code for the overwintering
is based on McElhinny et al. [2020], Van Wagner [1985].

Finally, a mechanism for dry spring starts is implemented. For now, it is slightly different from what the GFWED, uses,
but seems to agree with the state of the science of the CFS. When activated, the drought code and Duff-moisture codes
are started in spring with a value that is function of the number of days since the last significant precipitation event.

5.2. Indices submodules 211

xclim Documentation, Release 0.39.0

The conventional start value increased by that number of days times a “dry start” factor. Parameters are controlled in
the call of the indices and fire_weather_ufunc(). Overwintering of the drought code overrides this mechanism if
both are activated. GFWED use a more complex approach with an added check on the previous day’s snow cover for
determining “dry” points. Moreover, there, the start values are only the multiplication of a factor to the number of dry
days.

Examples

The current literature seems to agree that climate-oriented series of the fire weather indexes should be computed using
only the longest fire season of each year and activating the overwintering of the drought code and the “dry start” for
the duff-moisture code. The following example uses reasonable parameters when computing over all of Canada.

Note: Here the example snippets use the _indices_ defined in this very module, but we always recommend using the
indicators defined in the xclim.atmos module.

>>> ds = open_dataset("ERA5/daily_surface_cancities_1990-1993.nc")
>>> ds = ds.assign(
... hurs=xclim.atmos.relative_humidity_from_dewpoint(ds=ds),
... tas=xclim.core.units.convert_units_to(ds.tas, "degC"),
... pr=xclim.core.units.convert_units_to(ds.pr, "mm/d"),
... sfcWind=xclim.atmos.wind_speed_from_vector(ds=ds)[0],
...)
>>> season_mask = fire_season(
... tas=ds.tas,
... method="WF93",
... freq="YS",
... # Parameters below are at their default values, but listed here for explicitness.
... temp_start_thresh="12 degC",
... temp_end_thresh="5 degC",
... temp_condition_days=3,
...)
>>> out_fwi = cffwis_indices(
... tas=ds.tas,
... pr=ds.pr,
... hurs=ds.hurs,
... sfcWind=ds.sfcWind,
... lat=ds.lat,
... season_mask=season_mask,
... overwintering=True,
... dry_start="CFS",
... prec_thresh="1.5 mm/d",
... dmc_dry_factor=1.2,
... # Parameters below are at their default values, but listed here for explicitness.
... carry_over_fraction=0.75,
... wetting_efficiency_fraction=0.75,
... dc_start=15,
... dmc_start=6,
... ffmc_start=85,
...)

Similarly, the next lines calculate the fire weather indexes, but according to the parameters and options used in NASA’s
GFWED datasets. Here, no need to split the fire season mask from the rest of the computation as _all_ seasons are

212 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

used, even the very short shoulder seasons.

>>> ds = open_dataset("FWI/GFWED_sample_2017.nc")
>>> out_fwi = cffwis_indices(
... tas=ds.tas,
... pr=ds.prbc,
... snd=ds.snow_depth,
... hurs=ds.rh,
... sfcWind=ds.sfcwind,
... lat=ds.lat,
... season_method="GFWED",
... overwintering=False,
... dry_start="GFWED",
... temp_start_thresh="6 degC",
... temp_end_thresh="6 degC",
... # Parameters below are at their default values, but listed here for explicitness.
... temp_condition_days=3,
... snow_condition_days=3,
... dc_start=15,
... dmc_start=6,
... ffmc_start=85,
... dmc_dry_factor=2,
...)

xclim.indices.fire._cffwis.cffwis_indices(tas: DataArray, pr: DataArray, sfcWind: DataArray, hurs:
DataArray, lat: DataArray, snd: Optional[DataArray] =
None, ffmc0: Optional[DataArray] = None, dmc0:
Optional[DataArray] = None, dc0: Optional[DataArray] =
None, season_mask: Optional[DataArray] = None,
season_method: Optional[str] = None, overwintering: bool =
False, dry_start: Optional[str] = None, initial_start_up: bool
= True, **params)

Canadian Fire Weather Index System indices.

Computes the 6 fire weather indexes as defined by the Canadian Forest Service: the Drought Code, the Duff-
Moisture Code, the Fine Fuel Moisture Code, the Initial Spread Index, the Build Up Index and the Fire Weather
Index.

Parameters
• tas (xr.DataArray) – Noon temperature.

• pr (xr.DataArray) – Rain fall in open over previous 24 hours, at noon.

• sfcWind (xr.DataArray) – Noon wind speed.

• hurs (xr.DataArray) – Noon relative humidity.

• lat (xr.DataArray) – Latitude coordinate

• snd (xr.DataArray) – Noon snow depth, only used if season_method=’LA08’ is passed.

• ffmc0 (xr.DataArray) – Initial values of the fine fuel moisture code.

• dmc0 (xr.DataArray) – Initial values of the Duff moisture code.

• dc0 (xr.DataArray) – Initial values of the drought code.

• season_mask (xr.DataArray, optional) – Boolean mask, True where/when the fire season is
active.

5.2. Indices submodules 213

xclim Documentation, Release 0.39.0

• season_method ({None, “WF93”, “LA08”, “GFWED”}) – How to compute the start-up
and shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar
to the R fire function. Ignored if season_mask is given.

• overwintering (bool) – Whether to activate DC overwintering or not. If True, either sea-
son_method or season_mask must be given.

• dry_start ({None, ‘CFS’, ‘GFWED’}) – Whether to activate the DC and DMC “dry start”
mechanism or not, see fire_weather_ufunc().

• initial_start_up (bool) – If True (default), gridpoints where the fire season is active on the
first timestep go through a start_up phase for that time step. Otherwise, previous codes must
be given as a continuing fire season is assumed for those points.

• params – Any other keyword parameters as defined in fire_weather_ufunc() and in
default_params.

Returns
• DC (xr.DataArray, [dimensionless])

• DMC (xr.DataArray, [dimensionless])

• FFMC (xr.DataArray, [dimensionless])

• ISI (xr.DataArray, [dimensionless])

• BUI (xr.DataArray, [dimensionless])

• FWI (xr.DataArray, [dimensionless])

Notes

See Natural Resources Canada [n.d.], the xclim.indices.fire module documentation, and the docstring of
fire_weather_ufunc() for more information.

References

Wang, Anderson, and Suddaby [2015]

xclim.indices.fire._cffwis.drought_code(tas: DataArray, pr: DataArray, lat: DataArray, snd:
Optional[DataArray] = None, dc0: Optional[DataArray] =
None, season_mask: Optional[DataArray] = None,
season_method: Optional[str] = None, overwintering: bool =
False, dry_start: Optional[str] = None, initial_start_up: bool =
True, **params)

Drought code (FWI component).

The drought code is part of the Canadian Forest Fire Weather Index System. It is a numeric rating of the average
moisture content of organic layers.

Parameters
• tas (xr.DataArray) – Noon temperature.

• pr (xr.DataArray) – Rain fall in open over previous 24 hours, at noon.

• lat (xr.DataArray) – Latitude coordinate

• snd (xr.DataArray) – Noon snow depth.

• dc0 (xr.DataArray) – Initial values of the drought code.

214 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• season_mask (xr.DataArray, optional) – Boolean mask, True where/when the fire season is
active.

• season_method ({None, “WF93”, “LA08”, “GFWED”}) – How to compute the start-up
and shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar
to the R fire function. Ignored if season_mask is given.

• overwintering (bool) – Whether to activate DC overwintering or not. If True, either sea-
son_method or season_mask must be given.

• dry_start ({None, “CFS”, ‘GFWED’}) – Whether to activate the DC and DMC “dry start”
mechanism and which method to use. See fire_weather_ufunc().

• initial_start_up (bool) – If True (default), grid points where the fire season is active on the
first timestep go through a start_up phase for that time step. Otherwise, previous codes must
be given as a continuing fire season is assumed for those points.

• params – Any other keyword parameters as defined in xclim.indices.fire.fire_weather_ufunc
and in default_params.

Returns
xr.DataArray, [dimensionless] – Drought code

Notes

See Natural Resources Canada [n.d.], the xclim.indices.fire module documentation, and the docstring of
fire_weather_ufunc() for more information.

References

Wang, Anderson, and Suddaby [2015]

xclim.indices.fire._cffwis.fire_season(tas: DataArray, snd: Optional[DataArray] = None, method: str =
'WF93', freq: Optional[str] = None, temp_start_thresh: str = '12
degC', temp_end_thresh: str = '5 degC', temp_condition_days: int
= 3, snow_condition_days: int = 3, snow_thresh: str = '0.01 m')

Fire season mask.

Binary mask of the active fire season, defined by conditions on consecutive daily temperatures and, optionally,
snow depths.

Parameters
• tas (xr.DataArray) – Daily surface temperature, cffdrs recommends using maximum daily

temperature.

• snd (xr.DataArray, optional) – Snow depth, used with method == ‘LA08’.

• method ({“WF93”, “LA08”, “GFWED”}) – Which method to use. “LA08” and “GFWED”
need the snow depth.

• freq (str, optional) – If given only the longest fire season for each period defined by this
frequency, Every “seasons” are returned if None, including the short shoulder seasons.

• temp_start_thresh (str) – Minimal temperature needed to start the season.

• temp_end_thresh (str) – Maximal temperature needed to end the season.

• temp_condition_days (int) – Number of days with temperature above or below the thresh-
olds to trigger a start or an end of the fire season.

5.2. Indices submodules 215

xclim Documentation, Release 0.39.0

• snow_condition_days (int) – Parameters for the fire season determination. See
fire_season(). Temperature is in degC, snow in m. The snow_thresh parameters is also
used when dry_start is set to “GFWED”.

• snow_thresh (str) – Minimal snow depth level to end a fire season, only used with method
“LA08”.

Returns
xr.DataArray – Fire season mask

References

Lawson and Armitage [2008], Wotton and Flannigan [1993]

xclim.indices.fire._cffwis.fire_weather_ufunc(*, tas: DataArray, pr: DataArray, hurs:
Optional[DataArray] = None, sfcWind:
Optional[DataArray] = None, snd:
Optional[DataArray] = None, lat: Optional[DataArray]
= None, dc0: Optional[DataArray] = None, dmc0:
Optional[DataArray] = None, ffmc0:
Optional[DataArray] = None, winter_pr:
Optional[DataArray] = None, season_mask:
Optional[DataArray] = None, start_dates:
Optional[Union[DataArray, str]] = None, indexes:
Optional[Sequence[str]] = None, season_method:
Optional[str] = None, overwintering: bool = False,
dry_start: Optional[str] = None, initial_start_up: bool
= True, **params)

Fire Weather Indexes computation using xarray’s apply_ufunc.

No unit handling. Meant to be used by power users only. Please prefer using the DC and CFFWIS indicators or
the drought_code() and cffwis_indices() indices defined in the same submodule.

Dask arrays must have only one chunk along the “time” dimension. User can control which indexes are computed
with the indexes argument.

Parameters
• tas (xr.DataArray) – Noon surface temperature in °C

• pr (xr.DataArray) – Rainfall over previous 24h, at noon in mm/day

• hurs (xr.DataArray, optional) – Noon surface relative humidity in %, not needed for DC

• sfcWind (xr.DataArray, optional) – Noon surface wind speed in km/h, not needed for DC,
DMC or BUI

• snd (xr.DataArray, optional) – Noon snow depth in m, only needed if season_method is
“LA08”

• lat (xr.DataArray, optional) – Latitude in °N, not needed for FFMC or ISI

• dc0 (xr.DataArray, optional) – Previous DC map, see Notes. Defaults to NaN.

• dmc0 (xr.DataArray, optional) – Previous DMC map, see Notes. Defaults to NaN.

• ffmc0 (xr.DataArray, optional) – Previous FFMC map, see Notes. Defaults to NaN.

• winter_pr (xr.DataArray, optional) – Accumulated precipitation since the end of the last
season, until the beginning of the current data, mm/day. Only used if overwintering is True,
defaults to 0.

216 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

• season_mask (xr.DataArray, optional) – Boolean mask, True where/when the fire season is
active.

• indexes (Sequence[str], optional) – Which indexes to compute. If intermediate indexes are
needed, they will be added to the list and output.

• season_method ({None, “WF93”, “LA08”, “GFWED”}) – How to compute the start-up
and shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar
to the R fire function. Ignored if season_mask is given.

• overwintering (bool) – Whether to activate DC overwintering or not. If True, either sea-
son_method or season_mask must be given.

• dry_start ({None, ‘CFS’, ‘GFWED’}) – Whether to activate the DC and DMC “dry start”
mechanism and which method to use. See Notes. If overwintering is activated, it overrides
this parameter : only DMC is handled through the dry start mechanism.

• initial_start_up (bool) – If True (default), grid points where the fire season is active on the
first timestep go through a start-up phase for that time step. Otherwise, previous codes must
be given as a continuing fire season is assumed for those points.

• carry_over_fraction (float)

• wetting_efficiency_fraction (float) – Drought code overwintering parameters, see
overwintering_drought_code().

• temp_start_thresh (float) – Starting temperature threshold.

• temp_end_thresh (float) – Ending temperature threshold.

• temp_condition_days (int) – The number of days’ temperature condition to consider.

• snow_thresh (float)

• snow_condition_days (int) – Parameters for the fire season determination. See
fire_season(). Temperature is in degC, snow in m. The snow_thresh parameters is also
used when dry_start is set to “GFWED”, see Notes.

• dc_start (float)

• dmc_start (float)

• ffmc_start (float) – Default starting values for the three base codes.

• prec_thresh (float) – If the “dry start” is activated, this is the “wet” day precipitation thresh-
old, see Notes. In mm/d.

• dc_dry_factor (float) – DC’s start-up values for the “dry start” mechanism, see Notes.

• dmc_dry_factor (float) – DMC’s start-up values for the “dry start” mechanism, see Notes.

• snow_cover_days (int)

• snow_min_cover_frac (float)

• snow_min_mean_depth (float) – Additional parameters for GFWED’s version of the “dry
start” mechanism. See Notes. Snow depth is in m.

Returns
dict[str, xarray.DataArray] – Dictionary containing the computed indexes as prescribed in in-
dexes, including the intermediate ones needed, even if they were not explicitly listed in indexes.
When overwintering is activated, winter_pr is added. If season_method is not None and sea-
son_mask was not given, season_mask is computed on-the-fly and added to the output.

5.2. Indices submodules 217

xclim Documentation, Release 0.39.0

Notes

When overwintering is activated, the argument dc0 is understood as last season’s last DC map and will be used
to compute the overwintered DC at the beginning of the next season.

If overwintering is not activated and neither is fire season computation (season_method and season_mask are
None), dc0, dmc0 and ffmc0 are understood as the codes on the day before the first day of FWI computation.
They will default to their respective start values. This “always on” mode replicates the R “fire” code.

If the “dry start” mechanism is set to “CFS” (but there is no overwintering), the arguments dc0 and dmc0 are
understood as the potential start-up values from last season. With 𝐷𝐶𝑠𝑡𝑎𝑟𝑡 the conventional start-up value,
𝐹𝑑𝑟𝑦−𝑑𝑐 the dc_dry_factor and 𝑁𝑑𝑟𝑦 the number of days since the last significant precipitation event, the start-
up value 𝐷𝐶0 is computed as:

𝐷𝐶0 = 𝐷𝐶𝑠𝑡𝑎𝑟𝑡 + 𝐹𝑑𝑟𝑦−𝑑𝑐 *𝑁𝑑𝑟𝑦

The last significant precipitation event is the last day when precipitation was greater or equal to “prec_thresh”.
The same happens for the DMC, with corresponding parameters. If overwintering is activated, this mechanism
is only used for the DMC.

Alternatively, dry_start can be set to “GFWED”. In this mode, the start-up values are computed as:

𝐷𝐶0 = 𝐹𝑑𝑟𝑦−𝑑𝑐 *𝑁𝑑𝑟𝑦

Where the current day is also included in the determination of 𝑁𝑑𝑟𝑦 (𝐷𝐶0 can thus be 0). Finally, for this
“GFWED” mode, if snow cover is provided, a second check is performed: the dry start procedure is skipped
and conventional start-up values are used for cells where the snow cover of the last snow_cover_days was above
snow_thresh for at least snow_cover_days * snow_min_cover_frac days and where the mean snow cover over the
same period was greater of equal to snow_min_mean_depth.

xclim.indices.fire._cffwis.overwintering_drought_code(last_dc: DataArray, winter_pr: DataArray,
carry_over_fraction: xarray.DataArray | float
= 0.75, wetting_efficiency_fraction:
xarray.DataArray | float = 0.75, min_dc:
xarray.DataArray | float = 15)→ DataArray

Compute the season-starting drought code based on the previous season’s last drought code and the total winter
precipitation.

This method replicates the “wDC” method of the “cffdrs R package [Cantin et al., 2014], with an added control
on the “minimum” DC.

Parameters
• last_dc (xr.DataArray) – The previous season’s last drought code.

• winter_pr (xr.DataArray) – The accumulated precipitation since the end of the fire season.

• carry_over_fraction (xr.DataArray or float) – Carry-over fraction of last fall’s moisture

• wetting_efficiency_fraction (xr.DataArray or float) – Effectiveness of winter precipitation
in recharging moisture reserves in spring

• min_dc (xr.DataArray or float) – Minimum drought code starting value.

Returns
wDC (xr.DataArray) – Overwintered drought code.

218 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

Details taken from the “cffdrs” R package documentation [Cantin et al., 2014]: Of the three fuel moisture codes
(i.e. FFMC, DMC and DC) making up the FWI System, only the DC needs to be considered in terms of its values
carrying over from one fire season to the next. In Canada both the FFMC and the DMC are assumed to reach
moisture saturation from overwinter precipitation at or before spring melt; this is a reasonable assumption and
any error in these assumed starting conditions quickly disappears. If snowfall (or other overwinter precipitation)
is not large enough however, the fuel layer tracked by the Drought Code may not fully reach saturation after spring
snow melt; because of the long response time in this fuel layer (53 days in standard conditions) a large error in this
spring starting condition can affect the DC for a significant portion of the fire season. In areas where overwinter
precipitation is 200 mm or more, full moisture recharge occurs and DC overwintering is usually unnecessary.
More discussion of overwintering and fuel drying time lag can be found in Lawson and Armitage [2008] and
Van Wagner [1985].

Carry-over fraction of last fall’s moisture:
• 1.0, Daily DC calculated up to 1 November; continuous snow cover, or freeze-up, whichever comes

first

• 0.75, Daily DC calculations stopped before any of the above conditions met or the area is subject to
occasional winter chinook conditions, leaving the ground bare and subject to moisture depletion

• 0.5, Forested areas subject to long periods in fall or winter that favor depletion of soil moisture

Effectiveness of winter precipitation in recharging moisture reserves in spring:
• 0.9, Poorly drained, boggy sites with deep organic layers

• 0.75, Deep ground frost does not occur until late fall, if at all; moderately drained sites that allow
infiltration of most of the melting snowpack

• 0.5, Chinook-prone areas and areas subject to early and deep ground frost; well-drained soils favoring
rapid percolation or topography favoring rapid runoff before melting of ground frost

Source: Lawson and Armitage [2008] - Table 9.

References

Cantin et al. [2014], Field et al. [2015], Lawson and Armitage [2008], Van Wagner [1985]

McArthur Forest Fire Danger (Mark 5) System

This submodule defines indices related to the McArthur Forest Fire Danger Index Mark 5. Currently im-
plemented are the xclim.indices.fire.keetch_byram_drought_index(), xclim.indices.fire.
griffiths_drought_factor() and xclim.indices.fire.mcarthur_forest_fire_danger_index()
indices, which are used by the eponym indicators. The implementation of these indices follows Finkele et al. [2006]
and Noble et al. [1980], with any differences described in the documentation for each index. Users are encouraged
to read this module’s documentation and consult Finkele et al. [2006] for a full description of the methods used to
calculate each index.

xclim.indices.fire._ffdi.griffiths_drought_factor(pr: DataArray, smd: DataArray, limiting_func: str
= 'xlim')→ DataArray

Griffiths drought factor based on the soil moisture deficit.

The drought factor is a numeric indicator of the forest fire fuel availability in the deep litter bed. It is often used
in the calculation of the McArthur Forest Fire Danger Index. The method implemented here follows Finkele et
al. [2006].

5.2. Indices submodules 219

xclim Documentation, Release 0.39.0

Parameters
• pr (xr.DataArray) – Total rainfall over previous 24 hours [mm/day].

• smd (xarray DataArray) – Daily soil moisture deficit (often KBDI) [mm/day].

• limiting_func ({“xlim”, “discrete”}) – How to limit the values of the drought factor. If
“xlim” (default), use equation (14) in Finkele et al. [2006]. If “discrete”, use equation Eq
(13) in Finkele et al. [2006], but with the lower limit of each category bound adjusted to
match the upper limit of the previous bound.

Returns
df (xr.DataArray) – The limited Griffiths drought factor.

Notes

Calculation of the Griffiths drought factor depends on the rainfall over the previous 20 days. Thus, the first
non-NaN time point in the drought factor returned by this function corresponds to the 20th day of the input data.

References

Finkele, Mills, Beard, and Jones [2006], Griffiths [1999], Holgate, Van DIjk, Cary, and Yebra [2017]

xclim.indices.fire._ffdi.keetch_byram_drought_index(pr: DataArray, tasmax: DataArray, pr_annual:
DataArray, kbdi0: Optional[DataArray] =
None)→ DataArray

Keetch-Byram drought index (KBDI) for soil moisture deficit.

The KBDI indicates the amount of water necessary to bring the soil moisture content back to field capacity. It is
often used in the calculation of the McArthur Forest Fire Danger Index. The method implemented here follows
Finkele et al. [2006] but limits the maximum KBDI to 203.2 mm, rather than 200 mm, in order to align best with
the majority of the literature.

Parameters
• pr (xr.DataArray) – Total rainfall over previous 24 hours [mm/day].

• tasmax (xr.DataArray) – Maximum temperature near the surface over previous 24 hours
[degC].

• pr_annual (xr.DataArray) – Mean (over years) annual accumulated rainfall [mm/year].

• kbdi0 (xr.DataArray, optional) – Previous KBDI values used to initialise the KBDI calcu-
lation [mm/day]. Defaults to 0.

Returns
xr.DataArray – Keetch-Byram drought index.

220 Chapter 5. Climate indices

xclim Documentation, Release 0.39.0

Notes

This method implements the method described in Finkele et al. [2006] (section 2.1.1) for calculating the KBDI
with one small difference: in Finkele et al. [2006] the maximum KBDI is limited to 200 mm to represent the
maximum field capacity of the soil (8 inches according to Keetch and Byram [1968]). However, it is more
common in the literature to limit the KBDI to 203.2 mm which is a more accurate conversion from inches to
mm. In this function, the KBDI is limited to 203.2 mm.

References

Dolling, Chu, and Fujioka [2005], Finkele, Mills, Beard, and Jones [2006], Holgate, Van DIjk, Cary, and Yebra
[2017], Keetch and Byram [1968]

xclim.indices.fire._ffdi.mcarthur_forest_fire_danger_index(drought_factor: DataArray, tasmax:
DataArray, hurs: DataArray, sfcWind:
DataArray)

McArthur forest fire danger index (FFDI) Mark 5.

The FFDI is a numeric indicator of the potential danger of a forest fire.

Parameters
• drought_factor (xr.DataArray) – The drought factor, often the daily Griffiths drought factor

(see griffiths_drought_factor()).

• tasmax (xr.DataArray) – The daily maximum temperature near the surface, or similar. Dif-
ferent applications have used different inputs here, including the previous/current day’s max-
imum daily temperature at a height of 2m, and the daily mean temperature at a height of 2m.

• hurs (xr.DataArray) – The relative humidity near the surface and near the time of the max-
imum daily temperature, or similar. Different applications have used different inputs here,
including the mid-afternoon relative humidity at a height of 2m, and the daily mean relative
humidity at a height of 2m.

• sfcWind (xr.DataArray) – The wind speed near the surface and near the time of the maximum
daily temperature, or similar. Different applications have used different inputs here, including
the mid-afternoon wind speed at a height of 10m, and the daily mean wind speed at a height
of 10m.

Returns
xr.DataArray – The McArthur forest fire danger index.

References

Dowdy [2018], Holgate, Van DIjk, Cary, and Yebra [2017], Noble, Gill, and Bary [1980]

5.2. Indices submodules 221

xclim Documentation, Release 0.39.0

222 Chapter 5. Climate indices

CHAPTER

SIX

HEALTH CHECKS

The Indicator class performs a number of sanity checks on inputs to make sure valid data is fed to indices com-
putations (cfchecks for checks on the metadata and datachecks for checks on the coordinates). Output values are
properly masked in case input values are missing or invalid (missing). Finally, a user can use functions of dataflags
to explore potential issues with its data (extreme values, suspicious runs, etc).

6.1 CF-Convention checking

Utilities designed to verify the compliance of metadata with the CF-Convention.

xclim.core.cfchecks.cfcheck_from_name(varname, vardata, attrs: Optional[list[str]] = None)
Perform cfchecks on a DataArray using specifications from xclim’s default variables.

xclim.core.cfchecks.check_valid(var, key: str, expected: Union[str, Sequence[str]])
Check that a variable’s attribute has one of the expected values. Raise a ValidationError otherwise.

6.2 Data checks

Utilities designed to check the validity of data inputs.

xclim.core.datachecks.check_common_time(inputs: Sequence[DataArray])
Raise an error if the list of inputs doesn’t have a single common frequency.

Raises
ValidationError –

• if the frequency of any input can’t be inferred - if inputs have different frequencies - if inputs
have a daily or hourly frequency, but they are not given at the same time of day.

Parameters
inputs (Sequence of xr.DataArray) – Input arrays.

xclim.core.datachecks.check_daily(var: DataArray)
Raise an error if not series has a frequency other that daily, or is not monotonically increasing.

223

xclim Documentation, Release 0.39.0

Notes

This does not check for gaps in series.

xclim.core.datachecks.check_freq(var: DataArray, freq: Union[str, Sequence[str]], strict: bool = True)
Raise an error if not series has not the expected temporal frequency or is not monotonically increasing.

Parameters
• var (xr.DataArray) – Input array.

• freq (str or sequence of str) – The expected temporal frequencies, using Pandas frequency
terminology ({‘A’, ‘M’, ‘D’, ‘H’, ‘T’, ‘S’, ‘L’, ‘U’}) and multiples thereof. To test strictly for
‘W’, pass ‘7D’ with strict=True. This ignores the start flag and the anchor (ex: ‘AS-JUL’
will validate against ‘Y’).

• strict (bool) – Whether multiples of the frequencies are considered invalid or not. With strict
set to False, a ‘3H’ series will not raise an error if freq is set to ‘H’.

Raises
ValidationError –

• If the frequency of var is not inferrable. - If the frequency of var does not match the requested
freq.

6.3 Missing values identification

Indicators may use different criteria to determine whether a computed indicator value should be considered missing. In
some cases, the presence of any missing value in the input time series should result in a missing indicator value for that
period. In other cases, a minimum number of valid values or a percentage of missing values should be enforced. The
World Meteorological Organisation (WMO) suggests criteria based on the number of consecutive and overall missing
values per month.

xclim has a registry of missing value detection algorithms that can be extended by users to customize the behavior of
indicators. Once registered, algorithms can be used within indicators by setting the missing attribute of an Indicator
subclass. By default, xclim registers the following algorithms:

• any: A result is missing if any input value is missing.

• at_least_n: A result is missing if less than a given number of valid values are present.

• pct: A result is missing if more than a given fraction of values are missing.

• wmo: A result is missing if 11 days are missing, or 5 consecutive values are missing in a month.

• skip: Skip missing value detection.

• from_context: Look-up the missing value algorithm from options settings. See xclim.set_options().

To define another missing value algorithm, subclass MissingBase and decorate it with xclim.core.options.
register_missing_method().

Corresponding stand-alone functions are also exposed to run the same missing value checks independent from indicator
calculations.

xclim.core.missing.missing_any(da, freq, src_timestep=None, **indexer)
Return whether there are missing days in the array.

Variables
• da (xr.DataArray) – Input array.

224 Chapter 6. Health Checks

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

• src_timestep ({"D", "H", "M"}) – Expected input frequency.

• indexer ({dim: indexer, }, optional) – Time attribute and values over which to sub-
set the array. For example, use season=’DJF’ to select winter values, month=1 to select
January, or month=[6,7,8] to select summer months. If not indexer is given, all values are
considered.

Returns
xr.DataArray – A boolean array set to True if period has missing values.

xclim.core.missing.at_least_n_valid(da, freq, n=1, src_timestep=None, **indexer)
Return whether there are at least a given number of valid values.

Parameters
• da (xr.DataArray) – Input array.

• freq (str) – Resampling frequency.

• n (int) – Minimum of valid values required.

• src_timestep ({“D”, “H”}) – Expected input frequency.

• indexer ({dim: indexer, }, optional) – Time attribute and values over which to subset the
array. For example, use season=’DJF’ to select winter values, month=1 to select January, or
month=[6,7,8] to select summer months. If not indexer is given, all values are considered.

Returns
xr.DataArray – A boolean array set to True if period has missing values.

xclim.core.missing.missing_pct(da, freq, tolerance, src_timestep=None, **indexer)
Return whether there are more missing days in the array than a given percentage.

Variables
• da (DataArray) – Input array.

• freq (str) – Resampling frequency.

• tolerance (float) – Fraction of missing values that are tolerated [0,1].

• src_timestep ({"D", "H"}) – Expected input frequency.

• indexer ({dim: indexer, }, optional) – Time attribute and values over which to sub-
set the array. For example, use season=’DJF’ to select winter values, month=1 to select
January, or month=[6,7,8] to select summer months. If not indexer is given, all values are
considered.

Returns
xr.DataArray – A boolean array set to True if period has missing values.

xclim.core.missing.missing_wmo(da, freq, nm=11, nc=5, src_timestep=None, **indexer)
Return whether a series fails WMO criteria for missing days.

The World Meteorological Organisation recommends that where monthly means are computed from daily values,
it should be considered missing if either of these two criteria are met:

– observations are missing for 11 or more days during the month; – observations are missing for a
period of 5 or more consecutive days during the month.

Stricter criteria are sometimes used in practice, with a tolerance of 5 missing values or 3 consecutive missing
values.

6.3. Missing values identification 225

xclim Documentation, Release 0.39.0

Variables
• da (DataArray) – Input array.

• freq (str) – Resampling frequency.

• nm (int) – Number of missing values per month that should not be exceeded.

• nc (int) – Number of consecutive missing values per month that should not be exceeded.

• src_timestep ({"D"}) – Expected input frequency. Only daily values are supported.

• indexer ({dim: indexer, }, optional) – Time attribute and values over which to sub-
set the array. For example, use season=’DJF’ to select winter Time attribute and values over
which to subset the array. For example, use season=’DJF’ to select winter values, month=1
to select January, or month=[6,7,8] to select summer months. If not indexer is given, all
values are considered.

Returns
xr.DataArray – A boolean array set to True if period has missing values.

Notes

If used at frequencies larger than a month, for example on an annual or seasonal basis, the function will return
True if any month within a period is missing.

xclim.core.missing.missing_from_context(da, freq, src_timestep=None, **indexer)
Return whether each element of the resampled da should be considered missing according to the currently set
options in xclim.set_options.

See also:
xclim.set_options, xclim.core.options.register_missing_method

6.4 Data flags

Pseudo-indicators designed to analyse supplied variables for suspicious/erroneous indicator values.

exception xclim.core.dataflags.DataQualityException(flag_array: Dataset, message='Data quality
flags indicate suspicious values. Flags raised
are:\n - ')

Bases: Exception

Raised when any data evaluation checks are flagged as True.

Variables
• flag_array (xarray.Dataset) – Xarray.Dataset of Data Flags.

• message (str) – Message prepended to the error messages.

xclim.core.dataflags.data_flags(da: DataArray, ds: Optional[Dataset] = None, flags: Optional[dict] =
None, dims: Union[None, str, Sequence[str]] = 'all', freq: Optional[str] =
None, raise_flags: bool = False)→ Dataset

Evaluate the supplied DataArray for a set of data flag checks.

Test triggers depend on variable name and availability of extra variables within Dataset for comparison. If called
with raise_flags=True, will raise a DataQualityException with comments for each failed quality check.

Parameters

226 Chapter 6. Health Checks

xclim Documentation, Release 0.39.0

• da (xarray.DataArray) – The variable to check. Must have a name that is a valid CMIP6
variable name and appears in xclim.core.utils.VARIABLES.

• ds (xarray.Dataset, optional) – An optional dataset with extra variables needed by some
checks.

• flags (dict, optional) – A dictionary where the keys are the name of the flags to check and
the values are parameter dictionaries. The value can be None if there are no parameters to
pass (i.e. default will be used). The default, None, means that the data flags list will be taken
from xclim.core.utils.VARIABLES.

• dims ({“all”, None} or str or a sequence of strings) – Dimenions upon which aggregation
should be performed. Default: “all”.

• freq (str, optional) – Resampling frequency to have data_flags aggregated over periods. De-
faults to None, which means the “time” axis is treated as any other dimension (see dims).

• raise_flags (bool) – Raise exception if any of the quality assessment flags are raised. Default:
False.

Returns
xarray.Dataset

Examples

To evaluate all applicable data flags for a given variable:

>>> from xclim.core.dataflags import data_flags
>>> ds = xr.open_dataset(path_to_pr_file)
>>> flagged = data_flags(ds.pr, ds)
>>> # The next example evaluates only one data flag, passing specific parameters.␣
→˓It also aggregates the flags
>>> # yearly over the "time" dimension only, such that a True means there is a bad␣
→˓data point for that year
>>> # at that location.
>>> flagged = data_flags(
... ds.pr,
... ds,
... flags={"very_large_precipitation_events": {"thresh": "250 mm d-1"}},
... dims=None,
... freq="YS",
...)

xclim.core.dataflags.ecad_compliant(ds: Dataset, dims: Union[None, str, Sequence[str]] = 'all',
raise_flags: bool = False, append: bool = True)→ xarray.DataArray
| xarray.Dataset | None

Run ECAD compliance tests.

Assert file adheres to ECAD-based quality assurance checks.

Parameters
• ds (xarray.Dataset) – Dataset containing variables to be examined.

• dims ({“all”, None} or str or a sequence of strings) – Dimensions upon which aggregation
should be performed. Default: "all".

• raise_flags (bool) – Raise exception if any of the quality assessment flags are raised, other-
wise returns None. Default: False.

6.4. Data flags 227

xclim Documentation, Release 0.39.0

• append (bool) – If True, returns the Dataset with the ecad_qc_flag array appended to
data_vars. If False, returns the DataArray of the ecad_qc_flag variable.

Returns
xarray.DataArray or xarray.Dataset or None

xclim.core.dataflags.negative_accumulation_values(da: DataArray)→ DataArray
Check if variable values are negative for any given day.

Parameters
da (xarray.DataArray)

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import negative_accumulation_values
>>> ds = xr.open_dataset(path_to_pr_file)
>>> flagged = negative_accumulation_values(ds.pr)

xclim.core.dataflags.outside_n_standard_deviations_of_climatology(da: DataArray, *, n: int,
window: int = 5)→
DataArray

Check if any daily value is outside n standard deviations from the day of year mean.

Parameters
• da (xarray.DataArray) – The DataArray being examined.

• n (int) – Number of standard deviations.

• window (int) – Moving window used to determining climatological mean. Default: 5.

Returns
xarray.DataArray, [bool]

Notes

A moving window of 5 days is suggested for tas data flag calculations according to ICCLIM data quality standards.

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import outside_n_standard_deviations_of_climatology
>>> ds = xr.open_dataset(path_to_tas_file)
>>> std_devs = 5
>>> average_over = 5
>>> flagged = outside_n_standard_deviations_of_climatology(
... ds.tas, n=std_devs, window=average_over
...)

228 Chapter 6. Health Checks

xclim Documentation, Release 0.39.0

References

Project team ECA&D and KNMI [2013]

xclim.core.dataflags.percentage_values_outside_of_bounds(da: DataArray)→ DataArray
Check if variable values fall below 0% or rise above 100% for any given day.

Parameters
da (xarray.DataArray)

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import percentage_values_outside_of_bounds
>>> flagged = percentage_values_outside_of_bounds(huss_dataset)

xclim.core.dataflags.register_methods(func)
Summarize all methods used in dataflags checks.

xclim.core.dataflags.tas_below_tasmin(tas: DataArray, tasmin: DataArray)→ DataArray
Check if tas values are below tasmin values for any given day.

Parameters
• tas (xarray.DataArray)

• tasmin (xarray.DataArray)

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import tas_below_tasmin
>>> ds = xr.open_dataset(path_to_tas_file)
>>> flagged = tas_below_tasmin(ds.tas, ds.tasmin)

xclim.core.dataflags.tas_exceeds_tasmax(tas: DataArray, tasmax: DataArray)→ DataArray
Check if tas values tasmax values for any given day.

Parameters
• tas (xarray.DataArray)

• tasmax (xarray.DataArray)

Returns
xarray.DataArray, [bool]

6.4. Data flags 229

xclim Documentation, Release 0.39.0

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import tas_exceeds_tasmax
>>> ds = xr.open_dataset(path_to_tas_file)
>>> flagged = tas_exceeds_tasmax(ds.tas, ds.tasmax)

xclim.core.dataflags.tasmax_below_tasmin(tasmax: DataArray, tasmin: DataArray)→ DataArray
Check if tasmax values are below tasmin values for any given day.

Parameters
• tasmax (xarray.DataArray)

• tasmin (xarray.DataArray)

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import tasmax_below_tasmin
>>> ds = xr.open_dataset(path_to_tas_file)
>>> flagged = tasmax_below_tasmin(ds.tasmax, ds.tasmin)

xclim.core.dataflags.temperature_extremely_high(da: DataArray, *, thresh: str = '60 degC')→
DataArray

Check if temperatures values exceed 60 degrees Celsius for any given day.

Parameters
• da (xarray.DataArray)

• thresh (str)

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import temperature_extremely_high
>>> ds = xr.open_dataset(path_to_tas_file)
>>> temperature = "60 degC"
>>> flagged = temperature_extremely_high(ds.tas, thresh=temperature)

xclim.core.dataflags.temperature_extremely_low(da: DataArray, *, thresh: str = '-90 degC')→
DataArray

Check if temperatures values are below -90 degrees Celsius for any given day.

Parameters
• da (xarray.DataArray)

230 Chapter 6. Health Checks

xclim Documentation, Release 0.39.0

• thresh (str)

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import temperature_extremely_low
>>> ds = xr.open_dataset(path_to_tas_file)
>>> temperature = "-90 degC"
>>> flagged = temperature_extremely_low(ds.tas, thresh=temperature)

xclim.core.dataflags.values_op_thresh_repeating_for_n_or_more_days(da: DataArray, *, n: int,
thresh: str, op: str = '==')
→ DataArray

Check if array values repeat at a given threshold for N or more days.

Parameters
• da (xarray.DataArray) – The DataArray being examined.

• n (int) – Number of days needed to trigger flag.

• thresh (str) – Repeating values to search for that will trigger flag.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Operator
used for comparison with thresh.

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import values_op_thresh_repeating_for_n_or_more_days
>>> ds = xr.open_dataset(path_to_pr_file)
>>> units = "5 mm d-1"
>>> days = 5
>>> comparison = "eq"
>>> flagged = values_op_thresh_repeating_for_n_or_more_days(
... ds.pr, n=days, thresh=units, op=comparison
...)

xclim.core.dataflags.values_repeating_for_n_or_more_days(da: DataArray, *, n: int)→ DataArray
Check if exact values are found to be repeating for at least 5 or more days.

Parameters
• da (xarray.DataArray) – The DataArray being examined.

• n (int) – Number of days to trigger flag.

Returns
xarray.DataArray, [bool]

6.4. Data flags 231

xclim Documentation, Release 0.39.0

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import values_repeating_for_n_or_more_days
>>> ds = xr.open_dataset(path_to_pr_file)
>>> flagged = values_repeating_for_n_or_more_days(ds.pr, n=5)

xclim.core.dataflags.very_large_precipitation_events(da: DataArray, *, thresh='300 mm d-1')→
DataArray

Check if precipitation values exceed 300 mm/day for any given day.

Parameters
• da (xarray.DataArray) – The DataArray being examined.

• thresh (str) – Threshold to search array for that will trigger flag if any day exceeds value.

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import very_large_precipitation_events
>>> ds = xr.open_dataset(path_to_pr_file)
>>> rate = "300 mm d-1"
>>> flagged = very_large_precipitation_events(ds.pr, thresh=rate)

xclim.core.dataflags.wind_values_outside_of_bounds(da: DataArray, *, lower: str = '0 m s-1', upper:
str = '46 m s-1')→ DataArray

Check if variable values fall below 0% or rise above 100% for any given day.

Parameters
• da (xarray.DataArray) – The DataArray being examined.

• lower (str) – The lower limit for wind speed.

• upper (str) – The upper limit for wind speed.

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import wind_values_outside_of_bounds
>>> ceiling, floor = "46 m s-1", "0 m s-1"
>>> flagged = wind_values_outside_of_bounds(
... sfcWind_dataset, upper=ceiling, lower=floor
...)

232 Chapter 6. Health Checks

CHAPTER

SEVEN

UNIT HANDLING

[1]: from __future__ import annotations

import xarray as xr

import xclim as xc

Set display to HTML style (optional)
xr.set_options(display_style="html", display_width=50)

import plotting stuff
import matplotlib.pyplot as plt

%matplotlib inline
plt.style.use("seaborn")
plt.rcParams["figure.figsize"] = (11, 5)

/tmp/ipykernel_186203/2169057239.py:14: MatplotlibDeprecationWarning: The seaborn styles␣
→˓shipped by Matplotlib are deprecated since 3.6, as they no longer correspond to the␣
→˓styles shipped by seaborn. However, they will remain available as 'seaborn-v0_8-<style>
→˓'. Alternatively, directly use the seaborn API instead.
plt.style.use("seaborn")

A lot of effort has been placed into automatic handling of input data units. xclim will automatically detect the input
variable(s) units (e.g. °C versus °K or mm/s versus mm/day etc.) and adjust on-the-fly in order to calculate indices in
the consistent manner. This comes with the obvious caveat that input data requires metadata attribute for units

For precipitation data, xclim expects precipitation fluxes. This could be units of length/time, such as mm/d, or
units of mass / area / time, such as kg/m2/s. Units of length only, such as mm, are not supported, because the
interpretation depends on the frequency of the data, which cannot always be inferred explicitly from the data. For
example, if a daily precipitation series records total daily precipitation and has units of mm, change the units attribute to
mm/d before computing indicators. Note that xclim will automatically convert between mass / area / time and
length/time using a water density of 1000 kg/m3 when the context is hydrology.

In the following examples, our toy temperature dataset comes in units of Kelvins ("degK").

[2]: # See the Usage page for details on opening datasets, subsetting and resampling.
ds = xr.tutorial.open_dataset("air_temperature")
tas = (

ds.air.sel(lat=40, lon=270, method="nearest")
.resample(time="D")
.mean(keep_attrs=True)

(continues on next page)

233

xclim Documentation, Release 0.39.0

(continued from previous page)

)
print(tas.attrs["units"])

degK

Using pint, xclim provides useful functions to convert the units of datasets and DataArrays. Here, we convert our
kelvin data to the very useful Fahrenheits:

[3]: tas_F = xc.units.convert_units_to(tas, "degF")
print(tas_F.attrs["units"])

°F

7.1 Threshold indices

xclim unit handling also applies to threshold indicators. Users can provide threshold in units of choice and xclim will
adjust automatically. For example determining the number of days with tasmax > 20°C users can define a threshold
input of ‘20 C’ or ‘20 degC’ even if input data is in Kelvin. Alernatively users can even provide a threshold in Kelvin
‘293.15 K’ (if they really wanted to).

[4]: with xc.set_options(cf_compliance="log"):
Using Kelvin data, threshold in Celsius
out1 = xc.atmos.tx_days_above(tasmax=tas, thresh="20 C", freq="MS")

Using Fahrenheit data, threshold in Celsius
out2 = xc.atmos.tx_days_above(tasmax=tas_F, thresh="20 C", freq="MS")

Using Fahrenheit data, with threshold in Kelvin
out3 = xc.atmos.tx_days_above(tasmax=tas_F, thresh="293.15 K", freq="MS")

Plot and see that it's all identical:
plt.figure()
out1.plot(label="K and degC", linestyle="-")
out2.plot(label="degF and degC", marker="s", markersize=10, linestyle="none")
out3.plot(label="degF and K", marker="o", linestyle="none")
plt.legend()

[4]: <matplotlib.legend.Legend at 0x7f526be45990>

234 Chapter 7. Unit handling

https://pint.readthedocs.io/

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

7.2 Sum and count indices

Many indices in xclimwill either sum values or count events along the time dimension and over a period. As of version
0.24, unit handling dynamically infers what the sampling frequency and its corresponding unit is.

Indicators, on the other hand, do not have this flexibility and often expect input at a given frequency, more often daily
then otherwise.

For example, we can run the tx_days_above on the 6-hourly test data and it should return similar results as on the
daily data, but in units of h (the base unit of the sampling frequency).

[5]: tas_6h = ds.air.sel(
lat=40, lon=270, method="nearest"

) # no resampling, original data is 6-hourly
out4_h = xc.indices.tx_days_above(tasmax=tas_6h, thresh="20 C", freq="MS")
out4_h

[5]: <xarray.DataArray 'air' (time: 24)>
array([0, 0, 0, 48, 228, 426, 492, 612, 456, 174, 0, 0, 0,

0, 0, 54, 282, 552, 504, 636, 324, 78, 0, 0])
Coordinates:

lat float32 40.0
lon float32 270.0

* time (time) datetime64[ns] 2013-01-01 ...
Attributes:

units: h

[6]: out4_d = xc.units.convert_units_to(out4_h, "d")
plt.figure()
out1.plot(label="From daily input", linestyle="-")
out4_d.plot(label="From 6-hourly input", linestyle="-")
plt.legend()

[6]: <matplotlib.legend.Legend at 0x7f52623e8970>

7.2. Sum and count indices 235

xclim Documentation, Release 0.39.0

nbsphinx-code-borderwhite

7.2.1 Other utilites

Many helper functions are defined in xclim.core.units, see Unit handling module.

236 Chapter 7. Unit handling

CHAPTER

EIGHT

INTERNATIONALIZATION

This module defines methods and object to help the internationalization of metadata for climate indicators computed
by xclim. Go to Adding translated metadata to see how to use this feature.

All the methods and objects in this module use localization data given in json files. These files are expected to be
defined as in this example for french:

{
"attrs_mapping": {

"modifiers": ["", "f", "mpl", "fpl"],
"YS": ["annuel", "annuelle", "annuels", "annuelles"],
"AS-*": ["annuel", "annuelle", "annuels", "annuelles"],
... and so on for other frequent parameters translation...

},
"DTRVAR": {

"long_name": "Variabilité de l'amplitude de la température diurne",
"description": "Variabilité {freq:f} de l'amplitude de la température diurne␣

→˓(définie comme la moyenne de la variation journalière de l'amplitude de température␣
→˓sur une période donnée)",

"title": "Variation quotidienne absolue moyenne de l'amplitude de la température␣
→˓diurne",

"comment": "",
"abstract": "La valeur absolue de la moyenne de l'amplitude de la température␣

→˓diurne.",
},
... and so on for other indicators...

}

Indicators are named by subclass identifier, the same as in the indicator registry (xclim.core.indicators.registry),
but which can differ from the callable name. In this case, the indicator is called through at-
mos.daily_temperature_range_variability, but its identifier is DTRVAR. Use the ind.__class__.__name__ accessor to
get its registry name.

Here, the usual parameter passed to the formatting of “description” is “freq” and is usually translated from “YS” to
“annual”. However, in french and in this sentence, the feminine form should be used, so the “f” modifier is added by
the translator so that the formatting function knows which translation to use. Acceptable entries for the mappings are
limited to what is already defined in xclim.core.indicators.utils.default_formatter.

For user-provided internationalization dictionaries, only the “attrs_mapping” and its “modifiers” key are mandatory, all
other entries (translations of frequent parameters and all indicator entries) are optional. For xclim-provided translations
(for now only French), all indicators must have en entry and the “attrs_mapping” entries must match exactly the default
formatter. Those default translations are found in the xclim/locales folder.

xclim.core.locales.TRANSLATABLE_ATTRS = ['long_name', 'description', 'comment', 'title',
'abstract', 'keywords']

237

xclim Documentation, Release 0.39.0

List of attributes to consider translatable when generating locale dictionaries.

exception xclim.core.locales.UnavailableLocaleError(locale)
Bases: ValueError

Error raised when a locale is requested but doesn’t exist.

xclim.core.locales.generate_local_dict(locale: str, init_english: bool = False)→ dict
Generate a dictionary with keys for each indicator and translatable attributes.

Parameters
• locale (str) – Locale in the IETF format

• init_english (bool) – If True, fills the initial dictionary with the english versions of the at-
tributes. Defaults to False.

xclim.core.locales.get_local_attrs(indicator: Union[str, Sequence[str]], *locales: Union[str,
Sequence[str], tuple[str, dict]], names: Optional[Sequence[str]] =
None, append_locale_name: bool = True)→ dict

Get all attributes of an indicator in the requested locales.

Parameters
• indicator (str or sequence of strings) – Indicator’s class name, usually the same as in

xc.core.indicator.registry. If multiple names are passed, the attrs from each indicator are
merged, with the highest priority set to the first name.

• locales (str or tuple of str) – IETF language tag or a tuple of the language tag and a translation
dict, or a tuple of the language tag and a path to a json file defining translation of attributes.

• names (sequence of str, optional) – If given, only returns translations of attributes in this list.

• append_locale_name (bool) – If True (default), append the language tag (as
“{attr_name}_{locale}”) to the returned attributes.

Raises
ValueError – If append_locale_name is False and multiple locales are requested.

Returns
dict – All CF attributes available for given indicator and locales. Warns and returns an empty
dict if none were available.

xclim.core.locales.get_local_dict(locale: Union[str, Sequence[str], tuple[str, dict]])→ tuple[str, dict]
Return all translated metadata for a given locale.

Parameters
locale (str or sequence of str) – IETF language tag or a tuple of the language tag and a translation
dict, or a tuple of the language tag and a path to a json file defining translation of attributes.

Raises
UnavailableLocaleError – If the given locale is not available.

Returns
• str – The best fitting locale string

• dict – The available translations in this locale.

xclim.core.locales.get_local_formatter(locale: Union[str, Sequence[str], tuple[str, dict]])→
AttrFormatter

Return an AttrFormatter instance for the given locale.

238 Chapter 8. Internationalization

xclim Documentation, Release 0.39.0

Parameters
locale (str or tuple of str) – IETF language tag or a tuple of the language tag and a translation
dict, or a tuple of the language tag and a path to a json file defining translation of attributes.

xclim.core.locales.list_locales()

List of loaded locales. Includes all loaded locales, no matter how complete the translations are.

xclim.core.locales.load_locale(locdata: Union[str, Path, Mapping[str, dict]], locale: str)
Load translations from a json file into xclim.

Parameters
• locdata (str or dictionary) – Either a loaded locale dictionary or a path to a json file.

• locale (str) – The locale name (IETF tag).

xclim.core.locales.read_locale_file(filename, module: Optional[str] = None, encoding: str = 'UTF8')→
dict

Read a locale file (.json) and return its dictionary.

Parameters
• filename (PathLike) – The file to read.

• module (str, optional) – If module is a string, this module name is added to all identifiers
translated in this file. Defaults to None, and no module name is added (as if the indicator
was an official xclim indicator).

• encoding (str) – The encoding to use when reading the file. Defaults to UTF-8, overriding
python’s default mechanism which is machine dependent.

239

xclim Documentation, Release 0.39.0

240 Chapter 8. Internationalization

CHAPTER

NINE

COMMAND LINE INTERFACE

xclim provides the xclim command line executable to perform basic indicator computation easily without having to
start up a full python environment. However, not all indicators listed in Climate Indicators are available through this
tool.

Its use is simple. Type the following to see the usage message:

[1]: !xclim --help

Usage: xclim [OPTIONS] INDICATOR1 [OPTIONS] ... [INDICATOR2 [OPTIONS] ...]
...

Command line tool to compute indices on netCDF datasets. Indicators are
referred to by their (case-insensitive) identifier, as in
xclim.core.indicator.registry.

Options:
-i, --input TEXT Input files. Can be a netCDF path or a glob

pattern.
-o, --output TEXT Output filepath. A new file will be created
-v, --verbose Print details about context and progress.
-V, --version Prints xclim's version number and exits
--dask-nthreads INTEGER Start a dask.distributed Client with this many

threads and 1 worker. If not specified, the local
scheduler is used. If specified, '--dask-maxmem'
must also be given

--dask-maxmem TEXT Memory limit for the dask.distributed Client as a
human readable string (ex: 4GB). If specified, '--
dask-nthreads' must also be specified.

--chunks TEXT Chunks to use when opening the input dataset(s).
Given as <dim1>:num,<dim2:num>. Ex:
time:365,lat:168,lon:150.

--help Show this message and exit.

Commands:
indices List indicators.
info Give information about INDICATOR.
dataflags Run data flag checks for input variables.
release_notes Print history for publishing purposes.
show_version_info Print versions of dependencies for debugging purposes.

To list all available indicators, use the “indices” subcommand:

241

xclim Documentation, Release 0.39.0

[2]: !xclim indices

Listing all available indicators for computation.:
anuclim.p10_meantempwarmestquarter

P10_MeanTempWarmestQuarter
(P10_MeanTempWarmestQuarter)

anuclim.p11_meantempcoldestquarter
P11_MeanTempColdestQuarter
(P11_MeanTempColdestQuarter)

anuclim.p12_annualprecip Annual Precipitation (P12_AnnualPrecip)
anuclim.p13_precipwettestperiod

P13_PrecipWettestPeriod
(P13_PrecipWettestPeriod)

anuclim.p14_precipdriestperiod P14_PrecipDriestPeriod
(P14_PrecipDriestPeriod)

anuclim.p15_precipseasonality P15_PrecipSeasonality
(P15_PrecipSeasonality)

anuclim.p16_precipwettestquarter
P16_PrecipWettestQuarter
(P16_PrecipWettestQuarter)

anuclim.p17_precipdriestquarter
P17_PrecipDriestQuarter
(P17_PrecipDriestQuarter)

anuclim.p18_precipwarmestquarter
P18_PrecipWarmestQuarter
(P18_PrecipWarmestQuarter)

anuclim.p19_precipcoldestquarter
P19_PrecipColdestQuarter
(P19_PrecipColdestQuarter)

anuclim.p1_annmeantemp Annual Mean Temperature (P1_AnnMeanTemp)
anuclim.p2_meandiurnalrange Mean Diurnal Range (P2_MeanDiurnalRange)
anuclim.p3_isothermality P3_Isothermality (P3_Isothermality)
anuclim.p4_tempseasonality P4_TempSeasonality (P4_TempSeasonality)
anuclim.p5_maxtempwarmestperiod

Max Temperature of Warmest Period
(P5_MaxTempWarmestPeriod)

anuclim.p6_mintempcoldestperiod
Min Temperature of Coldest Period
(P6_MinTempColdestPeriod)

anuclim.p7_tempannualrange Temperature Annual Range
(P7_TempAnnualRange)

anuclim.p8_meantempwettestquarter
P8_MeanTempWettestQuarter
(P8_MeanTempWettestQuarter)

anuclim.p9_meantempdriestquarter
P9_MeanTempDriestQuarter
(P9_MeanTempDriestQuarter)

base_flow_index Base flow index
biologically_effective_degree_days

Integral of mean daily temperature above
{thresh_tasmin}, with maximum value of
{max_daily_degree_days}, multiplied by day-
length coefficient and temperature range

(continues on next page)

242 Chapter 9. Command line interface

xclim Documentation, Release 0.39.0

(continued from previous page)

modifier based on {method} method for days
between {start_date} and {end_date} (bedd)

blowing_snow Days with snowfall and wind speed at or
above given thresholds ({freq}_blowing_snow)

calm_days Number of days with surface wind speed below
{thresh}

cdd Maximum consecutive days with daily
precipitation below {thresh}

cf.cdd Maximum consecutive dry days (Precip < 1mm)
(cdd)

cf.cddcoldtt Cooling Degree Days (Tmean > {threshold}C)
(cddcold{threshold})

cf.cfd Maximum number of consecutive frost days
(Tmin < 0 C) (cfd)

cf.csu Maximum number of consecutive summer days
(Tmax >25 C) (csu)

cf.ctmgett Maximum number of consecutive days with
Tmean >= {threshold}C (ctmge{threshold})

cf.ctmgttt Maximum number of consecutive days with
Tmean > {threshold}C (ctmgt{threshold})

cf.ctmlett Maximum number of consecutive days with
Tmean <= {threshold}C (ctmle{threshold})

cf.ctmlttt Maximum number of consecutive days with
Tmean < {threshold}C (ctmlt{threshold})

cf.ctngett Maximum number of consecutive days with Tmin
>= {threshold}C (ctnge{threshold})

cf.ctngttt Maximum number of consecutive days with Tmin
> {threshold}C (ctngt{threshold})

cf.ctnlett Maximum number of consecutive days with Tmin
<= {threshold}C (ctnle{threshold})

cf.ctnlttt Maximum number of consecutive days with Tmin
< {threshold}C (ctnlt{threshold})

cf.ctxgett Maximum number of consecutive days with Tmax
>= {threshold}C (ctxge{threshold})

cf.ctxgttt Maximum number of consecutive days with Tmax
> {threshold}C (ctxgt{threshold})

cf.ctxlett Maximum number of consecutive days with Tmax
<= {threshold}C (ctxle{threshold})

cf.ctxlttt Maximum number of consecutive days with Tmax
< {threshold}C (ctxlt{threshold})

cf.cwd Maximum consecutive wet days (Precip >= 1mm)
(cwd)

cf.ddgttt Degree Days (Tmean > {threshold}C)
(ddgt{threshold})

cf.ddlttt Degree Days (Tmean < {threshold}C)
(ddlt{threshold})

cf.dtr Mean Diurnal Temperature Range (dtr)
cf.etr Intra-period extreme temperature range (etr)
cf.fg Mean of daily mean wind strength (fg)
cf.fxx Maximum value of daily maximum wind gust

strength (fxx)
cf.gd4 Growing degree days (sum of Tmean > 4 C)

(continues on next page)

243

xclim Documentation, Release 0.39.0

(continued from previous page)

(gd4)
cf.gddgrowtt Annual Growing Degree Days (Tmean >

{threshold}C) (gddgrow{threshold})
cf.hd17 Heating degree days (sum of Tmean < 17 C)

(hd17)
cf.hddheattt Heating Degree Days (Tmean < {threshold}C)

(hddheat{threshold})
cf.maxdtr Maximum Diurnal Temperature Range (maxdtr)
cf.pp Mean of daily sea level pressure (pp)
cf.rh Mean of daily relative humidity (rh)
cf.sd Mean of daily snow depth (sd)
cf.sdii Average precipitation during Wet Days (SDII)

(sdii)
cf.ss Sunshine duration, sum (ss)
cf.tg Mean of daily mean temperature (tg)
cf.tmm Mean daily mean temperature (tmm)
cf.tmmax Maximum daily mean temperature (tmmax)
cf.tmmean Mean daily mean temperature (tmmean)
cf.tmmin Minimum daily mean temperature (tmmin)
cf.tmn Minimum daily mean temperature (tmn)
cf.tmx Maximum daily mean temperature (tmx)
cf.tn Mean of daily minimum temperature (tn)
cf.tnm Mean daily minimum temperature (tnm)
cf.tnmax Maximum daily minimum temperature (tnmax)
cf.tnmean Mean daily minimum temperature (tnmean)
cf.tnmin Minimum daily minimum temperature (tnmin)
cf.tnn Minimum daily minimum temperature (tnn)
cf.tnx Maximum daily minimum temperature (tnx)
cf.tx Mean of daily maximum temperature (tx)
cf.txm Mean daily maximum temperature (txm)
cf.txmax Maximum daily maximum temperature (txmax)
cf.txmean Mean daily maximum temperature (txmean)
cf.txmin Minimum daily maximum temperature (txmin)
cf.txn Minimum daily maximum temperature (txn)
cf.txx Maximum daily maximum temperature (txx)
cf.vdtr Mean day-to-day variation in Diurnal

Temperature Range (vdtr)
cffwis Drought Code, Duff Moisture Code, Fine Fuel

Moisture Code, Initial Spread Index, Buildup
Index, Fire Weather Index (dc, dmc, ffmc,
isi, bui, fwi)

cold_and_dry_days Number of days where temperature is below
{tas_per_thresh}th percentile and
precipitation is below {pr_per_thresh}th
percentile

cold_and_wet_days Number of days where temperature is below
{tas_per_thresh}th percentile and
precipitation is above {pr_per_thresh}th
percentile

cold_spell_days Total number of days constituting events of
at least {window} consecutive days where the
mean daily temperature is below {thresh}

(continues on next page)

244 Chapter 9. Command line interface

xclim Documentation, Release 0.39.0

(continued from previous page)

cold_spell_duration_index Total number of days constituting events of
at least {window} consecutive days where the
daily minimum temperature is below the
{tasmin_per_thresh}th percentile
(csdi_{window})

cold_spell_frequency Total number of series of at least {window}
consecutive days where the mean daily
temperature is below {thresh}

consecutive_frost_days Maximum number of consecutive days where
minimum daily temperature is below {thresh}

consecutive_frost_free_days Maximum number of consecutive days with
minimum temperature at or above {thresh}

continuous_snow_cover_end End date of continuous snow cover
continuous_snow_cover_start Start date of continuous snow cover
cool_night_index Cool night index
cooling_degree_days Cumulative sum of temperature degrees for

mean daily temperature above {thresh}
corn_heat_units Corn heat units (Tmin > {thresh_tasmin} and

Tmax > {thresh_tasmax}) (chu)
cwd Maximum consecutive days with daily

precipitation at or above {thresh}
days_over_precip_doy_thresh Number of days with daily precipitation flux

above the {pr_per_thresh}th percentile of
{pr_per_period}

days_over_precip_thresh Number of days with precipitation flux above
the {pr_per_thresh}th percentile of
{pr_per_period}

days_with_snow Number of days with solid precipitation flux
between {low} and {high} thresholds

dc Drought Code
degree_days_exceedance_date Day of year when the integral of mean daily

temperature {op} {thresh} exceeds
{sum_thresh}

df Griffiths Drought Factor
dlyfrzthw Number of days where maximum daily

temperatures are above {thresh_tasmax} and
minimum daily temperatures are at or below
{thresh_tasmin}

doy_qmax Day of the year of the maximum streamflow
over {indexer} (q{indexer}_doy_qmax)

doy_qmin Day of the year of the minimum streamflow
over {indexer} (q{indexer}_doy_qmin)

dry_days Number of dry days
dry_spell_frequency Number of dry periods of {window} day(s) or

more, during which the {op} precipitation on
a window of {window} day(s) is below
{thresh}.

dry_spell_total_length Number of days in dry periods of {window}
day(s) or more, during which the {op}
precipitation within windows of {window}
day(s) is under {thresh}.

dtr Mean diurnal temperature range

(continues on next page)

245

xclim Documentation, Release 0.39.0

(continued from previous page)

dtrmax Maximum diurnal temperature range
dtrvar Mean diurnal temperature range variability
e_sat Saturation vapour pressure ("{method}"

method)
effective_growing_degree_days Integral of mean daily temperature above

{thresh} for days between start and end
dates dynamically determined using {method}
method (egdd)

etr Intra-period extreme temperature range
ffdi McArthur Forest Fire Danger Index
fire_season Fire season mask
first_day_above First day of year with temperature above

threshold
first_day_below First day of year with temperature below

threshold
first_day_tg_above First day of year with a period of at least

{window} days of mean temperature above
{thresh}

first_day_tg_below First day of year with a period of at least
{window} days of mean temperature below
{thresh}

first_day_tn_above First day of year with a period of at least
{window} days of minimum temperature above
{thresh}

first_day_tn_below First day of year with a period of at least
{window} days of minimum temperature below
{thresh}

first_day_tx_above First day of year with a period of at least
{window} days of maximum temperature above
{thresh}

first_day_tx_below First day of year with a period of at least
{window} days of maximum temperature below
{thresh}

first_snowfall Date of first day where the solid
precipitation flux exceeded {thresh}

fit {dist} distribution parameters (params)
fraction_over_precip_doy_thresh

Fraction of precipitation due to days with
daily precipitation above {pr_per_thresh}th
daily percentile

fraction_over_precip_thresh Fraction of precipitation due to days with
precipitation above {pr_per_thresh}th daily
percentile

freezethaw_spell_frequency Frequency of events where maximum daily
temperatures are above {thresh_tasmax} and
minimum daily temperatures are at or below
{thresh_tasmin} for at least {window}
consecutive day(s).

freezethaw_spell_max_length Maximal length of events where maximum daily
temperatures are above {thresh_tasmax} and
minimum daily temperatures are at or below
{thresh_tasmin} for at least {window}

(continues on next page)

246 Chapter 9. Command line interface

xclim Documentation, Release 0.39.0

(continued from previous page)

consecutive day(s).
freezethaw_spell_mean_length Average length of events where maximum daily

temperatures are above {thresh_tasmax} and
minimum daily temperatures are at or below
{thresh_tasmin} for at least {window}
consecutive day(s).

freezing_degree_days Cumulative sum of temperature degrees for
mean daily temperature below {thresh}

freq_analysis N-year return period flow amount
(q{window}{mode:r}{indexer})

freshet_start First day where temperature threshold of
{thresh} is exceeded for at least {window}
days

frost_days Number of days where the daily minimum
temperature is below {thresh}

frost_free_season_end First day, after {mid_date}, following a
period of {window} days with minimum daily
temperature below {thresh}

frost_free_season_length Number of days between the first occurrence
of at least {window} consecutive days with
minimum daily temperature at or above
{thresh} and the first occurrence of at
least {window} consecutive days with minimum
daily temperature below {thresh} after
{mid_date}

frost_free_season_start First day following a period of {window}
days with minimum daily temperature at or
above {thresh}

frost_season_length Number of days between the first occurrence
of at least {window} consecutive days with
minimum daily temperature below {thresh} and
the first occurrence of at least {window}
consecutive days with minimum daily
temperature at or above {thresh} after
{mid_date}

fwi Drought code, Duff moisture code, Fine fuel
moisture code, Initial spread index, Buildup
index, Fire weather index (dc, dmc, ffmc,
isi, bui, fwi)

growing_degree_days Cumulative sum of temperature degrees for
mean daily temperature above {thresh}

growing_season_end First day of the first series of {window}
days with mean daily temperature below
{thresh}, occurring after {mid_date}

growing_season_length Number of days between the first occurrence
of at least {window} consecutive days with
mean daily temperature over {thresh} and the
first occurrence of at least {window}
consecutive days with mean daily temperature
below {thresh}, occurring after {mid_date}

growing_season_start First day of the first series of {window}
days with mean daily temperature above or

(continues on next page)

247

xclim Documentation, Release 0.39.0

(continued from previous page)

equal to {thresh}
heat_index Heat index
heat_wave_frequency Total number of series of at least {window}

consecutive days with daily minimum
temperature above {thresh_tasmin} and daily
maximum temperature above {thresh_tasmax}

heat_wave_index Total number of days constituting events of
at least {window} consecutive days with
daily maximum temperature above {thresh}

heat_wave_max_length Longest series of at least {window}
consecutive days with daily minimum
temperature above {thresh_tasmin} and daily
maximum temperature above {thresh_tasmax}

heat_wave_total_length Total length of events of at least {window}
consecutive days with daily minimum
temperature above {thresh_tasmin} and daily
maximum temperature above {thresh_tasmax}

heating_degree_days Cumulative sum of temperature degrees for
mean daily temperature below {thresh}

high_precip_low_temp Days with precipitation at or above
{pr_thresh} and temperature below
{tas_thresh}

hot_spell_frequency Total number of series of at least {window}
consecutive days with daily maximum
temperature above {thresh_tasmax}

hot_spell_max_length Longest series of at least {window}
consecutive days with daily maximum
temperature above {thresh_tasmax}

huglin_index Integral of mean daily temperature above
{thresh} multiplied by day-length
coefficient with {method} method for days
between {start_date} and {end_date} (hi)

humidex Humidex index
hurs Relative Humidity ("{method}" method)
hurs_fromdewpoint Relative humidity ("{method}" method) (hurs)
huss Specific Humidity ("{method}" method)
huss_fromdewpoint Specific humidity ("{method}" method)
icclim.bedd Biologically effective growing degree days

(Summation of min(max((Tmin + Tmax)/2 -
10°C, 0), 9°C), for days between 1 April and
30 September) (BEDD)

icclim.cd Cold and dry days (CD)
icclim.cdd Maximum number of consecutive dry days (RR<1

mm) (CDD)
icclim.cfd Maximum number of consecutive frost days

(TN<0°C) (CFD)
icclim.csdi Cold-spell duration index (CSDI)
icclim.csu Maximum number of consecutive summer day

(CSU)
icclim.cw cold and wet days (CW)
icclim.cwd Maximum number of consecutive wet days (RR1

mm) (CWD)

(continues on next page)

248 Chapter 9. Command line interface

xclim Documentation, Release 0.39.0

(continued from previous page)

icclim.dtr Mean of diurnal temperature range (DTR)
icclim.etr Intra-period extreme temperature range (ETR)
icclim.fd Frost days (TN<0°C) (FD)
icclim.gd4 Growing degree days (sum of TG>4°C) (GD4)
icclim.gsl Growing season length (GSL)
icclim.hd17 Heating degree days (sum of17°C - TG) (HD17)
icclim.hi Huglin heliothermal index (Summation of

((Tmean + Tmax)/2 - 10°C) * Latitude-based
day-length coefficient (`k`), for days
between 1 April and 31 October) (HI)

icclim.id Ice days (TX<0°C) (ID)
icclim.prcptot Precipitation sum over wet days (PRCPTOT)
icclim.r10mm Heavy precipitation days (precipitation10

mm) (R10mm)
icclim.r20mm Very heavy precipitation days

(precipitation20 mm) (R20mm)
icclim.r75p Number of days with precipitation flux above

the {pr_per_thresh}th percentile of
{pr_per_period} (R75p)

icclim.r75ptot Precipitation fraction due to moderate wet
days (>75th percentile) (R75pTOT)

icclim.r95p Number of days with precipitation flux above
the {pr_per_thresh}th percentile of
{pr_per_period} (R95p)

icclim.r95ptot Precipitation fraction due to very wet days
(>95th percentile) (R95pTOT)

icclim.r99p Number of days with precipitation flux above
the {pr_per_thresh}th percentile of
{pr_per_period} (R99p)

icclim.r99ptot Precipitation fraction due to extremely wet
days (>99th percentile) (R99pTOT)

icclim.rr Precipitation sum (RR)
icclim.rr1 Wet days (RR1 mm) (RR1)
icclim.rx1day Highest 1-day precipitation amount (RX1day)
icclim.rx5day Highest 5-day precipitation amount (RX5day)
icclim.sd Mean of daily snow depth (SD)
icclim.sd1 Snow days (SD1 cm) (SD1)
icclim.sd50cm Snow days (SD50 cm) (SD50cm)
icclim.sd5cm Snow days (SD5 cm) (SD5cm)
icclim.sdii Average precipitation during days with daily

precipitation over {thresh} (Simple Daily
Intensity Index: SDII) (SDII)

icclim.su Summer days (TX>25°C) (SU)
icclim.tg Mean daily mean temperature (TG)
icclim.tg10p Days with TG<10th percentile of daily mean

temperature (cold days) (TG10p)
icclim.tg90p Days with TG>90th percentile of daily mean

temperature (warm days) (TG90p)
icclim.tgn Minimum daily mean temperature (TGn)
icclim.tgx Maximum daily mean temperature (TGx)
icclim.tn Mean daily minimum temperature (TN)
icclim.tn10p Days with TN<10th percentile of daily

(continues on next page)

249

xclim Documentation, Release 0.39.0

(continued from previous page)

minimum temperature (cold nights) (TN10p)
icclim.tn90p Days with TN>90th percentile of daily

minimum temperature (warm nights) (TN90p)
icclim.tnn Minimum daily minimum temperature (TNn)
icclim.tnx Maximum daily minimum temperature (TNx)
icclim.tr Tropical nights (TN>20°C) (TR)
icclim.tx Mean daily maximum temperature (TX)
icclim.tx10p Days with TX<10th percentile of daily

maximum temperature (cold day-times) (TX10p)
icclim.tx90p Days with TX>90th percentile of daily

maximum temperature (warm day-times) (TX90p)
icclim.txn Minimum daily maximum temperature (TXn)
icclim.txx Maximum daily maximum temperature (TXx)
icclim.vdtr Mean absolute day-to-day difference in DTR

(vDTR)
icclim.wd Warm and dry days (WD)
icclim.wsdi Warm-spell duration index (WSDI)
icclim.ww Warm and wet days (WW)
ice_days Number of days with maximum daily

temperature below {thresh}
jetstream_metric_woollings Latitude of maximum smoothed zonal wind

speed, Maximum strength of smoothed zonal
wind speed (jetlat, jetstr)

kbdi Keetch-Byran Drought Index
last_snowfall Date of last day where the solid

precipitation flux exceeded {thresh}
last_spring_frost Last day of minimum daily temperature below

a threshold of {thresh} for at least
{window} days before a given date
({before_date})

latitude_temperature_index Mean temperature of warmest month multiplied
by the difference of {lat_factor} minus
latitude (lti)

liquid_precip_ratio Fraction of liquid to total precipitation
(temperature above {thresh})

liquidprcptot Total accumulated precipitation when
temperature is above {thresh}

max_n_day_precipitation_amount maximum {window}-day total precipitation
amount (rx{window}day)

max_pr_intensity Maximum precipitation intensity over rolling
{window}h time window

maximum_consecutive_warm_days Maximum number of consecutive days with
maximum daily temperature above {thresh}

mean_radiant_temperature Mean radiant temperature (mrt)
melt_and_precip_max Water equivalent maximum from precipitation

and snow melt ({freq}_melt_and_precip_max)
potential_evapotranspiration Potential evapotranspiration ("{method}"

method) (evspsblpot)
prcptot Total accumulated precipitation
prlp Liquid precipitation ("{method}" method with

temperature at or above {thresh})
prsn Solid precipitation ("{method}" method with

(continues on next page)

250 Chapter 9. Command line interface

xclim Documentation, Release 0.39.0

(continued from previous page)

temperature at or below {thresh})
rain_frzgr Number of rain on frozen ground days (mean

daily temperature > 0℃ and precipitation >
{thresh})

rb_flashiness_index Richards-Baker Flashiness Index (rbi)
rprctot Proportion of accumulated precipitation

arising from convective processeswith
precipitation of at least {thresh}

rx1day Maximum 1-day total precipitation
sdii Average precipitation during days with daily

precipitation over {thresh} (Simple Daily
Intensity Index: SDII)

sea_ice_area Sum of ice-covered areas where sea ice
concentration exceeds {thresh}

sea_ice_extent Sum of ocean areas where sea ice
concentration exceeds {thresh}

snd_max_doy Day of the year when snow depth reaches its
maximum value ({freq}_snd_max_doy)

snow_cover_duration Number of days with snow depth at or above
threshold

snow_depth Mean of daily snow depth
snow_melt_we_max Maximum snow melt ({freq}_snow_melt_we_max)
snw_max Maximum snow water equivalent amount

({freq}_snw_max)
snw_max_doy Day of year of maximum daily snow water

equivalent amount ({freq}_snw_max_doy)
solidprcptot Total accumulated solid precipitation
spei Standardized precipitation

evapotranspiration index (SPEI)
spi Standardized Precipitation Index (SPI)
stats Daily flow statistics (q{indexer}{op:r})
tg Daily mean temperature
tg10p Number of days with mean temperature below

the 10th percentile
tg90p Number of days with mean temperature above

the 90th percentile
tg_days_above The number of days with mean temperature

above {thresh}
tg_days_below The number of days with mean temperature

below {thresh}
tg_max Maximum daily mean temperature
tg_mean Mean daily mean temperature
tg_min Minimum daily mean temperature
thawing_degree_days Cumulative sum of temperature degrees for

mean daily temperature above {thresh}
tn10p Number of days with minimum temperature

below the 10th percentile
tn90p Number of days with minimum temperature

above the 90th percentile
tn_days_above The number of days with minimum temperature

above {thresh}
tn_days_below The number of days with minimum temperature

(continues on next page)

251

xclim Documentation, Release 0.39.0

(continued from previous page)

below {thresh}
tn_max Maximum daily minimum temperature
tn_mean Mean daily minimum temperature
tn_min Minimum daily minimum temperature
tropical_nights Number of days with minimum daily

temperature above {thresh}
tx10p Number of days with maximum temperature

below the 10th percentile
tx90p Number of days with maximum temperature

above the 90th percentile
tx_days_above The number of days with maximum temperature

above {thresh}
tx_days_below The number of days with maximum temperature

below {thresh}
tx_max Maximum daily maximum temperature
tx_mean Mean daily maximum temperature
tx_min Minimum daily maximum temperature
tx_tn_days_above Number of days with daily minimum above

{thresh_tasmin} and daily maximum
temperatures above {thresh_tasmax}

utci Universal Thermal Climate Index (UTCI)
warm_and_dry_days Number of days where temperature is above

{tas_per_thresh}th percentile and
precipitation is below {pr_per_thresh}th
percentile

warm_and_wet_days Number of days where temperature above
{tas_per_thresh}th percentile and
precipitation above {pr_per_thresh}th
percentile

warm_spell_duration_index Number of days with at least {window}
consecutive days where the maximum daily
temperature is above the
{tasmax_per_thresh}th percentile(s)

water_budget Water budget
water_budget_from_tas Water budget ("{method}" method)
wet_prcptot Total accumulated precipitation over days

where precipitation exceeds {thresh}
wetdays Number of days with daily precipitation at

or above {thresh}
wetdays_prop Proportion of days with precipitation at or

above {thresh}
wind_chill Wind chill factor
wind_speed_from_vector Near-surface wind speed, Near-surface wind

from direction (sfcWind, sfcWindfromdir)
wind_vector_from_speed Near-surface eastward wind, Near-surface

northward wind (uas, vas)
windy_days Number of days with surface wind speed at or

above {thresh}
winter_storm Days with snowfall at or above a given

threshold ({freq}_winter_storm)

252 Chapter 9. Command line interface

xclim Documentation, Release 0.39.0

For more information about a specific indicator, you can either use the info subcommand or directly access the --help
message of the indicator. The former gives more information about the metadata while the latter only prints the usage.
Note that the module name (atmos, land or seaIce) is mandatory.

[3]: !xclim info liquidprcptot

Indicator liquidprcptot:
identifier : liquidprcptot
title : Total accumulated liquid precipitation.
abstract : Total accumulated liquid precipitation. Precipitation

is considered liquid when the average daily temperature is above 0°C.
keywords :
outputs (#1)
standard_name : lwe_thickness_of_liquid_precipitation_amount
long_name : Total accumulated precipitation when temperature is

above 0 degc
units : mm
cell_methods : time: sum over days
description : Annual total liquid precipitation, estimated as

precipitation when temperature is above 0 degc.
var_name : liquidprcptot

notes : Let :math:`PR_i` be the mean daily precipitation of day
:math:`i`, then for a period :math:`j` starting at day :math:`a` and
finishing on day :math:`b`:

.. math::

PR_{ij} = \sum_{i=a}^{b} PR_i

If tas and phase are given, the corresponding phase precipitation is
estimated before computing the accumulation, using one of
`snowfall_approximation` or `rain_approximation` with the `binary` method.

Options:
--pr VAR_NAME Mean daily precipitation flux. [default: pr]
--tas VAR_NAME Mean, maximum or minimum daily temperature. [default: tas]
--thresh TEXT Threshold of `tas` over which the precipication is assumed

to be liquid rain. [default: 0 degC]
--freq TEXT Resampling frequency. [default: YS]
--help Show this message and exit.

In the usage message, VAR_NAME indicates that the passed argument must match a variable in the input dataset.

[4]: from __future__ import annotations

import warnings

import numpy as np
import pandas as pd
import xarray as xr
from pandas.plotting import register_matplotlib_converters

(continues on next page)

253

xclim Documentation, Release 0.39.0

(continued from previous page)

register_matplotlib_converters()
warnings.filterwarnings("ignore", "implicitly registered datetime converter")
%matplotlib inline
xr.set_options(display_style="html")

time = pd.date_range("2000-01-01", periods=366)
tasmin = xr.DataArray(

-5 * np.cos(2 * np.pi * time.dayofyear / 365) + 273.15,
dims=("time"),
coords={"time": time},
attrs={"units": "K"},

)
tasmax = xr.DataArray(

-5 * np.cos(2 * np.pi * time.dayofyear / 365) + 283.15,
dims=("time"),
coords={"time": time},
attrs={"units": "K"},

)
pr = xr.DataArray(

np.clip(10 * np.sin(18 * np.pi * time.dayofyear / 365), 0, None),
dims=("time"),
coords={"time": time},
attrs={"units": "mm/d"},

)
ds = xr.Dataset({"tasmin": tasmin, "tasmax": tasmax, "pr": pr})
ds.to_netcdf("example_data.nc")

9.1 Computing indicators

So let’s say we have the following toy dataset:

[5]: import xarray as xr

ds = xr.open_dataset("example_data.nc")
display(ds)

<xarray.Dataset>
Dimensions: (time: 366)
Coordinates:
* time (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2000-12-31

Data variables:
tasmin (time) float64 ...
tasmax (time) float64 ...
pr (time) float64 ...

[6]: import matplotlib.pyplot as plt

fig, (axT, axpr) = plt.subplots(1, 2, figsize=(10, 5))
ds.tasmin.plot(label="tasmin", ax=axT)
ds.tasmax.plot(label="tasmax", ax=axT)

(continues on next page)

254 Chapter 9. Command line interface

xclim Documentation, Release 0.39.0

(continued from previous page)

ds.pr.plot(ax=axpr)
axT.legend()

[6]: <matplotlib.legend.Legend at 0x7fa77cfda980>

nbsphinx-code-borderwhite

To compute an indicator, say the monthly solid precipitation accumulation, we simply call:

[7]: !xclim -i example_data.nc -o out1.nc solidprcptot --pr pr --tas tasmin --freq MS

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/core/cfchecks.py:44: UserWarning: Variable does not have a `cell_
→˓methods` attribute.
_check_cell_methods(

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/core/cfchecks.py:48: UserWarning: Variable does not have a `standard_
→˓name` attribute.
check_valid(vardata, "standard_name", data["standard_name"])

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/indicators/atmos/_precip.py:87: UserWarning: Variable does not have a␣
→˓`standard_name` attribute.
cfchecks.check_valid(tas, "standard_name", "air_temperature")

[##] | 100% Completed | 102.58 ms

In this example, we decided to use tasmin for the tas variable. We didn’t need to provide the --pr parameter as our
data has the same name.

Finally, more than one indicators can be computed to the output dataset by simply chaining the calls:

[8]: !xclim -i example_data.nc -o out2.nc liquidprcptot --tas tasmin --freq MS tropical_
→˓nights --thresh "2 degC" --freq MS

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/core/cfchecks.py:44: UserWarning: Variable does not have a `cell_
→˓methods` attribute.
_check_cell_methods(

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/core/cfchecks.py:48: UserWarning: Variable does not have a `standard_

(continues on next page)

9.1. Computing indicators 255

xclim Documentation, Release 0.39.0

(continued from previous page)

→˓name` attribute.
check_valid(vardata, "standard_name", data["standard_name"])

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/indicators/atmos/_precip.py:87: UserWarning: Variable does not have a␣
→˓`standard_name` attribute.
cfchecks.check_valid(tas, "standard_name", "air_temperature")

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/core/cfchecks.py:44: UserWarning: Variable does not have a `cell_
→˓methods` attribute.
_check_cell_methods(

/home/docs/checkouts/readthedocs.org/user_builds/xclim/conda/v0.39.0/lib/python3.10/site-
→˓packages/xclim/core/cfchecks.py:48: UserWarning: Variable does not have a `standard_
→˓name` attribute.
check_valid(vardata, "standard_name", data["standard_name"])

[##] | 100% Completed | 103.78 ms

Let’s see the outputs:

[9]: ds1 = xr.open_dataset("out1.nc")
ds2 = xr.open_dataset("out2.nc", decode_timedelta=False)

fig, (axPr, axTn) = plt.subplots(1, 2, figsize=(10, 5))
ds1.solidprcptot.plot(ax=axPr, label=ds1.solidprcptot.long_name)
ds2.liquidprcptot.plot(ax=axPr, label=ds2.liquidprcptot.long_name)
ds2.tropical_nights.plot(ax=axTn, marker="o")
axPr.legend()

[9]: <matplotlib.legend.Legend at 0x7fa7747614e0>

nbsphinx-code-borderwhite

[10]: ds1.close()

[11]: ds2.close()

256 Chapter 9. Command line interface

xclim Documentation, Release 0.39.0

9.2 Data Quality Checks

As of version 0.30.0, xclim now also provides a command-line utility for performing data quality control checks on
existing NetCDF files.

These checks examine the values of data_variables for suspicious value patterns (e.g. values that repeat for many
days) or erroneous values (e.g. humidity percentages outside of 0-100, minimum temperatures exceeding maxi-
mum temperatures, etc.). The checks (called “data flags”) are based on the ECAD ICCLIM quality control checks
(https://www.ecad.eu/documents/atbd.pdf).

The full list of checks performed for each variable are listed in xclim/core/data/variables.yml.

[12]: !xclim dataflags --help

Usage: xclim dataflags [OPTIONS] [VARIABLES]...

Run quality control checks on input data variables and flag for quality
control issues or suspicious values.

Options:
-r, --raise-flags Print an exception in the event that a variable is found

to have quality control issues.
-a, --append Return the netCDF dataset with the `ecad_qc_flag` array

appended as a data_var.
-d, --dims TEXT Dimensions upon which aggregation should be performed.

Default: "all". Ignored if no variable provided.
-f, --freq TEXT Resampling periods frequency used for aggregation.

Default: None. Ignored if no variable provided.
--help Show this message and exit.

When running the dataflags CLI checks, you must either set an output file (-o filename.nc) or set the checks to raise
if there are any failed checks (-r).

By default, when setting an output file, the returned file will only contain the flag value (True if no flags were raised,
False otherwise). To append the flag to a copy of the dataset, we use the -a option.

The default behaviour is to raise a flag if any element of the array resolves to True (ie: aggregated across all dimensions),
but we can specify the level of aggregation by dimension with the -d or --dims option.

[13]: # Create an output file with just the flag value and no aggregation (dims=None)

!xclim -i example_data.nc -o flag_output.nc dataflags -d none

Need to wait until the file is written

!sleep 2s

[##] | 100% Completed | 1.73 s

[14]: import xarray as xr

ds1 = xr.open_dataset("flag_output.nc")
display(ds1.data_vars, ds1.ecad_qc_flag)
ds1.close()

9.2. Data Quality Checks 257

https://www.ecad.eu/documents/atbd.pdf

xclim Documentation, Release 0.39.0

Data variables:
ecad_qc_flag (time) bool ...

<xarray.DataArray 'ecad_qc_flag' (time: 366)>
array([True, True, True, ..., True, True, True])
Coordinates:
* time (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2000-12-31

Attributes:
comment: Adheres to ECAD quality control checks.
history: [2022-11-02 04:11:24] - xclim version: 0.39.0 - Performed the f...

[15]: # Create an output file with values appended to the original dataset.

!xclim -i example_data.nc -o flag_output_appended.nc dataflags -a

Need to wait until the file is written
!sleep 2s

[##] | 100% Completed | 1.32 s

[16]: import xarray as xr

ds2 = xr.open_dataset("flag_output_appended.nc")
display(ds2.data_vars, ds2.ecad_qc_flag)
ds2.close()

Data variables:
tasmin (time) float64 ...
tasmax (time) float64 ...
pr (time) float64 ...
ecad_qc_flag bool ...

<xarray.DataArray 'ecad_qc_flag' ()>
array(True)
Attributes:

comment: Adheres to ECAD quality control checks.
history: [2022-11-02 04:11:40] - xclim version: 0.39.0 - Performed the f...

[17]: # Raise an error if any quality control checks fail. Passing example:

!xclim -i example_data.nc dataflags -r

Dataset passes quality control checks!

[18]: import xarray as xr

Create some bad data with minimum temperatures exceeding max temperatures
bad_ds = xr.open_dataset("example_data.nc")

Swap entire variable arrays
bad_ds["tasmin"].values, bad_ds["tasmax"].values = (

bad_ds.tasmax.values,
(continues on next page)

258 Chapter 9. Command line interface

xclim Documentation, Release 0.39.0

(continued from previous page)

bad_ds.tasmin.values,
)
bad_ds.to_netcdf("suspicious_data.nc")
bad_ds.close()

[19]: # Raise an error if any quality control checks fail. Failing example:

!xclim -i suspicious_data.nc dataflags -r

Data quality flags indicate suspicious values. Flags raised are:
- Maximum temperature values found below minimum temperatures.
- Maximum temperature values found below minimum temperatures.

These checks can also be set to examine a specifc variable within a netcdf file, with more descriptive information for
each check performed.

[20]: !xclim -i example_data.nc -o flag_output_pr.nc dataflags pr

[##] | 100% Completed | 2.20 s

[21]: import xarray as xr

ds3 = xr.open_dataset("flag_output_pr.nc")
display(ds3.data_vars)
for dv in ds3.data_vars:

display(ds3[dv])

Data variables:
negative_accumulation_values bool ...
very_large_precipitation_events bool ...
values_eq_5_repeating_for_5_or_more_days bool ...
values_eq_1_repeating_for_10_or_more_days bool ...

<xarray.DataArray 'negative_accumulation_values' ()>
array(False)
Attributes:

description: Negative values found for pr.
units:
history: [2022-11-02 04:12:22] pr: negative_accumulation_values(da=p...

<xarray.DataArray 'very_large_precipitation_events' ()>
array(False)
Attributes:

description: Precipitation events in excess of 300 mm d-1 for pr.
units:
history: [2022-11-02 04:12:22] pr: very_large_precipitation_events(d...

<xarray.DataArray 'values_eq_5_repeating_for_5_or_more_days' ()>
array(False)
Attributes:

description: Repetitive values at 5.0 for at least 5 days found for pr.
units:
history: [2022-11-02 04:12:22] pr: values_op_thresh_repeating_for_n_...

9.2. Data Quality Checks 259

xclim Documentation, Release 0.39.0

<xarray.DataArray 'values_eq_1_repeating_for_10_or_more_days' ()>
array(False)
Attributes:

description: Repetitive values at 1.0 for at least 10 days found for pr.
units:
history: [2022-11-02 04:12:22] pr: values_op_thresh_repeating_for_n_...

260 Chapter 9. Command line interface

CHAPTER

TEN

BIAS ADJUSTMENT AND DOWNSCALING ALGORITHMS

xarray data structures allow for relatively straightforward implementations of simple bias-adjustment and downscaling
algorithms documented in Adjustment Methods. Each algorithm is split into train and adjust components. The train
function will compare two DataArrays x and y, and create a dataset storing the transfer information allowing to go from
x to y. This dataset, stored in the adjustment object, can then be used by the adjust method to apply this information to
x. x could be the same DataArray used for training, or another DataArray with similar characteristics.

For example, given a daily time series of observations ref, a model simulation over the observational period hist and
a model simulation over a future period sim, we would apply a bias-adjustment method such as detrended quantile
mapping (DQM) as:

from xclim import sdba

dqm = sdba.adjustment.DetrendedQuantileMapping.train(ref, hist)
scen = dqm.adjust(sim)

Most method can either be applied additively by multiplication. Also, most methods can be applied independently on
different time groupings (monthly, seasonally) or according to the day of the year and a rolling window width.

When transfer factors are applied in adjustment, they can be interpolated according to the time grouping. This helps
avoid discontinuities in adjustment factors at the beginning of each season or month and is computationally cheaper
than computing adjustment factors for each day of the year. (Currently only implemented for monthly grouping)

10.1 Application in multivariate settings

When applying univariate adjustment methods to multiple variables, some strategies are recommended to avoid intro-
ducing unrealistic artifacts in adjusted outputs.

10.1.1 Minimum and maximum temperature

When adjusting both minimum and maximum temperature, adjustment factors sometimes yield minimum temperatures
larger than the maximum temperature on the same day, which of course, is nonsensical. One way to avoid this is
to first adjust maximum temperature using an additive adjustment, then adjust the diurnal temperature range (DTR)
using a multiplicative adjustment, and then determine minimum temperature by subtracting DTR from the maximum
temperature [Agbazo and Grenier, 2020, Thrasher et al., 2012].

261

xclim Documentation, Release 0.39.0

10.1.2 Relative and specific humidity

When adjusting both relative and specific humidity, we want to preserve the relationship between both. To do this,
Grenier [2018] suggests to first adjust the relative humidity using a multiplicative factor, ensure values are within 0-
100%, then apply an additive adjustment factor to the surface pressure before estimating the specific humidity from
thermodynamic relationships.

10.1.3 Radiation and precipitation

In theory, short wave radiation should be capped when precipitation is not zero, but there is as of yet no mechanism
proposed to do that, see Hoffmann and Rath [2012].

10.2 SDBA User API

10.2.1 Adjustment Methods

class xclim.sdba.adjustment.DetrendedQuantileMapping(*args, _trained=False, **kwargs)
Bases: TrainAdjust

Detrended Quantile Mapping bias-adjustment.

The algorithm follows these steps, 1-3 being the ‘train’ and 4-6, the ‘adjust’ steps.

1. A scaling factor that would make the mean of hist match the mean of ref is computed.

2. ref and hist are normalized by removing the “dayofyear” mean.

3. Adjustment factors are computed between the quantiles of the normalized ref and hist.

4. sim is corrected by the scaling factor, and either normalized by “dayofyear” and detrended group-wise or
directly detrended per “dayofyear”, using a linear fit (modifiable).

5. Values of detrended sim are matched to the corresponding quantiles of normalized hist and corrected ac-
cordingly.

6. The trend is put back on the result.

𝐹−1
𝑟𝑒𝑓

{︂
𝐹ℎ𝑖𝑠𝑡

[︂
ℎ𝑖𝑠𝑡 · 𝑠𝑖𝑚

𝑠𝑖𝑚

]︂}︂
𝑠𝑖𝑚

ℎ𝑖𝑠𝑡

where 𝐹 is the cumulative distribution function (CDF) and 𝑥𝑦𝑧 is the linear trend of the data. This equation is
valid for multiplicative adjustment. Based on the DQM method of [Cannon et al., 2015].

Parameters
• Train step
• nquantiles (int or 1d array of floats) – The number of quantiles to use. See
equally_spaced_nodes(). An array of quantiles [0, 1] can also be passed. Defaults to 20
quantiles.

• kind ({‘+’, ‘’}*) – The adjustment kind, either additive or multiplicative. Defaults to “+”.

• group (Union[str, Grouper]) – The grouping information. See xclim.sdba.base.
Grouper for details. Default is “time”, meaning a single adjustment group along dimension
“time”.

• Adjust step

262 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

• interp ({‘nearest’, ‘linear’, ‘cubic’}) – The interpolation method to use when interpolating
the adjustment factors. Defaults to “nearest”.

• detrend (int or BaseDetrend instance) – The method to use when detrending. If an int is
passed, it is understood as a PolyDetrend (polynomial detrending) degree. Defaults to 1
(linear detrending)

• extrapolation ({‘constant’, ‘nan’}) – The type of extrapolation to use. See xclim.sdba.
utils.extrapolate_qm() for details. Defaults to “constant”.

References

Cannon, Sobie, and Murdock [2015]

class xclim.sdba.adjustment.EmpiricalQuantileMapping(*args, _trained=False, **kwargs)
Bases: TrainAdjust

Empirical Quantile Mapping bias-adjustment.

Adjustment factors are computed between the quantiles of ref and sim. Values of sim are matched to the corre-
sponding quantiles of hist and corrected accordingly.

𝐹−1
𝑟𝑒𝑓 (𝐹ℎ𝑖𝑠𝑡(𝑠𝑖𝑚))

where 𝐹 is the cumulative distribution function (CDF) and mod stands for model data.

Variables
• step (Adjust) –

• nquantiles (int or 1d array of floats) – The number of quantiles to use. Two
endpoints at 1e-6 and 1 - 1e-6 will be added. An array of quantiles [0, 1] can also be passed.
Defaults to 20 quantiles.

• kind ({'+', '*'}) – The adjustment kind, either additive or multiplicative. Defaults to “+”.

• group (Union[str, Grouper]) – The grouping information. See xclim.sdba.base.
Grouper for details. Default is “time”, meaning an single adjustment group along dimension
“time”.

• step –

• interp ({'nearest', 'linear', 'cubic'}) – The interpolation method to use when inter-
polating the adjustment factors. Defaults to “nearset”.

• extrapolation ({'constant', 'nan'}) – The type of extrapolation to use. See xclim.
sdba.utils.extrapolate_qm() for details. Defaults to “constant”.

References

Déqué [2007]

class xclim.sdba.adjustment.ExtremeValues(*args, _trained=False, **kwargs)
Bases: TrainAdjust

Adjustment correction for extreme values.

The tail of the distribution of adjusted data is corrected according to the bias between the parametric Generalized
Pareto distributions of the simulated and reference data [RRJF2021]. The distributions are composed of the

10.2. SDBA User API 263

xclim Documentation, Release 0.39.0

maximal values of clusters of “large” values. With “large” values being those above cluster_thresh. Only extreme
values, whose quantile within the pool of large values are above q_thresh, are re-adjusted. See Notes.

This adjustment method should be considered experimental and used with care.

Parameters
• Train step
• cluster_thresh (Quantity (str with units)) – The threshold value for defining clusters.

• q_thresh (float) – The quantile of “extreme” values, [0, 1[. Defaults to 0.95.

• ref_params (xr.DataArray, optional) – Distribution parameters to use instead of fitting a
GenPareto distribution on ref.

• Adjust step
• scen (DataArray) – This is a second-order adjustment, so the adjust method needs the first-

order adjusted timeseries in addition to the raw “sim”.

• interp ({‘nearest’, ‘linear’, ‘cubic’}) – The interpolation method to use when interpolating
the adjustment factors. Defaults to “linear”.

• extrapolation ({‘constant’, ‘nan’}) – The type of extrapolation to use. See
extrapolate_qm() for details. Defaults to “constant”.

• frac (float) – Fraction where the cutoff happens between the original scen and the corrected
one. See Notes,]0, 1]. Defaults to 0.25.

• power (float) – Shape of the correction strength, see Notes. Defaults to 1.0.

Notes

Extreme values are extracted from ref, hist and sim by finding all “clusters”, i.e. runs of consecutive values
above cluster_thresh. The q_thresh`th percentile of these values is taken on `ref and hist and becomes thresh,
the extreme value threshold. The maximal value of each cluster, if it exceeds that new threshold, is taken and
Generalized Pareto distributions are fitted to them, for both ref and hist. The probabilities associated with each of
these extremes in hist is used to find the corresponding value according to ref ’s distribution. Adjustment factors
are computed as the bias between those new extremes and the original ones.

In the adjust step, a Generalized Pareto distributions is fitted on the cluster-maximums of sim and it is used to
associate a probability to each extreme, values over the thresh compute in the training, without the clustering. The
adjustment factors are computed by interpolating the trained ones using these probabilities and the probabilities
computed from hist.

Finally, the adjusted values (𝐶𝑖) are mixed with the pre-adjusted ones (scen, 𝐷𝑖) using the following transition
function:

𝑉𝑖 = 𝐶𝑖 * 𝜏 +𝐷𝑖 * (1− 𝜏)

Where 𝜏 is a function of sim’s extreme values (unadjusted, 𝑆𝑖) and of arguments frac (𝑓) and power (𝑝):

𝜏 =

(︂
1

𝑓

𝑆 −𝑚𝑖𝑛(𝑆)

𝑚𝑎𝑥(𝑆)−𝑚𝑖𝑛(𝑆)

)︂𝑝

Code based on an internal Matlab source and partly ib the biascorrect_extremes function of the julia package
“ClimateTools.jl” [Roy et al., 2021].

Because of limitations imposed by the lazy computing nature of the dask backend, it is not possible to know
the number of cluster extremes in ref and hist at the moment the output data structure is created. This is why

264 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

the code tries to estimate that number and usually overestimates it. In the training dataset, this translated into a
quantile dimension that is too large and variables af and px_hist are assigned NaNs on extra elements. This has
no incidence on the calculations themselves but requires more memory than is useful.

References

Roy, Smith, Kelman, Nolet-Gravel, Saba, Thomet, TagBot, and Forget [2021]

Roy, Rondeau-Genesse, Jalbert, and Fournier [RRJF2021]

class xclim.sdba.adjustment.LOCI(*args, _trained=False, **kwargs)
Bases: TrainAdjust

Local Intensity Scaling (LOCI) bias-adjustment.

This bias adjustment method is designed to correct daily precipitation time series by considering wet and dry
days separately [Schmidli et al., 2006].

Multiplicative adjustment factors are computed such that the mean of hist matches the mean of ref for values
above a threshold.

The threshold on the training target ref is first mapped to hist by finding the quantile in hist having the same
exceedance probability as thresh in ref. The adjustment factor is then given by

𝑠 =
⟨𝑟𝑒𝑓 : 𝑟𝑒𝑓 ≥ 𝑡𝑟𝑒𝑓 ⟩ − 𝑡𝑟𝑒𝑓
⟨ℎ𝑖𝑠𝑡 : ℎ𝑖𝑠𝑡 ≥ 𝑡ℎ𝑖𝑠𝑡⟩ − 𝑡ℎ𝑖𝑠𝑡

In the case of precipitations, the adjustment factor is the ratio of wet-days intensity.

For an adjustment factor s, the bias-adjustment of sim is:

𝑠𝑖𝑚(𝑡) = max (𝑡𝑟𝑒𝑓 + 𝑠 · (ℎ𝑖𝑠𝑡(𝑡)− 𝑡ℎ𝑖𝑠𝑡), 0)

Variables
• step (Adjust) –

• group (Union[str, Grouper]) – The grouping information. See xclim.sdba.base.
Grouper for details. Default is “time”, meaning a single adjustment group along dimension
“time”.

• thresh (str) – The threshold in ref above which the values are scaled.

• step –

• interp ({'nearest', 'linear', 'cubic'}) – The interpolation method to use then inter-
polating the adjustment factors. Defaults to “linear”.

References

Schmidli, Frei, and Vidale [2006]

class xclim.sdba.adjustment.NpdfTransform(*args, _trained=False, **kwargs)
Bases: Adjust

N-dimensional probability density function transform.

This adjustment object combines both training and adjust steps in the adjust class method.

A multivariate bias-adjustment algorithm described by Cannon [2018], as part of the MBCn algorithm, based
on a color-correction algorithm described by Pitie et al. [2005].

10.2. SDBA User API 265

xclim Documentation, Release 0.39.0

This algorithm in itself, when used with QuantileDeltaMapping, is NOT trend-preserving. The full MBCn
algorithm includes a reordering step provided here by xclim.sdba.processing.reordering().

See notes for an explanation of the algorithm.

Parameters
• base (BaseAdjustment) – An univariate bias-adjustment class. This is untested for anything

else than QuantileDeltaMapping.

• base_kws (dict, optional) – Arguments passed to the training of the univariate adjustment.

• n_escore (int) – The number of elements to send to the escore function. The default, 0,
means all elements are included. Pass -1 to skip computing the escore completely. Small
numbers result in less significant scores, but the execution time goes up quickly with large
values.

• n_iter (int) – The number of iterations to perform. Defaults to 20.

• pts_dim (str) – The name of the “multivariate” dimension. Defaults to “multivar”, which is
the normal case when using xclim.sdba.base.stack_variables().

• adj_kws (dict, optional) – Dictionary of arguments to pass to the adjust method of the uni-
variate adjustment.

• rot_matrices (xr.DataArray, optional) – The rotation matrices as a 3D array (‘iterations’,
<pts_dim>, <anything>), with shape (n_iter, <N>, <N>). If left empty, random rotation
matrices will be automatically generated.

Notes

The historical reference (𝑇 , for “target”), simulated historical (𝐻) and simulated projected (𝑆) datasets are con-
structed by stacking the timeseries of N variables together. The algorithm is broken into the following steps:

1. Rotate the datasets in the N-dimensional variable space with R, a random rotation NxN matrix.

T̃ = TR H̃ = HR S̃ = SR

2. An univariate bias-adjustment ℱ is used on the rotated datasets. The adjustments are made in additive mode,
for each variable 𝑖.

Ĥ𝑖, Ŝ𝑖 = ℱ
(︁
T̃𝑖, H̃𝑖, S̃𝑖

)︁
3. The bias-adjusted datasets are rotated back.

H′ = ĤR

S′ = ŜR

These three steps are repeated a certain number of times, prescribed by argument n_iter. At each iteration, a
new random rotation matrix is generated.

The original algorithm [Pitie et al., 2005], stops the iteration when some distance score converges. Follow-
ing cite:t:sdba-cannon_multivariate_2018 and the MBCn implementation in Cannon [2020], we instead fix the
number of iterations.

As done by cite:t:sdba-cannon_multivariate_2018, the distance score chosen is the “Energy distance” from
Szekely and Rizzo [2004]. (see: xclim.sdba.processing.escore()).

The random matrices are generated following a method laid out by Mezzadri [2007].

This is only part of the full MBCn algorithm, see Statistical Downscaling and Bias-Adjustment for an example
on how to replicate the full method with xclim. This includes a standardization of the simulated data beforehand,

266 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

an initial univariate adjustment and the reordering of those adjusted series according to the rank structure of the
output of this algorithm.

References

Cannon [2018], Cannon [2020], Mezzadri [2007], Pitie, Kokaram, and Dahyot [2005], Szekely and Rizzo [2004]

class xclim.sdba.adjustment.PrincipalComponents(*args, _trained=False, **kwargs)
Bases: TrainAdjust

Principal component adjustment.

This bias-correction method maps model simulation values to the observation space through principal compo-
nents [Hnilica et al., 2017]. Values in the simulation space (multiple variables, or multiple sites) can be thought
of as coordinate along axes, such as variable, temperature, etc. Principal components (PC) are a linear com-
binations of the original variables where the coefficients are the eigenvectors of the covariance matrix. Values
can then be expressed as coordinates along the PC axes. The method makes the assumption that bias-corrected
values have the same coordinates along the PC axes of the observations. By converting from the observation PC
space to the original space, we get bias corrected values. See Notes for a mathematical explanation.

Warning: Be aware that principal components is meant here as the algebraic operation defining a coordinate
system based on the eigenvectors, not statistical principal component analysis.

Variables
• group (Union[str, Grouper]) – The main dimension and grouping information. See

Notes. See xclim.sdba.base.Grouper for details. The adjustment will be performed
on each group independently. Default is “time”, meaning a single adjustment group along
dimension “time”.

• best_orientation ({'simple', 'full'}) – Which method to use when searching for
the best principal component orientation. See best_pc_orientation_simple() and
best_pc_orientation_full(). “full” is more precise, but it is much slower.

• crd_dim (str) – The data dimension along which the multiple simulation space dimen-
sions are taken. For a multivariate adjustment, this usually is “multivar”, as returned by
sdba.stack_variables. For a multisite adjustment, this should be the spatial dimension. The
training algorithm currently doesn’t support any chunking along either crd_dim. group.dim
and group.add_dims.

Notes

The input data is understood as a set of N points in a 𝑀 -dimensional space.

• 𝑀 is taken along crd_dim.

• 𝑁 is taken along the dimensions given through group : (the main dim but also, if requested, the add_dims
and window).

The principal components (PC) of hist and ref are used to defined new coordinate systems, centered on their
respective means. The training step creates a matrix defining the transformation from hist to ref :

𝑠𝑐𝑒𝑛 = 𝑒𝑅 +T(𝑠𝑖𝑚− 𝑒𝐻)

10.2. SDBA User API 267

xclim Documentation, Release 0.39.0

Where:

T = RH−1

R is the matrix transforming from the PC coordinates computed on ref to the data coordinates. Similarly, H is
transform from the hist PC to the data coordinates (H is the inverse transformation). 𝑒𝑅 and 𝑒𝐻 are the centroids
of the ref and hist distributions respectively. Upon running the adjust step, one may decide to use 𝑒𝑆 , the centroid
of the sim distribution, instead of 𝑒𝐻 .

References

Alavoine and Grenier [2021], Hnilica, Hanel, and Pus [2017]

class xclim.sdba.adjustment.QuantileDeltaMapping(*args, _trained=False, **kwargs)
Bases: EmpiricalQuantileMapping

Quantile Delta Mapping bias-adjustment.

Adjustment factors are computed between the quantiles of ref and hist. Quantiles of sim are matched to the
corresponding quantiles of hist and corrected accordingly.

𝑠𝑖𝑚
𝐹−1
𝑟𝑒𝑓 [𝐹𝑠𝑖𝑚(𝑠𝑖𝑚)]

𝐹−1
ℎ𝑖𝑠𝑡 [𝐹𝑠𝑖𝑚(𝑠𝑖𝑚)]

where 𝐹 is the cumulative distribution function (CDF). This equation is valid for multiplicative adjustment. The
algorithm is based on the “QDM” method of [Cannon et al., 2015].

Parameters
• Train step
• nquantiles (int or 1d array of floats) – The number of quantiles to use. See
equally_spaced_nodes(). An array of quantiles [0, 1] can also be passed. Defaults to 20
quantiles.

• kind ({‘+’, ‘’}*) – The adjustment kind, either additive or multiplicative. Defaults to “+”.

• group (Union[str, Grouper]) – The grouping information. See xclim.sdba.base.
Grouper for details. Default is “time”, meaning a single adjustment group along dimension
“time”.

• Adjust step
• interp ({‘nearest’, ‘linear’, ‘cubic’}) – The interpolation method to use when interpolating

the adjustment factors. Defaults to “nearest”.

• extrapolation ({‘constant’, ‘nan’}) – The type of extrapolation to use. See xclim.sdba.
utils.extrapolate_qm() for details. Defaults to “constant”.

• Extra diagnostics
• —————–
• In adjustment
• quantiles (The quantile of each value of sim. The adjustment factor is interpolated using this

as the “quantile” axis on ds.af.)

268 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

References

Cannon, Sobie, and Murdock [2015]

class xclim.sdba.adjustment.Scaling(*args, _trained=False, **kwargs)
Bases: TrainAdjust

Scaling bias-adjustment.

Simple bias-adjustment method scaling variables by an additive or multiplicative factor so that the mean of hist
matches the mean of ref.

Parameters
• Train step
• group (Union[str, Grouper]) – The grouping information. See xclim.sdba.base.
Grouper for details. Default is “time”, meaning an single adjustment group along dimension
“time”.

• kind ({‘+’, ‘’}*) – The adjustment kind, either additive or multiplicative. Defaults to “+”.

• Adjust step
• interp ({‘nearest’, ‘linear’, ‘cubic’}) – The interpolation method to use then interpolating

the adjustment factors. Defaults to “nearest”.

10.2.2 Pre and post processing

xclim.sdba.processing.adapt_freq(ref: DataArray, sim: DataArray, *, group: xclim.sdba.base.Grouper | str,
thresh: str = '0 mm d-1')→ tuple[xarray.DataArray, xarray.DataArray,
xarray.DataArray]

Adapt frequency of values under thresh of sim, in order to match ref.

This is useful when the dry-day frequency in the simulations is higher than in the references. This function will
create new non-null values for sim/hist, so that adjustment factors are less wet-biased. Based on Themeßl et al.
[2012].

Parameters
• ds (xr.Dataset) – With variables : “ref”, Target/reference data, usually observed data. and

“sim”, Simulated data.

• dim (str) – Dimension name.

• group (str or Grouper) – Grouping information, see base.Grouper

• thresh (str) – Threshold below which values are considered zero, a quantity with units.

Returns
• sim_adj (xr.DataArray) – Simulated data with the same frequency of values under threshold

than ref. Adjustment is made group-wise.

• pth (xr.DataArray) – For each group, the smallest value of sim that was not frequency-
adjusted. All values smaller were either left as zero values or given a random value between
thresh and pth. NaN where frequency adaptation wasn’t needed.

• dP0 (xr.DataArray) – For each group, the percentage of values that were corrected in sim.

10.2. SDBA User API 269

xclim Documentation, Release 0.39.0

Notes

With 𝑃 𝑟
0 the frequency of values under threshold 𝑇0 in the reference (ref) and 𝑃 𝑠

0 the same for the simulated
values,
𝐷𝑒𝑙𝑡𝑎𝑃0 =
𝑓𝑟𝑎𝑐𝑃 𝑠

0 − 𝑃 𝑟
0𝑃

𝑠
0 , when positive, represents the proportion of values under 𝑇0 that need to be corrected.

The correction replaces a proportion
𝐷𝑒𝑙𝑡𝑎𝑃0 of the values under 𝑇0 in sim by a uniform random number between 𝑇0 and 𝑃𝑡ℎ, where 𝑃𝑡ℎ =
𝐹−1
𝑟𝑒𝑓 (𝐹𝑠𝑖𝑚(𝑇0)) and F(x) is the empirical cumulative distribution function (CDF).

References

Themeßl, Gobiet, and Heinrich [2012]

xclim.sdba.processing.construct_moving_yearly_window(da: Dataset, window: int = 21, step: int = 1,
dim: str = 'movingwin')

Construct a moving window DataArray.

Stack windows of da in a new ‘movingwin’ dimension. Windows are always made of full years, so calendar with
non-uniform year lengths are not supported.

Windows are constructed starting at the beginning of da, if number of given years is not a multiple of step, then
the last year(s) will be missing as a supplementary window would be incomplete.

Parameters
• da (xr.Dataset) – A DataArray with a time dimension.

• window (int) – The length of the moving window as a number of years.

• step (int) – The step between each window as a number of years.

• dim (str) – The new dimension name. If given, must also be given to un-
pack_moving_yearly_window.

Returns
xr.DataArray – A DataArray with a new movingwin dimension and a time dimension with a length
of 1 window. This assumes downstream algorithms do not make use of the _absolute_ year of
the data. The correct timeseries can be reconstructed with unpack_moving_yearly_window().
The coordinates of movingwin are the first date of the windows.

xclim.sdba.processing.escore(tgt: DataArray, sim: DataArray, dims: Sequence[str] = ('variables', 'time'), N:
int = 0, scale: bool = False)→ DataArray

Energy score, or energy dissimilarity metric, based on Szekely and Rizzo [2004] and Cannon [2018].

Parameters
• tgt (xr.DataArray) – Target observations.

• sim (xr.DataArray) – Candidate observations. Must have the same dimensions as tgt.

• dims (sequence of 2 strings) – The name of the dimensions along which the variables and
observation points are listed. tgt and sim can have different length along the second one, but
must be equal along the first one. The result will keep all other dimensions.

• N (int) – If larger than 0, the number of observations to use in the score computation. The
points are taken evenly distributed along obs_dim.

270 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

• scale (bool) – Whether to scale the data before computing the score. If True, both arrays as
scaled according to the mean and standard deviation of tgt along obs_dim. (std computed
with ddof=1 and both statistics excluding NaN values).

Returns
xr.DataArray – e-score with dimensions not in dims.

Notes

Explanation adapted from the “energy” R package documentation. The e-distance between two clusters 𝐶𝑖, 𝐶𝑗

(tgt and sim) of size 𝑛𝑖, 𝑛𝑗 proposed by Székely and Rizzo (2004) is defined by:

𝑒(𝐶𝑖, 𝐶𝑗) =
1

2

𝑛𝑖𝑛𝑗

𝑛𝑖 + 𝑛𝑗
[2𝑀𝑖𝑗𝑀𝑖𝑖𝑀𝑗𝑗]

where

𝑀𝑖𝑗 =
1

𝑛𝑖𝑛𝑗

𝑛𝑖∑︁
𝑝=1

𝑛𝑗∑︁
𝑞=1

‖𝑋𝑖𝑝𝑋𝑗𝑞‖ .

‖ · ‖ denotes Euclidean norm, 𝑋𝑖𝑝 denotes the p-th observation in the i-th cluster.

The input scaling and the factor 1
2 in the first equation are additions of Cannon [2018] to the metric. With that

factor, the test becomes identical to the one defined by Baringhaus and Franz [2004]. This version is tested
against values taken from Alex Cannon’s MBC R package [Cannon, 2020].

References

Baringhaus and Franz [2004], Cannon [2018], Cannon [2020], Szekely and Rizzo [2004]

xclim.sdba.processing.from_additive_space(data: DataArray, lower_bound: Optional[str] = None,
upper_bound: Optional[str] = None, trans: Optional[str] =
None, units: Optional[str] = None)

Transform back to the physical space a variable that was transformed with to_additive_space.

Based on Alavoine and Grenier [2021]. If parameters are not present on the attributes of the data, they must be
all given are arguments.

Parameters
• data (xr.DataArray) – A variable that was transform by to_additive_space().

• lower_bound (str, optional) – The smallest physical value of the variable, as a Quantity
string. The final data will have no value smaller or equal to this bound. If None (default),
the sdba_transform_lower attribute is looked up on data.

• upper_bound (str, optional) – The largest physical value of the variable, as a Quantity string.
Only relevant for the logit transformation. The final data will have no value larger or equal
to this bound. If None (default), the sdba_transform_upper attribute is looked up on data.

• trans ({‘log’, ‘logit’}, optional) – The transformation to use. See notes. If None (the default),
the sdba_transform attribute is looked up on data.

• units (str, optional) – The units of the data before transformation to the additive space. If
None (the default), the sdba_transform_units attribute is looked up on data.

Returns
xr.DataArray – The physical variable. Attributes are conserved, even if some might be incor-
rect. Except units which are taken from sdba_transform_units if available. All sdba_transform*
attributes are deleted.

10.2. SDBA User API 271

xclim Documentation, Release 0.39.0

Notes

Given a variable that is not usable in an additive adjustment, to_additive_space() applied a transformation
to a space where additive methods are sensible. Given 𝑌 the transformed variable, 𝑏− the lower physical bound
of that variable and 𝑏+ the upper physical bound, two back-transformations are currently implemented to get 𝑋 ,
the physical variable.

• log

𝑋 = 𝑒𝑌 + 𝑏−

• logit

𝑋 ′ =
1

1 + 𝑒−𝑌
𝑋 = 𝑋 * (𝑏+ − 𝑏−) + 𝑏−

See also:

to_additive_space
for the original transformation.

References

Alavoine and Grenier [2021]

xclim.sdba.processing.jitter(x: DataArray, lower: Optional[str] = None, upper: Optional[str] = None,
minimum: Optional[str] = None, maximum: Optional[str] = None)→
DataArray

Replace values under a threshold and values above another by a uniform random noise.

Not to be confused with R’s jitter, which adds uniform noise instead of replacing values.

Parameters
• x (xr.DataArray) – Values.

• lower (str, optional) – Threshold under which to add uniform random noise to values, a
quantity with units. If None, no jittering is performed on the lower end.

• upper (str, optional) – Threshold over which to add uniform random noise to values, a quan-
tity with units. If None, no jittering is performed on the upper end.

• minimum (str, optional) – Lower limit (excluded) for the lower end random noise, a quantity
with units. If None but lower is not None, 0 is used.

• maximum (str, optional) – Upper limit (excluded) for the upper end random noise, a quantity
with units. If upper is not None, it must be given.

Returns
xr.DataArray – Same as x but values < lower are replaced by a uniform noise in range (minimum,
lower) and values >= upper are replaced by a uniform noise in range [upper, maximum). The two
noise distributions are independent.

272 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

xclim.sdba.processing.jitter_over_thresh(x: DataArray, thresh: str, upper_bnd: str)→ DataArray
Replace values greater than threshold by a uniform random noise.

Do not confuse with R’s jitter, which adds uniform noise instead of replacing values.

Parameters
• x (xr.DataArray) – Values.

• thresh (str) – Threshold over which to add uniform random noise to values, a quantity with
units.

• upper_bnd (str) – Maximum possible value for the random noise, a quantity with units.

Returns
xr.DataArray

Notes

If thresh is low, this will change the mean value of x.

xclim.sdba.processing.jitter_under_thresh(x: DataArray, thresh: str)→ DataArray
Replace values smaller than threshold by a uniform random noise.

Do not confuse with R’s jitter, which adds uniform noise instead of replacing values.

Parameters
• x (xr.DataArray) – Values.

• thresh (str) – Threshold under which to add uniform random noise to values, a quantity with
units.

Returns
xr.DataArray

Notes

If thresh is high, this will change the mean value of x.

xclim.sdba.processing.normalize(data: DataArray, norm: Optional[DataArray] = None, *, group:
xclim.sdba.base.Grouper | str, kind: str = '+')→ tuple[xarray.DataArray,
xarray.DataArray]

Normalize an array by removing its mean.

Normalization if performed group-wise and according to kind.

Parameters
• data (xr.DataArray) – The variable to normalize.

• norm (xr.DataArray, optional) – If present, it is used instead of computing the norm again.

• group (str or Grouper) – Grouping information. See xclim.sdba.base.Grouper for de-
tails..

• kind ({‘+’, ‘’}*) – If kind is “+”, the mean is subtracted from the mean and if it is ‘*’, it is
divided from the data.

Returns
• xr.DataArray – Groupwise anomaly.

10.2. SDBA User API 273

xclim Documentation, Release 0.39.0

• norm (xr.DataArray) – Mean over each group.

xclim.sdba.processing.reordering(ref: DataArray, sim: DataArray, group: str = 'time')→ Dataset
Reorders data in sim following the order of ref.

The rank structure of ref is used to reorder the elements of sim along dimension “time”, optionally doing the
operation group-wise.

Parameters
• sim (xr.DataArray) – Array to reorder.

• ref (xr.DataArray) – Array whose rank order sim should replicate.

• group (str) – Grouping information. See xclim.sdba.base.Grouper for details.

Returns
xr.Dataset – sim reordered according to ref’s rank order.

References

Cannon [2018]

xclim.sdba.processing.stack_variables(ds: Dataset, rechunk: bool = True, dim: str = 'multivar')
Stack different variables of a dataset into a single DataArray with a new “variables” dimension.

Variable attributes are all added as lists of attributes to the new coordinate, prefixed with “_”. Variables are
concatenated in the new dimension in alphabetical order, to ensure coherent behaviour with different datasets.

Parameters
• ds (xr.Dataset) – Input dataset.

• rechunk (bool) – If True (default), dask arrays are rechunked with variables : -1.

• dim (str) – Name of dimension along which variables are indexed.

Returns
xr.DataArray – The transformed variable. Attributes are conserved, even if some might be incor-
rect. Except units, which are replaced with “”. Old units are stored in sdba_transformation_units.
A sdba_transform attribute is added, set to the transformation method. sdba_transform_lower
and sdba_transform_upper are also set if the requested bounds are different from the defaults.

Array with variables stacked along dim dimension. Units are set to “”.

xclim.sdba.processing.standardize(da: DataArray, mean: Optional[DataArray] = None, std:
Optional[DataArray] = None, dim: str = 'time')→
tuple[xarray.DataArray | xarray.Dataset, xarray.DataArray,
xarray.DataArray]

Standardize a DataArray by centering its mean and scaling it by its standard deviation.

Either of both of mean and std can be provided if need be.

Returns the standardized data, the mean and the standard deviation.

xclim.sdba.processing.to_additive_space(data: DataArray, lower_bound: str, upper_bound:
Optional[str] = None, trans: str = 'log')

Transform a non-additive variable into an additive space by the means of a log or logit transformation.

Based on Alavoine and Grenier [2021].

Parameters

274 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

• data (xr.DataArray) – A variable that can’t usually be bias-adjusted by additive methods.

• lower_bound (str) – The smallest physical value of the variable, excluded, as a Quantity
string. The data should only have values strictly larger than this bound.

• upper_bound (str, optional) – The largest physical value of the variable, excluded, as a
Quantity string. Only relevant for the logit transformation. The data should only have values
strictly smaller than this bound.

• trans ({‘log’, ‘logit’}) – The transformation to use. See notes.

Notes

Given a variable that is not usable in an additive adjustment, this applies a transformation to a space where
additive methods are sensible. Given 𝑋 the variable, 𝑏− the lower physical bound of that variable and 𝑏+ the
upper physical bound, two transformations are currently implemented to get 𝑌 , the additive-ready variable. ln
is the natural logarithm.

• log

𝑌 = ln (𝑋 − 𝑏−)

Usually used for variables with only a lower bound, like precipitation (pr, prsn, etc) and daily
temperature range (dtr). Both have a lower bound of 0.

• logit

𝑋 ′ = (𝑋 − 𝑏−)/(𝑏+ − 𝑏−)𝑌 = ln

(︂
𝑋 ′

1−𝑋 ′

)︂
Usually used for variables with both a lower and a upper bound, like relative and specific humidity,
cloud cover fraction, etc.

This will thus produce Infinity and NaN values where 𝑋 == 𝑏− or 𝑋 == 𝑏+. We recommend using
jitter_under_thresh() and jitter_over_thresh() to remove those issues.

See also:

from_additive_space
for the inverse transformation.

jitter_under_thresh
Remove values exactly equal to the lower bound.

jitter_over_thresh
Remove values exactly equal to the upper bound.

10.2. SDBA User API 275

xclim Documentation, Release 0.39.0

References

Alavoine and Grenier [2021]

xclim.sdba.processing.uniform_noise_like(da: DataArray, low: float = 1e-06, high: float = 0.001)→
DataArray

Return a uniform noise array of the same shape as da.

Noise is uniformly distributed between low and high. Alternative method to jitter_under_thresh for avoiding
zeroes.

xclim.sdba.processing.unpack_moving_yearly_window(da: DataArray, dim: str = 'movingwin',
append_ends: bool = True)

Unpack a constructed moving window dataset to a normal timeseries, only keeping the central data.

Unpack DataArrays created with construct_moving_yearly_window() and recreate a timeseries data. If
append_ends is False, only keeps the central non-overlapping years. The final timeseries will be (window - step)
years shorter than the initial one. If append_ends is True, the time points from first and last windows will be
included in the final timeseries.

The time points that are not in a window will never be included in the final timeseries. The window length and
window step are inferred from the coordinates.

Parameters
• da (xr.DataArray) – As constructed by construct_moving_yearly_window().

• dim (str) – The window dimension name as given to the construction function.

• append_ends (bool) – Whether to append the ends of the timeseries If False, the final time-
series will be (window - step) years shorter than the initial one, but all windows will con-
tribute equally. If True, the year before the middle years of the first window and the years after
the middle years of the last window are appended to the middle years. The final timeseries
will be the same length as the initial timeseries if the windows span the whole timeseries.
The time steps that are not in a window will be left out of the final timeseries.

xclim.sdba.processing.unstack_variables(da: DataArray, dim: Optional[str] = None)
Unstack a DataArray created by stack_variables to a dataset.

Parameters
• da (xr.DataArray) – Array holding different variables along dim dimension.

• dim (str) – Name of dimension along which the variables are stacked. If not specified (de-
fault), dim is inferred from attributes of the coordinate.

Returns
xr.Dataset – Dataset holding each variable in an individual DataArray.

xclim.sdba.processing.unstandardize(da: DataArray, mean: DataArray, std: DataArray)
Rescale a standardized array by performing the inverse operation of standardize.

276 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

10.2.3 Detrending Objects

class xclim.sdba.detrending.LoessDetrend(group='time', kind='+', f=0.2, niter=1, d=0, weights='tricube',
equal_spacing=None, skipna=True)

Bases: BaseDetrend

Detrend time series using a LOESS regression.

The fit is a piecewise linear regression. For each point, the contribution of all neighbors is weighted by a bell-
shaped curve (gaussian) with parameters sigma (std). The x-coordinate of the DataArray is scaled to [0,1] before
the regression is computed.

Parameters
• group (str or Grouper) – The grouping information. See xclim.sdba.base.Grouper for

details. The fit is performed along the group’s main dim.

• kind ({’’, ‘+’}*) – The way the trend is removed or added, either additive or multiplicative.

• d ([0, 1]) – Order of the local regression. Only 0 and 1 currently implemented.

• f (float) – Parameter controlling the span of the weights, between 0 and 1.

• niter (int) – Number of robustness iterations to execute.

• weights ([“tricube”, “gaussian”]) – Shape of the weighting function: “tricube” : a smooth
top-hat like curve, f gives the span of non-zero values. “gaussian” : a gaussian curve, f gives
the span for 95% of the values.

• skipna (bool) – If True (default), missing values are not included in the loess trend com-
putation and thus are not propagated. The output will have the same missing values as the
input.

Notes

LOESS smoothing is computationally expensive. As it relies on a loop on gridpoints, it can be useful to use
smaller than usual chunks. Moreover, it suffers from heavy boundary effects. As a rule of thumb, the outermost
N * f/2 points should be considered dubious. (N is the number of points along each group)

class xclim.sdba.detrending.MeanDetrend(*, group: xclim.sdba.base.Grouper | str = 'time', kind: str = '+',
**kwargs)

Bases: BaseDetrend

Simple detrending removing only the mean from the data, quite similar to normalizing.

class xclim.sdba.detrending.NoDetrend(*, group: xclim.sdba.base.Grouper | str = 'time', kind: str = '+',
**kwargs)

Bases: BaseDetrend

Convenience class for polymorphism. Does nothing.

class xclim.sdba.detrending.PolyDetrend(group='time', kind='+', degree=4, preserve_mean=False)
Bases: BaseDetrend

Detrend time series using a polynomial regression.

Parameters
• group (Union[str, Grouper]) – The grouping information. See xclim.sdba.base.
Grouper for details. The fit is performed along the group’s main dim.

10.2. SDBA User API 277

xclim Documentation, Release 0.39.0

• kind ({’’, ‘+’}*) – The way the trend is removed or added, either additive or multiplicative.

• degree (int) – The order of the polynomial to fit.

• preserve_mean (bool) – Whether to preserve the mean when de/re-trending. If True, the
trend has its mean removed before it is used.

class xclim.sdba.detrending.RollingMeanDetrend(group='time', kind='+', win=30, weights=None,
min_periods=None)

Bases: BaseDetrend

Detrend time series using a rolling mean.

Parameters
• group (str or Grouper) – The grouping information. See xclim.sdba.base.Grouper for

details. The fit is performed along the group’s main dim.

• kind ({’’, ‘+’}*) – The way the trend is removed or added, either additive or multiplicative.

• win (int) – The size of the rolling window. Units are the steps of the grouped data, which
means this detrending is best use with either group=’time’ or group=’time.dayofyear’. Other
grouping will have large jumps included within the windows and :py`:class:LoessDetrend
might offer a better solution.

• weights (sequence of floats, optional) – Sequence of length win. Defaults to None, which
means a flat window.

• min_periods (int, optional) – Minimum number of observations in window required to have
a value, otherwise the result is NaN. See xarray.DataArray.rolling(). Defaults to
None, which sets it equal to win. Setting both weights and this is not implemented yet.

Notes

As for the LoessDetrend detrending, important boundary effects are to be expected.

10.2.4 Statistical Downscaling and Bias Adjustment Utilities

xclim.sdba.utils.add_cyclic_bounds(da: DataArray, att: str, cyclic_coords: bool = True)→
xarray.DataArray | xarray.Dataset

Reindex an array to include the last slice at the beginning and the first at the end.

This is done to allow interpolation near the end-points.

Parameters
• da (xr.DataArray or xr.Dataset) – An array

• att (str) – The name of the coordinate to make cyclic

• cyclic_coords (bool) – If True, the coordinates are made cyclic as well, if False, the new
values are guessed using the same step as their neighbour.

Returns
xr.DataArray or xr.Dataset – da but with the last element along att prepended and the last one
appended.

278 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

xclim.sdba.utils.apply_correction(x: DataArray, factor: DataArray, kind: Optional[str] = None)→
DataArray

Apply the additive or multiplicative correction/adjustment factors.

If kind is not given, default to the one stored in the “kind” attribute of factor.

xclim.sdba.utils.best_pc_orientation_full(R: ndarray, Hinv: ndarray, Rmean: ndarray, Hmean:
ndarray, hist: ndarray)→ ndarray

Return best orientation vector for A according to the method of Alavoine and Grenier [2021].

Eigenvectors returned by pc_matrix do not have a defined orientation. Given an inverse transform Hinv, a trans-
form R, the actual and target origins Hmean and Rmean and the matrix of training observations hist, this com-
putes a scenario for all possible orientations and return the orientation that maximizes the Spearman correlation
coefficient of all variables. The correlation is computed for each variable individually, then averaged.

This trick is explained in Alavoine and Grenier [2021]. See docstring of sdba.adjustment.
PrincipalComponentAdjustment().

Parameters
• R (np.ndarray) – MxM Matrix defining the final transformation.

• Hinv (np.ndarray) – MxM Matrix defining the (inverse) first transformation.

• Rmean (np.ndarray) – M vector defining the target distribution center point.

• Hmean (np.ndarray) – M vector defining the original distribution center point.

• hist (np.ndarray) – MxN matrix of all training observations of the M variables/sites.

Returns
np.ndarray – M vector of orientation correction (1 or -1).

References

Alavoine and Grenier [2021]

xclim.sdba.utils.best_pc_orientation_simple(R: ndarray, Hinv: ndarray, val: float = 1000)→ ndarray
Return best orientation vector according to a simple test.

Eigenvectors returned by pc_matrix do not have a defined orientation. Given an inverse transform Hinv and a
transform R, this returns the orientation minimizing the projected distance for a test point far from the origin.

This trick is inspired by the one exposed in Hnilica et al. [2017]. For each possible orientation vector, the
test point is reprojected and the distance from the original point is computed. The orientation minimizing that
distance is chosen.

Parameters
• R (np.ndarray) – MxM Matrix defining the final transformation.

• Hinv (np.ndarray) – MxM Matrix defining the (inverse) first transformation.

• val (float) – The coordinate of the test point (same for all axes). It should be much greater
than the largest furthest point in the array used to define B.

Returns
np.ndarray – Mx1 vector of orientation correction (1 or -1).

See also:
sdba.adjustment.PrincipalComponentAdjustment

10.2. SDBA User API 279

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

References

Hnilica, Hanel, and Pus [2017]

xclim.sdba.utils.broadcast(grouped: DataArray, x: DataArray, *, group: str | xclim.sdba.base.Grouper =
'time', interp: str = 'nearest', sel: Optional[Mapping[str, DataArray]] = None)
→ DataArray

Broadcast a grouped array back to the same shape as a given array.

Parameters
• grouped (xr.DataArray) – The grouped array to broadcast like x.

• x (xr.DataArray) – The array to broadcast grouped to.

• group (str or Grouper) – Grouping information. See xclim.sdba.base.Grouper for de-
tails.

• interp ({‘nearest’, ‘linear’, ‘cubic’}) – The interpolation method to use,

• sel (Mapping[str, xr.DataArray]) – Mapping of grouped coordinates to x coordinates (other
than the grouping one).

Returns
xr.DataArray

xclim.sdba.utils.copy_all_attrs(ds: xarray.Dataset | xarray.DataArray, ref: xarray.Dataset |
xarray.DataArray)

Copy all attributes of ds to ref, including attributes of shared coordinates, and variables in the case of Datasets.

xclim.sdba.utils.ecdf(x: DataArray, value: float, dim: str = 'time')→ DataArray
Return the empirical CDF of a sample at a given value.

Parameters
• x (array) – Sample.

• value (float) – The value within the support of x for which to compute the CDF value.

• dim (str) – Dimension name.

Returns
xr.DataArray – Empirical CDF.

xclim.sdba.utils.ensure_longest_doy(func: Callable)→ Callable
Ensure that selected day is the longest day of year for x and y dims.

xclim.sdba.utils.equally_spaced_nodes(n: int, eps: Optional[float] = None)→ array
Return nodes with n equally spaced points within [0, 1], optionally adding two end-points.

Parameters
• n (int) – Number of equally spaced nodes.

• eps (float, optional) – Distance from 0 and 1 of added end nodes. If None (default), do not
add endpoints.

Returns
np.array – Nodes between 0 and 1. Nodes can be seen as the middle points of n equal bins.

280 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

Warning: Passing a small eps will effectively clip the scenario to the bounds of the reference on the histor-
ical period in most cases. With normal quantile mapping algorithms, this can give strange result when the
reference does not show as many extremes as the simulation does.

Notes

For n=4, eps=0 : 0—x——x——x——x—1

xclim.sdba.utils.get_clusters(data: DataArray, u1, u2, dim: str = 'time')→ Dataset
Get cluster count, maximum and position along a given dim.

See get_clusters_1d. Used by adjustment.ExtremeValues.

Parameters
• data (1D ndarray) – Values to get clusters from.

• u1 (float) – Extreme value threshold, at least one value in the cluster must exceed this.

• u2 (float) – Cluster threshold, values above this can be part of a cluster.

• dim (str) – Dimension name.

Returns
xr.Dataset –

With variables,
• nclusters : Number of clusters for each point (with dim reduced), int

• start : First index in the cluster (dim reduced, new cluster), int

• end : Last index in the cluster, inclusive (dim reduced, new cluster), int

• maxpos : Index of the maximal value within the cluster (dim reduced, new cluster), int

• maximum : Maximal value within the cluster (dim reduced, new cluster), same dtype as
data.

For start, end and maxpos, -1 means NaN and should always correspond to a NaN in maximum.
The length along cluster is half the size of “dim”, the maximal theoretical number of clusters.

xclim.sdba.utils.get_clusters_1d(data: ndarray, u1: float, u2: float)→ tuple[numpy.array, numpy.array,
numpy.array, numpy.array]

Get clusters of a 1D array.

A cluster is defined as a sequence of values larger than u2 with at least one value larger than u1.

Parameters
• data (1D ndarray) – Values to get clusters from.

• u1 (float) – Extreme value threshold, at least one value in the cluster must exceed this.

• u2 (float) – Cluster threshold, values above this can be part of a cluster.

Returns
(np.array, np.array, np.array, np.array)

10.2. SDBA User API 281

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

References

getcluster of Extremes.jl (Jalbert [2022]).

xclim.sdba.utils.get_correction(x: DataArray, y: DataArray, kind: str)→ DataArray
Return the additive or multiplicative correction/adjustment factors.

xclim.sdba.utils.interp_on_quantiles(newx: DataArray, xq: DataArray, yq: DataArray, *, group: str |
xclim.sdba.base.Grouper = 'time', method: str = 'linear',
extrapolation: str = 'constant')

Interpolate values of yq on new values of x.

Interpolate in 2D with griddata() if grouping is used, in 1D otherwise, with interp1d. Any NaNs in xq or
yq are removed from the input map. Similarly, NaNs in newx are left NaNs.

Parameters
• newx (xr.DataArray) – The values at which to evaluate yq. If group has group informa-

tion, new should have a coordinate with the same name as the group name In that case, 2D
interpolation is used.

• xq, yq (xr.DataArray) – Coordinates and values on which to interpolate. The interpolation
is done along the “quantiles” dimension if group has no group information. If it does, inter-
polation is done in 2D on “quantiles” and on the group dimension.

• group (str or Grouper) – The dimension and grouping information. (ex: “time” or
“time.month”). Defaults to “time”.

• method ({‘nearest’, ‘linear’, ‘cubic’}) – The interpolation method.

• extrapolation ({‘constant’, ‘nan’}) – The extrapolation method used for values of newx out-
side the range of xq. See notes.

Notes

Extrapolation methods:

• ‘nan’ : Any value of newx outside the range of xq is set to NaN.

• ‘constant’ : Values of newx smaller than the minimum of xq are set to the first value of yq and those larger
than the maximum, set to the last one (first and last non-nan values along the “quantiles” dimension). When
the grouping is “time.month”, these limits are linearly interpolated along the month dimension.

xclim.sdba.utils.invert(x: DataArray, kind: Optional[str] = None)→ DataArray
Invert a DataArray either by addition (-x) or by multiplication (1/x).

If kind is not given, default to the one stored in the “kind” attribute of x.

xclim.sdba.utils.map_cdf(ds: Dataset, *, y_value: DataArray, dim)

Return the value in x with the same CDF as y_value in y.

This function is meant to be wrapped in a Grouper.apply.

Parameters
• ds (xr.Dataset) – Variables: x, Values from which to pick, y, Reference values giving the

ranking

• y_value (float, array) – Value within the support of y.

• dim (str) – Dimension along which to compute quantile.

282 Chapter 10. Bias adjustment and downscaling algorithms

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d

xclim Documentation, Release 0.39.0

Returns
array – Quantile of x with the same CDF as y_value in y.

xclim.sdba.utils.map_cdf_1d(x, y, y_value)
Return the value in x with the same CDF as y_value in y.

xclim.sdba.utils.pc_matrix(arr: numpy.ndarray | dask.array.core.Array)→ numpy.ndarray |
dask.array.core.Array

Construct a Principal Component matrix.

This matrix can be used to transform points in arr to principal components coordinates. Note that this function
does not manage NaNs; if a single observation is null, all elements of the transformation matrix involving that
variable will be NaN.

Parameters
arr (numpy.ndarray or dask.array.Array) – 2D array (M, N) of the M coordinates of N points.

Returns
numpy.ndarray or dask.array.Array – MxM Array of the same type as arr.

xclim.sdba.utils.rand_rot_matrix(crd: DataArray, num: int = 1, new_dim: Optional[str] = None)→
DataArray

Generate random rotation matrices.

Rotation matrices are members of the SO(n) group, where n is the matrix size (crd.size). They can be character-
ized as orthogonal matrices with determinant 1. A square matrix 𝑅 is a rotation matrix if and only if 𝑅𝑡 = 𝑅1

and det𝑅 = 1.

Parameters
• crd (xr.DataArray) – 1D coordinate DataArray along which the rotation occurs. The output

will be square with the same coordinate replicated, the second renamed to new_dim.

• num (int) – If larger than 1 (default), the number of matrices to generate, stacked along a
“matrices” dimension.

• new_dim (str) – Name of the new “prime” dimension, defaults to the same name as crd +
“_prime”.

Returns
xr.DataArray – float, NxN if num = 1, numxNxN otherwise, where N is the length of crd.

References

Mezzadri [2007]

xclim.sdba.utils.rank(da: DataArray, dim: str = 'time', pct: bool = False)→ DataArray
Ranks data along a dimension.

Replicates xr.DataArray.rank but as a function usable in a Grouper.apply(). Xarray’s docstring is below:

Equal values are assigned a rank that is the average of the ranks that would have been otherwise assigned to all
the values within that set. Ranks begin at 1, not 0. If pct, computes percentage ranks.

Parameters
• da (xr.DataArray) – Source array.

• dim (str, hashable) – Dimension over which to compute rank.

• pct (bool, optional) – If True, compute percentage ranks, otherwise compute integer ranks.

10.2. SDBA User API 283

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

Returns
DataArray – DataArray with the same coordinates and dtype ‘float64’.

Notes

The bottleneck library is required. NaNs in the input array are returned as NaNs.

class xclim.sdba.base.Grouper(group: str, window: int = 1, add_dims: Optional[Union[Sequence[str],
set[str]]] = None)

Create the Grouper object.

Parameters
• group (str) – The usual grouping name as xarray understands it. Ex: “time.month” or “time”.

The dimension name before the dot is the “main dimension” stored in Grouper.dim and the
property name after is stored in Grouper.prop.

• window (int) – If larger than 1, a centered rolling window along the main dimension is
created when grouping data. Units are the sampling frequency of the data along the main
dimension.

• add_dims (Optional[Union[Sequence[str], str]]) – Additional dimensions that should be
reduced in grouping operations. This behaviour is also controlled by the main_only param-
eter of the apply method. If any of these dimensions are absent from the DataArrays, they
will be omitted.

apply(func: Union[Callable, str], da: Union[DataArray, Mapping[str, DataArray], Dataset], main_only:
bool = False, **kwargs)

Apply a function group-wise on DataArrays.

Parameters
• func (Callable or str) – The function to apply to the groups, either a callable or a

xr.core.groupby.GroupBy method name as a string. The function will be called as
func(group, dim=dims, **kwargs). See main_only for the behaviour of dims.

• da (xr.DataArray or Mapping[str, xr.DataArray] or xr.Dataset) – The DataArray on which
to apply the function. Multiple arrays can be passed through a dictionary. A dataset will
be created before grouping.

• main_only (bool) – Whether to call the function with the main dimension only (if True)
or with all grouping dims (if False, default) (including the window and dimensions given
through add_dims). The dimensions used are also written in the “group_compute_dims”
attribute. If all the input arrays are missing one of the ‘add_dims’, it is silently omitted.

• **kwargs – Other keyword arguments to pass to the function.

Returns
DataArray or Dataset – Attributes “group”, “group_window” and “group_compute_dims”
are added.

If the function did not reduce the array:

• The output is sorted along the main dimension.

• The output is rechunked to match the chunks on the input If multiple inputs with differing
chunking were given as inputs, the chunking with the smallest number of chunks is used.

If the function reduces the array:

• If there is only one group, the singleton dimension is squeezed out of the output

284 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

• The output is rechunked as to have only 1 chunk along the new dimension.

Notes

For the special case where a Dataset is returned, but only some of its variable where reduced by the grouping,
xarray’s GroupBy.map will broadcast everything back to the ungrouped dimensions. To overcome this issue,
function may add a “_group_apply_reshape” attribute set to True on the variables that should be reduced
and these will be re-grouped by calling da.groupby(self.name).first().

property freq

Format a frequency string corresponding to the group.

For use with xarray’s resampling functions.

classmethod from_kwargs(**kwargs)
Parameterize groups using kwargs.

get_coordinate(ds=None)
Return the coordinate as in the output of group.apply.

Currently, only implemented for groupings with prop == month or dayofyear. For prop == dayfofyear, a ds
(Dataset or DataArray) can be passed to infer the max day of year from the available years and calendar.

get_index(da: xarray.DataArray | xarray.Dataset, interp: Optional[bool] = None)
Return the group index of each element along the main dimension.

Parameters
• da (xr.DataArray or xr.Dataset) – The input array/dataset for which the group index is

returned. It must have Grouper.dim as a coordinate.

• interp (bool, optional) – If True, the returned index can be used for interpolation. Only
value for month grouping, where integer values represent the middle of the month, all other
days are linearly interpolated in between.

Returns
xr.DataArray – The index of each element along Grouper.dim. If Grouper.dim is time and
Grouper.prop is None, a uniform array of True is returned. If Grouper.prop is a time accessor
(month, dayofyear, etc), an numerical array is returned, with a special case of month and
interp=True. If Grouper.dim is not time, the dim is simply returned.

group(da: Optional[Union[DataArray, Dataset]] = None, main_only=False, **das: DataArray)
Return a xr.core.groupby.GroupBy object.

More than one array can be combined to a dataset before grouping using the das kwargs. A new window
dimension is added if self.window is larger than 1. If Grouper.dim is ‘time’, but ‘prop’ is None, the whole
array is grouped together.

When multiple arrays are passed, some of them can be grouped along the same group as self. They are
broadcast, merged to the grouping dataset and regrouped in the output.

property prop_name

Create a significant name for the grouping.

10.2. SDBA User API 285

xclim Documentation, Release 0.39.0

10.2.5 Numba-accelerated utilities

xclim.sdba.nbutils.quantile(da, q, dim)

Compute the quantiles from a fixed list q.

xclim.sdba.nbutils.remove_NaNs(x)
Remove NaN values from series.

xclim.sdba.nbutils.vecquantiles(da, rnk, dim)

For when the quantile (rnk) is different for each point.

da and rnk must share all dimensions but dim.

10.2.6 LOESS Smoothing Module

xclim.sdba.loess.loess_smoothing(da: DataArray, dim: str = 'time', d: int = 1, f: float = 0.5, niter: int = 2,
weights: Union[str, Callable] = 'tricube', equal_spacing: Optional[bool]
= None, skipna: bool = True)

Locally weighted regression in 1D: fits a nonparametric regression curve to a scatter plot.

Returns a smoothed curve along given dimension. The regression is computed for each point using a subset of
neighbouring points as given from evaluating the weighting function locally. Follows the procedure of Cleveland
[1979].

Parameters
• da (xr.DataArray) – The data to smooth using the loess approach.

• dim (str) – Name of the dimension along which to perform the loess.

• d ([0, 1]) – Degree of the local regression.

• f (float) – Parameter controlling the shape of the weight curve. Behavior depends on the
weighting function, but it usually represents the span of the weighting function in reference
to x-coordinates normalized from 0 to 1.

• niter (int) – Number of robustness iterations to execute.

• weights ([“tricube”, “gaussian”] or callable) – Shape of the weighting function, see notes.
The user can provide a function or a string: “tricube” : a smooth top-hat like curve. “gaus-
sian” : a gaussian curve, f gives the span for 95% of the values.

• equal_spacing (bool, optional) – Whether to use the equal spacing optimization. If None
(the default), it is activated only if the x-axis is equally-spaced. When activated, dx = x[1] -
x[0].

• skipna (bool) – If True (default), skip missing values (as marked by NaN). The output will
have the same missing values as the input.

286 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

Notes

As stated in Cleveland [1979], the weighting function 𝑊 (𝑥) should respect the following conditions:

• 𝑊 (𝑥) > 0 for |𝑥| < 1

• 𝑊 (−𝑥) = 𝑊 (𝑥)

• 𝑊 (𝑥) is non-increasing for 𝑥 ≥ 0

• 𝑊 (𝑥) = 0 for |𝑥| ≥ 0

If a Callable is provided, it should only accept the 1D np.ndarray 𝑥 which is an absolute value function going
from 1 to 0 to 1 around 𝑥𝑖, for all values where 𝑥 − 𝑥𝑖 < ℎ𝑖 with ℎ𝑖 the distance of the rth nearest neighbor of
𝑥𝑖, 𝑟 = 𝑓 * 𝑠𝑖𝑧𝑒(𝑥).

References

Cleveland [1979]

Code adapted from: Gramfort [2015]

10.2.7 Properties Submodule

SDBA diagnostic tests are made up of statistical properties and measures. Properties are calculated on both simulation
and reference datasets. They collapse the time dimension to one value.

This framework for the diagnostic tests was inspired by the VALUE project. Statistical Properties is the xclim term for
‘indices’ in the VALUE project.

xclim.sdba.properties.acf(da: Union[DataArray, str] = 'da', *, lag: int = 1, group: str | Grouper =
'time.season', ds: Dataset = None)→ DataArray

Autocorrelation. (realm: generic)

Autocorrelation with a lag over a time resolution and averaged over all years.

Based on indice _acf().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• lag (number) – Lag. Default : 1.

• group ({‘time.month’, ‘time.season’}) – Grouping of the output. E.g. If ‘time.month’, the
autocorrelation is calculated over each month separately for all years. Then, the autocorre-
lation for all Jan/Feb/. . . is averaged over all years, giving 12 outputs for each grid point.
Default : time.season.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
acf (DataArray) – Lag-{lag} autocorrelation of the variable over a {group.prop} and averaged
over all years.

10.2. SDBA User API 287

http://www.value-cost.eu/

xclim Documentation, Release 0.39.0

References

Alavoine and Grenier [2021]

xclim.sdba.properties.annual_cycle_amplitude(da: Union[DataArray, str] = 'da', *, window: int = 31,
group: str | Grouper = 'time', ds: Dataset = None)→
DataArray

Annual cycle statistics. (realm: generic)

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Based on indice _annual_cycle(). With injected parameters: stat=absamp.

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
annual_cycle_amplitude (DataArray) – {stat} of the annual cycle., with additional attributes:
cell_methods: time: mean time: range

xclim.sdba.properties.annual_cycle_asymmetry(da: Union[DataArray, str] = 'da', *, window: int = 31,
group: str | Grouper = 'time', ds: Dataset = None)→
DataArray

Annual cycle statistics. (realm: generic)

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Based on indice _annual_cycle(). With injected parameters: stat=asymmetry.

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
annual_cycle_asymmetry (DataArray) – {stat} of the annual cycle. [yr]

xclim.sdba.properties.annual_cycle_maximum(da: Union[DataArray, str] = 'da', *, window: int = 31,
group: str | Grouper = 'time', ds: Dataset = None)→
DataArray

Annual cycle statistics. (realm: generic)

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Based on indice _annual_cycle(). With injected parameters: stat=max.

Parameters

288 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
annual_cycle_maximum (DataArray) – {stat} of the annual cycle., with additional attributes:
cell_methods: time: mean time: max

xclim.sdba.properties.annual_cycle_minimum(da: Union[DataArray, str] = 'da', *, window: int = 31,
group: str | Grouper = 'time', ds: Dataset = None)→
DataArray

Annual cycle statistics. (realm: generic)

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Based on indice _annual_cycle(). With injected parameters: stat=min.

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
annual_cycle_minimum (DataArray) – {stat} of the annual cycle., with additional attributes:
cell_methods: time: mean time: min

xclim.sdba.properties.annual_cycle_phase(da: Union[DataArray, str] = 'da', *, window: int = 31, group:
str | Grouper = 'time', ds: Dataset = None)→ DataArray

Annual cycle statistics. (realm: generic)

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Based on indice _annual_cycle(). With injected parameters: stat=phase.

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
annual_cycle_phase (DataArray) – {stat} of the annual cycle., with additional attributes:
cell_methods: time: range

10.2. SDBA User API 289

xclim Documentation, Release 0.39.0

xclim.sdba.properties.corr_btw_var(da1: Union[DataArray, str] = 'da1', da2: Union[DataArray, str] =
'da2', *, corr_type: str = 'Spearman', output: str = 'correlation', group:
str | Grouper = 'time', ds: Dataset = None)→ DataArray

Correlation between two variables. (realm: generic)

Spearman or Pearson correlation coefficient between two variables at the time resolution.

Based on indice _corr_btw_var().

Parameters
• da1 (str or DataArray) – First variable on which to calculate the diagnostic. Default : ds.da1.

• da2 (str or DataArray) – Second variable on which to calculate the diagnostic. Default :
ds.da2.

• corr_type ({‘Spearman’, ‘Pearson’}) – Type of correlation to calculate. Default : Spearman.

• output ({‘pvalue’, ‘correlation’}) – Wheter to return the correlation coefficient or the p-
value. Default : correlation.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. Eg. For
‘time.month’, the correlation would be calculated on each month separately, but with all
the years together. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
corr_btw_var (DataArray) – {corr_type} correlation coefficient

xclim.sdba.properties.first_eof(da: Union[DataArray, str] = 'da', *, dims=None, kind='+', thresh='1
mm/d', group='time', ds: Dataset = None)→ DataArray

First Empirical Orthogonal Function. (realm: generic)

Through principal component analysis (PCA), compute the predominant empirical orthogonal function. The
temporal dimension is reduced. The Eof is multiplied by the sign of its mean to ensure coherent signs as much
as possible. Needs the eofs package to run.

Based on indice _first_eof().

Parameters
• da (str or DataArray) – Data. Default : ds.da.

• dims (Any) – Name of the spatial dimensions. If None (default), all dimensions except “time”
are used. Default : None.

• kind ({‘+’, ‘’}*) – Variable “kind”. If multiplicative, the zero values are set to very small
values and the PCA is performed over the logarithm of the data. Default : +.

• thresh (Any) – If kind is multiplicative, this is the “zero” threshold passed to xclim.sdba.
processing.jitter_under_thresh(). Default : 1 mm/d.

• group (Any) – Useless for now. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_eof (DataArray) – First empirical orthogonal function

xclim.sdba.properties.mean(da: Union[DataArray, str] = 'da', *, group: str | Grouper = 'time', ds: Dataset =
None)→ DataArray

Mean. (realm: generic)

290 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

Mean over all years at the time resolution.

Based on indice _mean().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. E.g. If ‘time.month’,
the temporal average is performed separately for each month. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
mean (DataArray) – Mean of the variable., with additional attributes: cell_methods: time: mean

xclim.sdba.properties.mean_annual_phase(da: Union[DataArray, str] = 'da', *, window: int = 31, group:
str | Grouper = 'time', ds: Dataset = None)→ DataArray

Annual range statistics. (realm: generic)

Compute a statistic on each year of data and return the interannual average. This is similar to the annual cycle,
but with the statistic and average operations inverted.

Based on indice _annual_statistic(). With injected parameters: stat=phase.

Parameters
• da (str or DataArray) – Data. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
mean_annual_phase (DataArray) – Average annual {stat}.

xclim.sdba.properties.mean_annual_range(da: Union[DataArray, str] = 'da', *, window: int = 31, group:
str | Grouper = 'time', ds: Dataset = None)→ DataArray

Annual range statistics. (realm: generic)

Compute a statistic on each year of data and return the interannual average. This is similar to the annual cycle,
but with the statistic and average operations inverted.

Based on indice _annual_statistic(). With injected parameters: stat=absamp.

Parameters
• da (str or DataArray) – Data. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
mean_annual_range (DataArray) – Average annual {stat}.

xclim.sdba.properties.mean_annual_relative_range(da: Union[DataArray, str] = 'da', *, window: int =
31, group: str | Grouper = 'time', ds: Dataset =
None)→ DataArray

10.2. SDBA User API 291

xclim Documentation, Release 0.39.0

Annual range statistics. (realm: generic)

Compute a statistic on each year of data and return the interannual average. This is similar to the annual cycle,
but with the statistic and average operations inverted.

Based on indice _annual_statistic(). With injected parameters: stat=relamp.

Parameters
• da (str or DataArray) – Data. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
mean_annual_relative_range (DataArray) – Average annual {stat}. [%]

xclim.sdba.properties.quantile(da: Union[DataArray, str] = 'da', *, q: float = 0.98, group: str | Grouper =
'time', ds: Dataset = None)→ DataArray

Quantile. (realm: generic)

Returns the quantile q of the distribution of the variable over all years at the time resolution.

Based on indice _quantile().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• q (number) – Quantile to be calculated. Should be between 0 and 1. Default : 0.98.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. E.g. If ‘time.month’,
the quantile is computed separately for each month. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
quantile (DataArray) – Quantile {q} of the variable.

xclim.sdba.properties.relative_annual_cycle_amplitude(da: Union[DataArray, str] = 'da', *, window:
int = 31, group: str | Grouper = 'time', ds:
Dataset = None)→ DataArray

Annual cycle statistics. (realm: generic)

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Based on indice _annual_cycle(). With injected parameters: stat=relamp.

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

292 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

Returns
relative_annual_cycle_amplitude (DataArray) – {stat} of the annual cycle. [%], with addi-
tional attributes: cell_methods: time: mean time: range

xclim.sdba.properties.relative_frequency(da: Union[DataArray, str] = 'da', *, op: str = '>=', thresh: str
= '1 mm d-1', group: str | Grouper = 'time', ds: Dataset =
None)→ DataArray

Relative Frequency. (realm: generic)

Relative Frequency of days with variable respecting a condition (defined by an operation and a threshold) at the
time resolution. The relative freqency is the number of days that satisfy the condition divided by the total number
of days.

Based on indice _relative_frequency().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• op ({‘<’, ‘>’, ‘<=’, ‘>=’}) – Operation to verify the condition. The condition is variable
{op} threshold. Default : >=.

• thresh (str) – Threshold on which to evaluate the condition. Default : 1 mm d-1.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping on the output. Eg. For
‘time.month’, the relative frequency would be calculated on each month, with all years in-
cluded. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
relative_frequency (DataArray) – Relative frequency of values {op} {thresh}.

xclim.sdba.properties.return_value(da: Union[DataArray, str] = 'da', *, period: int = 20, op: str = 'max',
method: str = 'ML', group: str | Grouper = 'time', ds: Dataset = None)
→ DataArray

Return value. (realm: generic)

Return the value corresponding to a return period. On average, the return value will be exceeded (or not exceed
for op=’min’) every return period (e.g. 20 years). The return value is computed by first extracting the variable
annual maxima/minima, fitting a statistical distribution to the maxima/minima, then estimating the percentile
associated with the return period (eg. 95th percentile (1/20) for 20 years)

Based on indice _return_value().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• period (number) – Return period. Number of years over which to check if the value is
exceeded (or not for op=’min’). Default : 20.

• op ({‘max’, ‘min’}) – Whether we are looking for a probability of exceedance (‘max’, right
side of the distribution) or a probability of non-exceedance (min, left side of the distribution).
Default : max.

• method ({‘ML’, ‘PWM’}) – Fitting method, either maximum likelihood (ML) or prob-
ability weighted moments (PWM), also called L-Moments. The PWM method is usu-
ally more robust to outliers. However, it requires the lmoments3 libraryto be installed
from the develop branch. pip install git+https://github.com/OpenHydrology/
lmoments3.git@develop#egg=lmoments3 Default : ML.

10.2. SDBA User API 293

xclim Documentation, Release 0.39.0

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. A distribution of the
extremums is done for each group. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
return_value (DataArray) – {period}-{group.prop_name} {op} return level of the variable.

xclim.sdba.properties.skewness(da: Union[DataArray, str] = 'da', *, group: str | Grouper = 'time', ds:
Dataset = None)→ DataArray

Skewness. (realm: generic)

Skewness of the distribution of the variable over all years at the time resolution.

Based on indice _skewness().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. E.g. If ‘time.month’,
the skewness is performed separately for each month. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
skewness (DataArray) – Skewness of the variable.

xclim.sdba.properties.spatial_correlogram(da: Union[DataArray, str] = 'da', *, dims=None, bins=100,
group='time', ds: Dataset = None)→ DataArray

Spatial correlogram. (realm: generic)

Compute the pairwise spatial correlations (Spearman) and averages them based on the pairwise distances. This
collapses the spatial and temporal dimensions and returns a distance bins dimension. Needs coordinates for
longitude and latitude. This property is heavy to compute and it will need to create a NxN array in memory
(outside of dask), where N is the number of spatial points. There are shortcuts for all-nan time-slices or spatial
points, but scipy’s nan-omitting algorithm is extremely slow, so the presence of any lone NaN will increase the
computation time.

Based on indice _spatial_correlogram().

Parameters
• da (str or DataArray) – Data. Default : ds.da.

• dims (Any) – Name of the spatial dimensions. Once these are stacked, the longitude and
latitude coordinates must be 1D. Default : None.

• bins (Any) – Same as argument bins from xarray.DataArray.groupby_bins(). If given
as a scalar, the equal-width bin limits are generated here (instead of letting xarray do it) to
improve performance. Default : 100.

• group (Any) – Useless for now. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
spatial_correlogram (DataArray) – Inter-site correlogram as a function of distance.

xclim.sdba.properties.spell_length_distribution(da: Union[DataArray, str] = 'da', *, method: str =
'amount', op: str = '>=', thresh: str = '1 mm d-1', stat:
str = 'mean', group: str | Grouper = 'time',
resample_before_rl: bool = True, ds: Dataset =
None)→ DataArray

294 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

Spell length distribution. (realm: generic)

Statistic of spell length distribution when the variable respects a condition (defined by an operation, a method
and a threshold).

Based on indice _spell_length_distribution().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• method ({‘quantile’, ‘amount’}) – Method to choose the threshold. ‘amount’: The threshold
is directly the quantity in {thresh}. It needs to have the same units as {da}. ‘quantile’: The
threshold is calculated as the quantile {thresh} of the distribution. Default : amount.

• op ({‘<’, ‘>’, ‘<=’, ‘>=’}) – Operation to verify the condition for a spell. The condition for
a spell is variable {op} threshold. Default : >=.

• thresh (str) – Threshold on which to evaluate the condition to have a spell. Str with units if
the method is “amount”. Float of the quantile if the method is “quantile”. Default : 1 mm
d-1.

• stat ({‘max’, ‘mean’, ‘min’}) – Statistics to apply to the resampled input at the {group} (e.g.
1-31 Jan 1980) and then over all years (e.g. Jan 1980-2010) Default : mean.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. E.g. If ‘time.month’,
the spell lengths are coputed separately for each month. Default : time.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
spell_length_distribution (DataArray) – {stat} of spell length distribution when the variable is
{op} the {method} {thresh}.

xclim.sdba.properties.trend(da: Union[DataArray, str] = 'da', *, output: str = 'slope', group: str | Grouper =
'time', ds: Dataset = None)→ DataArray

Linear Trend. (realm: generic)

The data is averaged over each time resolution and the interannual trend is returned. This function will rechunk
along the grouping dimension.

Based on indice _trend().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• output ({‘pvalue’, ‘slope’}) – Attributes of the linear regression to return. ‘slope’ is the slope
of the regression line. ‘pvalue’ is for a hypothesis test whose null hypothesis is that the slope
is zero, using Wald Test with t-distribution of the test statistic. Default : slope.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping on the output. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
trend (DataArray) – {output} of the interannual linear trend.

10.2. SDBA User API 295

xclim Documentation, Release 0.39.0

xclim.sdba.properties.var(da: Union[DataArray, str] = 'da', *, group: str | Grouper = 'time', ds: Dataset =
None)→ DataArray

Variance. (realm: generic)

Variance of the variable over all years at the time resolution.

Based on indice _var().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. E.g. If ‘time.month’,
the variance is performed separately for each month. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
var (DataArray) – Variance of the variable., with additional attributes: cell_methods: time: var

10.2.8 Measures Submodule

SDBA diagnostic tests are made up of properties and measures. Measures compare adjusted simulations to a reference,
through statistical properties or directly. This framework for the diagnostic tests was inspired by the VALUE project.

class xclim.sdba.measures.StatisticalPropertyMeasure(**kwds)
Base indicator class for statistical properties that include the comparison measure, used when validating bias-
adjusted outputs.

StatisticalPropertyMeasure objects combine the functionalities of xclim.sdba.properties.
StatisticalProperty and xclim.sdba.properties.StatisticalMeasure.

Statistical properties usually reduce the time dimension and sometimes more dimensions (for example in
spatial properties), sometimes adding a grouping dimension according to the passed value of group (e.g.:
group=’time.month’ means the loss of the time dimension and the addition of a month one).

Statistical measures usually take two arrays as input: “sim” and “ref”, “sim” being measured against “ref”.

Statistical property-measures are generally unit-generic. If the inputs have different units, “sim” is converted to
match “ref”.

allowed_groups = None

A list of allowed groupings. A subset of dayofyear, week, month, season or group. The latter stands for no
temporal grouping.

aspect = None

marginal, temporal, multivariate or spatial.

Type
The aspect the statistical property studies

xclim.sdba.measures.annual_cycle_correlation(sim: Union[DataArray, str] = 'sim', ref:
Union[DataArray, str] = 'ref', *, window: int = 15, group:
str | Grouper = 'time', ds: Dataset = None)→ DataArray

Annual cycle correlation. (realm: generic)

Pearson correlation coefficient between the smooth day-of-year averaged annual cycles of the simulation and the
reference. In the smooth day-of-year averaged annual cycles, each day-of-year is averaged over all years and over
a window of days around that day.

Based on indice _annual_cycle_correlation().

296 Chapter 10. Bias adjustment and downscaling algorithms

http://www.value-cost.eu/

xclim Documentation, Release 0.39.0

Parameters
• sim (str or DataArray) – data from the simulation (a time-series for each grid-point) Default

: ds.sim.

• ref (str or DataArray) – data from the reference (observations) (a time-series for each grid-
point) Default : ds.ref.

• window (number) – Size of window around each day of year around which to take the mean.
E.g. If window=31, Jan 1st is averaged over from December 17th to January 16th. Default :
15.

• group (Any) – Compute the property and measure for each temporal groups individually.
Currently not implemented. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
annual_cycle_correlation (DataArray) – Annual cycle correlation

xclim.sdba.measures.bias(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref', *, ds:
Dataset = None)→ DataArray

Bias. (realm: generic)

The bias is the simulation minus the reference.

Based on indice _bias().

Parameters
• sim (str or DataArray) – data from the simulation (one value for each grid-point) Default :

ds.sim.

• ref (str or DataArray) – data from the reference (observations) (one value for each grid-
point) Default : ds.ref.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
bias (DataArray) – Absolute bias

xclim.sdba.measures.circular_bias(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref',
*, ds: Dataset = None)→ DataArray

Circular bias. (realm: generic)

Bias considering circular time series. E.g. The bias between doy 365 and doy 1 is 364, but the circular bias is -1.

Based on indice _circular_bias().

Parameters
• sim (str or DataArray) – data from the simulation (one value for each grid-point) Default :

ds.sim.

• ref (str or DataArray) – data from the reference (observations) (one value for each grid-
point) Default : ds.ref.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
circular_bias (DataArray) – Circular bias [days]

10.2. SDBA User API 297

xclim Documentation, Release 0.39.0

xclim.sdba.measures.mae(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref', *, group: str |
Grouper = 'time', ds: Dataset = None)→ DataArray

Mean absolute error. (realm: generic)

The mean absolute error on the time dimension between the simulation and the reference.

Based on indice _mae().

Parameters
• sim (str or DataArray) – data from the simulation (a time-series for each grid-point) Default

: ds.sim.

• ref (str or DataArray) – data from the reference (observations) (a time-series for each grid-
point) Default : ds.ref.

• group (Any) – Compute the property and measure for each temporal groups individually.
Currently not implemented. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
mae (DataArray) – Mean absolute error, with additional attributes: cell_methods: time: mean

xclim.sdba.measures.ratio(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref', *, ds:
Dataset = None)→ DataArray

Ratio. (realm: generic)

The ratio is the quotient of the simulation over the reference.

Based on indice _ratio().

Parameters
• sim (str or DataArray) – data from the simulation (one value for each grid-point) Default :

ds.sim.

• ref (str or DataArray) – data from the reference (observations) (one value for each grid-
point) Default : ds.ref.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ratio (DataArray) – Ratio

xclim.sdba.measures.relative_bias(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref',
*, ds: Dataset = None)→ DataArray

Relative Bias. (realm: generic)

The relative bias is the simulation minus reference, divided by the reference.

Based on indice _relative_bias().

Parameters
• sim (str or DataArray) – data from the simulation (one value for each grid-point) Default :

ds.sim.

• ref (str or DataArray) – data from the reference (observations) (one value for each grid-
point) Default : ds.ref.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
relative_bias (DataArray) – Relative bias

298 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

xclim.sdba.measures.rmse(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref', *, group: str
| Grouper = 'time', ds: Dataset = None)→ DataArray

Root mean square error. (realm: generic)

The root mean square error on the time dimension between the simulation and the reference.

Based on indice _rmse().

Parameters
• sim (str or DataArray) – Data from the simulation (a time-series for each grid-point) Default

: ds.sim.

• ref (str or DataArray) – Data from the reference (observations) (a time-series for each grid-
point) Default : ds.ref.

• group (Any) – Compute the property and measure for each temporal groups individually.
Currently not implemented. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
rmse (DataArray) – Root mean square error, with additional attributes: cell_methods: time:
mean

xclim.sdba.measures.scorr(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref', *, dims:
Sequence | None = None, group: str | Grouper = 'time', ds: Dataset = None)→
DataArray

Spatial correllogram. (realm: generic)

Compute the inter-site correlations of each array, compute the difference in correlations and sum. Taken from
Vrac (2018). The spatial and temporal dimensions are reduced.

Based on indice _scorr().

Parameters
• sim (str or DataArray) – data from the simulation (a time-series for each grid-point) Default

: ds.sim.

• ref (str or DataArray) – data from the reference (observations) (a time-series for each grid-
point) Default : ds.ref.

• dims (Any) – Name of the spatial dimensions. If None (default), all dimensions except ‘time’
are used. Default : None.

• group (Any) – Compute the property and measure for each temporal groups individually.
Currently not implemented. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
Scorr (DataArray) – Sum of the inter-site correlation differences.

10.2. SDBA User API 299

xclim Documentation, Release 0.39.0

10.3 Developer tools

10.3.1 Base Classes and Developer Tools

class xclim.sdba.base.Parametrizable

Bases: dict

Helper base class resembling a dictionary.

This object is _completely_ defined by the content of its internal dictionary, accessible through item access
(self[‘attr’]) or in self.parameters. When serializing and restoring this object, only members of that internal dict
are preserved. All other attributes set directly with self.attr = value will not be preserved upon serialization and
restoration of the object with [json]pickle dictionary. Other variables set with self.var = data will be lost in the
serialization process. This class is best serialized and restored with jsonpickle.

property parameters

All parameters as a dictionary. Read-only.

class xclim.sdba.base.ParametrizableWithDataset

Bases: Parametrizable

Parametrizeable class that also has a ds attribute storing a dataset.

classmethod from_dataset(ds: Dataset)
Create an instance from a dataset.

The dataset must have a global attribute with a name corresponding to cls._attribute, and that attribute must
be the result of jsonpickle.encode(object) where object is of the same type as this object.

set_dataset(ds: Dataset)
Store an xarray dataset in the ds attribute.

Useful with custom object initialization or if some external processing was performed.

xclim.sdba.base.duck_empty(dims, sizes, dtype='float64', chunks=None)
Return an empty DataArray based on a numpy or dask backend, depending on the chunks argument.

xclim.sdba.base.map_blocks(reduces: Optional[Sequence[str]] = None, **outvars)
Decorator for declaring functions and wrapping them into a map_blocks.

Takes care of constructing the template dataset. Dimension order is not preserved. The decorated function must
always have the signature: func(ds, **kwargs), where ds is a DataArray or a Dataset. It must always output
a dataset matching the mapping passed to the decorator.

Parameters
• reduces (sequence of strings) – Name of the dimensions that are removed by the function.

• **outvars – Mapping from variable names in the output to their new dimensions. The
placeholders Grouper.PROP, Grouper.DIM and Grouper.ADD_DIMS can be used to sig-
nify group.prop,``group.dim`` and group.add_dims respectively. If an output keeps a
dimension that another loses, that dimension name must be given in reduces and in the list
of new dimensions of the first output.

xclim.sdba.base.map_groups(reduces: Optional[Sequence[str]] = None, main_only: bool = False, **out_vars)
Decorator for declaring functions acting only on groups and wrapping them into a map_blocks.

This is the same as map_blocks but adds a call to group.apply() in the mapped func and the default value of
reduces is changed.

300 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

The decorated function must have the signature: func(ds, dim, **kwargs). Where ds is a DataAray or
Dataset, dim is the group.dim (and add_dims). The group argument is stripped from the kwargs, but must
evidently be provided in the call.

Parameters
• reduces (sequence of str) – Dimensions that are removed from the inputs by the function.

Defaults to [Grouper.DIM, Grouper.ADD_DIMS] if main_only is False, and [Grouper.DIM]
if main_only is True. See map_blocks().

• main_only (bool) – Same as for Grouper.apply().

• **out_vars – Mapping from variable names in the output to their new dimensions.
The placeholders Grouper.PROP, Grouper.DIM and Grouper.ADD_DIMS can be used
to signify

group.prop,``group.dim`` and group.add_dims, respectively.
If an output keeps a dimension that another loses, that dimension name must be given in
reduces and in the list of new dimensions of the first output.

See also:
map_blocks

xclim.sdba.base.parse_group(func: Callable, kwargs=None, allow_only=None)→ Callable
Parse the kwargs given to a function to set the group arg with a Grouper object.

This function can be used as a decorator, in which case the parsing and updating of the kwargs is done at call
time. It can also be called with a function from which extract the default group and kwargs to update, in which
case it returns the updated kwargs.

If allow_only is given, an exception is raised when the parsed group is not within that list.

class xclim.sdba.detrending.BaseDetrend(*, group: xclim.sdba.base.Grouper | str = 'time', kind: str = '+',
**kwargs)

Base class for detrending objects.

Defines three methods:

fit(da) : Compute trend from da and return a new _fitted_ Detrend object. detrend(da) : Return detrended array.
retrend(da) : Puts trend back on da.

A fitted Detrend object is unique to the trend coordinate of the object used in fit, (usually ‘time’). The computed
trend is stored in Detrend.ds.trend.

Subclasses should implement _get_trend_group() or _get_trend(). The first will be called in a group.
apply(..., main_only=True), and should return a single DataArray. The second allows the use of functions
wrapped in map_groups() and should also return a single DataArray.

The subclasses may reimplement _detrend and _retrend.

detrend(da: DataArray)
Remove the previously fitted trend from a DataArray.

fit(da: DataArray)
Extract the trend of a DataArray along a specific dimension.

Returns a new object that can be used for detrending and retrending. Fitted objects are unique to the fitted
coordinate used.

property fitted

Return whether instance is fitted.

10.3. Developer tools 301

xclim Documentation, Release 0.39.0

retrend(da: DataArray)
Put the previously fitted trend back on a DataArray.

class xclim.sdba.adjustment.TrainAdjust(*args, _trained=False, **kwargs)
Base class for adjustment objects obeying the train-adjust scheme.

Children classes should implement these methods:

• _train(ref, hist, **kwargs), classmethod receiving the training target and data, returning a training
dataset and parameters to store in the object.

• _adjust(sim, **kwargs), receiving the projected data and some arguments, returning the scen DataAr-
ray.

adjust(sim: DataArray, *args, **kwargs)
Return bias-adjusted data. Refer to the class documentation for the algorithm details.

Parameters
• sim (DataArray) – Time series to be bias-adjusted, usually a model output.

• args (xr.DataArray) – Other DataArrays needed for the adjustment (usually none).

• kwargs – Algorithm-specific keyword arguments, see class doc.

set_dataset(ds: Dataset)
Store an xarray dataset in the ds attribute.

Useful with custom object initialization or if some external processing was performed.

classmethod train(ref: DataArray, hist: DataArray, **kwargs)
Train the adjustment object. Refer to the class documentation for the algorithm details.

Parameters
• ref (DataArray) – Training target, usually a reference time series drawn from observations.

• hist (DataArray) – Training data, usually a model output whose biases are to be adjusted.

class xclim.sdba.adjustment.Adjust(*args, _trained=False, **kwargs)
Adjustment with no intermediate trained object.

Children classes should implement a _adjust classmethod taking as input the three DataArrays and returning the
scen dataset/array.

classmethod adjust(ref: DataArray, hist: DataArray, sim: DataArray, **kwargs)
Return bias-adjusted data. Refer to the class documentation for the algorithm details.

Parameters
• ref (DataArray) – Training target, usually a reference time series drawn from observations.

• hist (DataArray) – Training data, usually a model output whose biases are to be adjusted.

• sim (DataArray) – Time series to be bias-adjusted, usually a model output.

• **kwargs – Algorithm-specific keyword arguments, see class doc.

xclim.sdba.properties.StatisticalProperty(**kwds)
Base indicator class for statistical properties used for validating bias-adjusted outputs.

Statistical properties reduce the time dimension, sometimes adding a grouping dimension according to the passed
value of group (e.g.: group=’time.month’ means the loss of the time dimension and the addition of a month one).

302 Chapter 10. Bias adjustment and downscaling algorithms

xclim Documentation, Release 0.39.0

Statistical properties are generally unit-generic. To use those indicator in a workflow, it is recommended to wrap
them with a virtual submodule, creating one specific indicator for each variable input (or at least for each possible
dimensionality).

Statistical properties may restrict the sampling frequency of the input, they usually take in a single variable
(named “da” in unit-generic instances).

xclim.sdba.measures.StatisticalMeasure(**kwds)
Base indicator class for statistical measures used when validating bias-adjusted outputs.

Statistical measures use input data where the time dimension was reduced, usually by the computation of a
xclim.sdba.properties.StatisticalProperty instance. They usually take two arrays as input: “sim”
and “ref”, “sim” being measured against “ref”. The two arrays must have identical coordinates on their common
dimensions.

Statistical measures are generally unit-generic. If the inputs have different units, “sim” is converted to match
“ref”.

10.3. Developer tools 303

xclim Documentation, Release 0.39.0

304 Chapter 10. Bias adjustment and downscaling algorithms

CHAPTER

ELEVEN

SPATIAL ANALOGUES

Spatial analogues are maps showing which areas have a present-day climate that is analogous to the future climate of
a given place. This type of map can be useful for climate adaptation to see how well regions are coping today under
specific climate conditions. For example, officials from a city located in a temperate region that may be expecting
more heatwaves in the future can learn from the experience of another city where heatwaves are a common occurrence,
leading to more proactive intervention plans to better deal with new climate conditions.

Spatial analogues are estimated by comparing the distribution of climate indices computed at the target location over the
future period with the distribution of the same climate indices computed over a reference period for multiple candidate
regions. A number of methodological choices thus enter the computation:

• Climate indices of interest,

• Metrics measuring the difference between both distributions,

• Reference data from which to compute the base indices,

• A future climate scenario to compute the target indices.

The climate indices chosen to compute the spatial analogues are usually annual values of indices relevant to the intended
audience of these maps. For example, in the case of the wine grape industry, the climate indices examined could include
the length of the frost-free season, growing degree-days, annual winter minimum temperature and annual number of
very cold days [Roy et al., 2017].

See Spatial Analogues examples.

11.1 Methods to compute the (dis)similarity between samples

This module implements all methods described in Grenier, Parent, Huard, Anctil, and Chaumont [2013] to measure
the dissimilarity between two samples, plus the Székely-Rizzo energy distance, some of these algorithms can be used
to test whether two samples have been drawn from the same distribution. Here, they are used in finding areas with
analogue climate conditions to a target climate:

• Standardized Euclidean distance

• Nearest Neighbour distance

• Zech-Aslan energy statistic

• Székely-Rizzo energy distance

• Friedman-Rafsky runs statistic

• Kolmogorov-Smirnov statistic

• Kullback-Leibler divergence

305

xclim Documentation, Release 0.39.0

All methods accept arrays, the first is the reference (n, D) and the second is the candidate (m, D). Where the climate
indicators vary along D and the distribution dimension along n or m. All methods output a single float. See their
documentation in Analogue metrics API .

Warning: Some methods are scale-invariant and others are not. This is indicated in the docstring of the methods
as it can change the results significantly. In most cases, scale-invariance is desirable and inputs may need to be
scaled beforehand for scale-dependent methods.

References

Roy, Grenier, Barriault, Logan, Blondlot, Bourgeois, and Chaumont [2017] Grenier, Parent, Huard, Anctil, and Chau-
mont [2013]

xclim.analog.spatial_analogs(target: Dataset, candidates: Dataset, dist_dim: Union[str, Sequence[str]] =
'time', method: str = 'kldiv', **kwargs)

Compute dissimilarity statistics between target points and candidate points.

Spatial analogues based on the comparison of climate indices. The algorithm compares the distribution of the
reference indices with the distribution of spatially distributed candidate indices and returns a value measuring
the dissimilarity between both distributions over the candidate grid.

Parameters
• target (xr.Dataset) – Dataset of the target indices. Only indice variables should be included

in the dataset’s data_vars. They should have only the dimension(s) dist_dim `in common
with `candidates.

• candidates (xr.Dataset) – Dataset of the candidate indices. Only indice variables should be
included in the dataset’s data_vars.

• dist_dim (str) – The dimension over which the distributions are constructed. This can be a
multi-index dimension.

• method ({‘seuclidean’, ‘nearest_neighbor’, ‘zech_aslan’, ‘kolmogorov_smirnov’, ‘fried-
man_rafsky’, ‘kldiv’}) – Which method to use when computing the dissimilarity statistic.

• **kwargs – Any other parameter passed directly to the dissimilarity method.

Returns
xr.DataArray – The dissimilarity statistic over the union of candidates’ and target’s dimensions.
The range depends on the method.

11.2 Analogue metrics API

xclim.analog.friedman_rafsky(x: ndarray, y: ndarray)→ float
Compute a dissimilarity metric based on the Friedman-Rafsky runs statistics.

The algorithm builds a minimal spanning tree (the subset of edges connecting all points that minimizes the total
edge length) then counts the edges linking points from the same distribution. This method is scale-dependent.

Parameters
• x (np.ndarray (n,d)) – Reference sample.

• y (np.ndarray (m,d)) – Candidate sample.

306 Chapter 11. Spatial Analogues

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

Returns
float – Friedman-Rafsky dissimilarity metric ranging from 0 to (m+n-1)/(m+n).

References

Friedman and Rafsky [1979]

xclim.analog.kldiv(x: ndarray, y: ndarray, *, k: Union[int, Sequence[int]] = 1)→ Union[float,
Sequence[float]]

Compute the Kullback-Leibler divergence between two multivariate samples.

where 𝑟𝑘(𝑥𝑖) and 𝑠𝑘(𝑥𝑖) are, respectively, the euclidean distance to the kth neighbour of 𝑥𝑖 in the x array (ex-
cepting 𝑥𝑖) and in the y array. This method is scale-dependent.

Parameters
• x (np.ndarray (n,d)) – Samples from distribution P, which typically represents the true dis-

tribution (reference).

• y (np.ndarray (m,d)) – Samples from distribution Q, which typically represents the approx-
imate distribution (candidate)

• k (int or sequence) – The kth neighbours to look for when estimating the density of the
distributions. Defaults to 1, which can be noisy.

Returns
float or sequence – The estimated Kullback-Leibler divergence D(P||Q) computed from the dis-
tances to the kth neighbour.

Notes

In information theory, the Kullback–Leibler divergence [Perez-Cruz, 2008] is a non-symmetric measure of the
difference between two probability distributions P and Q, where P is the “true” distribution and Q an approxi-
mation. This nuance is important because 𝐷(𝑃 ||𝑄) is not equal to 𝐷(𝑄||𝑃).

For probability distributions P and Q of a continuous random variable, the K–L divergence is defined as:

𝐷𝐾𝐿(𝑃 ||𝑄) =

∫︁
𝑝(𝑥) log

(︂
𝑝(𝑥)

𝑞(𝑥)

)︂
𝑑𝑥

This formula assumes we have a representation of the probability densities 𝑝(𝑥) and 𝑞(𝑥). In many cases, we
only have samples from the distribution, and most methods first estimate the densities from the samples and then
proceed to compute the K-L divergence. In Perez-Cruz [2008], the author proposes an algorithm to estimate the
K-L divergence directly from the sample using an empirical CDF. Even though the CDFs do not converge to their
true values, the paper proves that the K-L divergence almost surely does converge to its true value.

References

Perez-Cruz [2008]

xclim.analog.kolmogorov_smirnov(x: ndarray, y: ndarray)→ float
Compute the Kolmogorov-Smirnov statistic applied to two multivariate samples as described by Fasano and
Franceschini.

This method is scale-dependent.

Parameters

11.2. Analogue metrics API 307

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

• x (np.ndarray (n,d)) – Reference sample.

• y (np.ndarray (m,d)) – Candidate sample.

Returns
float – Kolmogorov-Smirnov dissimilarity metric ranging from 0 to 1.

References

Fasano and Franceschini [1987]

xclim.analog.nearest_neighbor(x: ndarray, y: ndarray)→ ndarray
Compute a dissimilarity metric based on the number of points in the pooled sample whose nearest neighbor
belongs to the same distribution.

This method is scale-invariant.

Parameters
• x (np.ndarray (n,d)) – Reference sample.

• y (np.ndarray (m,d)) – Candidate sample.

Returns
float – Nearest-Neighbor dissimilarity metric ranging from 0 to 1.

References

Henze [1988]

xclim.analog.seuclidean(x: ndarray, y: ndarray)→ float
Compute the Euclidean distance between the mean of a multivariate candidate sample with respect to the mean
of a reference sample.

This method is scale-invariant.

Parameters
• x (np.ndarray (n,d)) – Reference sample.

• y (np.ndarray (m,d)) – Candidate sample.

Returns
float – Standardized Euclidean Distance between the mean of the samples ranging from 0 to
infinity.

Notes

This metric considers neither the information from individual points nor the standard deviation of the candidate
distribution.

308 Chapter 11. Spatial Analogues

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

References

Veloz, Williams, Lorenz, Notaro, Vavrus, and Vimont [2012]

xclim.analog.szekely_rizzo(x: ndarray, y: ndarray, *, standardize: bool = True)→ float
Compute the Székely-Rizzo energy distance dissimilarity metric based on an analogy with Newton’s gravitational
potential energy.

This method is scale-invariant when standardize=True (default), scale-dependent otherwise.

Parameters
• x (ndarray (n,d)) – Reference sample.

• y (ndarray (m,d)) – Candidate sample.

• standardize (bool) – If True (default), the standardized euclidean norm is used, instead of
the conventional one.

Returns
float – Székely-Rizzo’s energy distance dissimilarity metric ranging from 0 to infinity.

Notes

The e-distance between two variables 𝑋 , 𝑌 (target and candidates) of sizes 𝑛, 𝑑 and 𝑚, 𝑑 proposed by Szekely
and Rizzo [2004] is defined by:

𝑒(𝑋,𝑌) =
𝑛𝑚

𝑛+𝑚
[2𝜑𝑥𝑦𝜑𝑥𝑥𝜑𝑦𝑦]

where

𝜑𝑥𝑦 =
1

𝑛𝑚

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

‖𝑋𝑖𝑌𝑗‖

𝜑𝑥𝑥 =
1

𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

‖𝑋𝑖𝑋𝑗‖

𝜑𝑦𝑦 =
1

𝑚2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

‖𝑋𝑖𝑌𝑗‖

and where ‖ · ‖ denotes the Euclidean norm, 𝑋𝑖 denotes the i-th observation of 𝑋 . When standardized=False,
this corresponds to the 𝑇 test of Rizzo and Székely [2016] (p. 28) and to the eqdist.e function of the energy
R package (with two samples) and gives results twice as big as xclim.sdba.processing.escore(). The
standardization was added following the logic of [Grenier et al., 2013] to make the metric scale-invariant.

References

Grenier, Parent, Huard, Anctil, and Chaumont [2013], Rizzo and Székely [2016], Szekely and Rizzo [2004]

xclim.analog.zech_aslan(x: ndarray, y: ndarray, *, dmin: float = 1e-12)→ float
Compute a modified Zech-Aslan energy distance dissimilarity metric based on an analogy with the energy of a
cloud of electrical charges.

This method is scale-invariant.

Parameters
• x (np.ndarray (n,d)) – Reference sample.

11.2. Analogue metrics API 309

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

• y (np.ndarray (m,d)) – Candidate sample.

• dmin (float) – The cut-off for low distances to avoid singularities on identical points.

Returns
float – Zech-Aslan dissimilarity metric ranging from -infinity to infinity.

Notes

The energy measure between two variables 𝑋 , 𝑌 (target and candidates) of sizes 𝑛, 𝑑 and 𝑚, 𝑑 proposed by
Aslan and Zech [2003] is defined by:

𝑒(𝑋,𝑌) = [𝜑𝑥𝑥 + 𝜑𝑦𝑦 − 𝜑𝑥𝑦]

𝜑𝑥𝑦 =
1

𝑛𝑚

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑅 [𝑆𝐸𝐷(𝑋𝑖, 𝑌𝑗)]

𝜑𝑥𝑥 =
1

𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑅 [𝑆𝐸𝐷(𝑋𝑖, 𝑋𝑗)]

𝜑𝑦𝑦 =
1

𝑚2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖+1

𝑅 [𝑆𝐸𝐷(𝑋𝑖, 𝑌𝑗)]

where 𝑋𝑖 denotes the i-th observation of 𝑋 . 𝑅 is a weight function and 𝑆𝐸𝐷(𝐴,𝐵) denotes the standardized
Euclidean distance.

𝑅(𝑟) =

{︂
− ln 𝑟 for 𝑟 > 𝑑𝑚𝑖𝑛

− ln 𝑑𝑚𝑖𝑛 for 𝑟 ≤ 𝑑𝑚𝑖𝑛

𝑆𝐸𝐷(𝑋𝑖, 𝑌𝑗) =

⎯⎸⎸⎷ 𝑑∑︁
𝑘=1

(𝑋𝑖(𝑘)− 𝑌𝑖(𝑘))
2

𝜎𝑥(𝑘)𝜎𝑦(𝑘)

where 𝑘 is a counter over dimensions (indices in the case of spatial analogs) and 𝜎𝑥(𝑘) is the standard deviation
of 𝑋 in dimension 𝑘. Finally, 𝑑𝑚𝑖𝑛 is a cut-off to avoid poles when 𝑟 → 0, it is controllable through the dmin
parameter.

This version corresponds the 𝐷𝑍𝐴𝐸 test of Grenier et al. [2013] (eq. 7), which is a version of 𝜑𝑁𝑀 from Aslan
and Zech [2003], modified by using the standardized euclidean distance, the log weight function and choosing
𝑑𝑚𝑖𝑛 = 10−12.

References

Aslan and Zech [2003], Grenier, Parent, Huard, Anctil, and Chaumont [2013], Zech and Aslan [2003]

11.3 Utilities for developers

xclim.analog.metric(func)
Register a metric function in the metrics mapping and add some preparation/checking code.

All metric functions accept 2D inputs. This reshapes 1D inputs to (n, 1) and (m, 1). All metric functions are
invalid when any non-finite values are present in the inputs.

310 Chapter 11. Spatial Analogues

xclim Documentation, Release 0.39.0

xclim.analog.standardize(x: ndarray, y: ndarray)→ tuple[numpy.ndarray, numpy.ndarray]
Standardize x and y by the square root of the product of their standard deviation.

Parameters
• x (np.ndarray) – Array to be compared.

• y (np.ndarray) – Array to be compared.

Returns
(ndarray, ndarray) – Standardized arrays.

11.3. Utilities for developers 311

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

312 Chapter 11. Spatial Analogues

CHAPTER

TWELVE

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

12.1 Types of Contributions

12.1.1 Implement Features, Indices or Indicators

xclim’s structure makes it easy to create and register new user-defined indices and indicators. For the general im-
plementation of indices and their wrapping into indicators, refer to Extending xclim and Customizing and controlling
xclim.

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

General to-do list for implementing a new Indicator:

1. Implement the indice

• Indices are function wrapped with declare_units()

• Their input arguments should have type annotations, as documented in InputKind

• Their docstring should follow the scheme explained in Defining new indices.

• They should set the units on their outputs, but no other metadata fields.

• Their code should be found in the most relevant xclim/indices/_*.py file. Functions are explicitly
added to the __all__ at the top of the file.

2. Add unit tests

• Indices are best tested with made up, idealized data to explicitly test the edge cases. Many pytest fixtures
are available to help this data generation.

• Tests should be added as one or more functions in xclim/testing/tests/test_indices.py, see other
tests for inspiration.

3. Add the indicator

• See Defining new indicators for more info and look at the other indicators for inspiration.

• They are added in the most relevant xclim/indicators/{realm}/_*.py file.

• Indicator are instances of subclasses of xclim.core.indicator.Indicator. They should use a class
declared within the {realm} folder, creating a dummy one if needed. They are explicitly added to the file’s
__all__.

313

xclim Documentation, Release 0.39.0

4. Add unit tests

• Indicators are best tested with real data, also looking at missing value propagation and metadata format-
ting. In addition to the atmos_ds fixture, only datasets that can be accessed with xclim.testing.
open_dataset() should be used.

• Tests are added in the most relevant xclim/testing/tests/test_{variable}.py file.

5. Add French translations

xclim comes with an internationalization module and all “official” indicators (those in xclim.atmos.
indicators) must have a french translation added to xclim/data/fr.json. This part can be done
by the core team after you open a Pull Request.

General notes for implementing new bias-adjustment methods:

• Method are implemented as classes in xclim/sdba/adjustment.py.

• If the algorithm gets complicated and would generate many dask tasks, it should be implemented as functions
wrapped by map_blocks() or map_groups() in xclim/sdba/_adjustment.py.

• xclim doesn’t implement monolithic multi-parameter methods, but rather smaller modular functions to construct
post-processing workflows.

12.1.2 Report Bugs

Report bugs at https://github.com/Ouranosinc/xclim/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

12.1.3 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

12.1.4 Write Documentation

xclim could always use more documentation, whether as part of the official xclim docs, in docstrings, or even on the
web in blog posts, articles, and such.

To reference documents (article, presentation, thesis, etc) in the documentation or in a docstring, xclim uses
sphinxcontrib-bibtex. Metadata of the documents is stored as BibTeX entries in the docs/references.bib file.
To properly generate internal reference links, we suggest using the following roles:

• For references cited in the References section of function docstrings, use :cite:cts:`label`.

• For in-text references with first author and year, use :cite:t:`label`.

• For reference citations in parentheses, use :cite:p:`label`.

Multiple references can be added to a single role using commas (e.g. :cite:cts:`label1,label2,label3`). For
more information see: sphinxcontrib-bibtex.

314 Chapter 12. Contributing

https://github.com/Ouranosinc/xclim/issues
https://sphinxcontrib-bibtex.readthedocs.io
https://sphinxcontrib-bibtex.readthedocs.io

xclim Documentation, Release 0.39.0

12.1.5 Submit Feedback

The best way to send feedback is to file an issue at: https://github.com/Ouranosinc/xclim/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• The Xclim development team welcomes you and is always on hand to help. :)

12.2 Get Started!

Ready to contribute? Here’s how to set up xclim for local development.

1. Fork the xclim repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:{my_github_username}/xclim.git
$ cd xclim/

3. Create a development environment. We recommend using conda:

$ conda create -n xclim python=3.8 --file=environment.yml
$ pip install -e .[dev]

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally!

5. Before committing your changes, we ask that you install pre-commit in your development environment. Pre-
commit runs git hooks that ensure that your code resembles that of the project and catches and corrects any small
errors or inconsistencies when you git commit:

To install the necessary pre-commit hooks:
$ pre-commit install
To run pre-commit hooks manually:
$ pre-commit run --all-files

Instead of pre-commit, you could also verify your changes manually with black, flake8, flake8-rst-
docstrings, pydocstyle, and yamllint:

$ black --check --target-version py38 xclim xclim/testing/tests
$ black --check --target-version py38 --include "\.ipynb$" docs
$ flake8 xclim xclim/testing/tests
$ pydocstyle --config=setup.cfg xclim xclim
$ yamllint --config-file .yamllint.yaml xclim

6. When unit/doc tests are added or notebooks updated, use pytest to run them. Alternatively, one can use tox to
run all testing suites as would github do when the PR is submitted and new commits are pushed:

12.2. Get Started! 315

https://github.com/Ouranosinc/xclim/issues

xclim Documentation, Release 0.39.0

$ pytest --nbval docs/notebooks # for notebooks, exclusively.
$ pytest --no-cov --rootdir xclim/testing/tests/ --xdoctest xclim --ignore=xclim/
→˓testing/tests/ # for doctests, exclusively.
$ pytest # for all unit tests, excluding doctests and notebooks.
$ tox # run all testing suites

7. Docs should also be tested to ensure that the documentation will build correctly on ReadTheDocs. This can be
performed in a number of ways:

To run in a contained virtualenv environment
$ tox -e docs
or, alternatively, to build the docs directly
$ make docs

8. After clearing the previous checks, commit your changes and push your branch to GitHub:

$ git add *

$ git commit -m "Your detailed description of your changes."

If installed, pre-commit will run checks at this point:

• If no errors are found, changes will be committed.

• If errors are found, modifications will be made and warnings will be raised if intervention is needed.

• After adding changes, simply git commit again:

$ git push origin name-of-your-bugfix-or-feature

9. Submit a pull request through the GitHub website.

12.3 Pull Request Guidelines

Before you submit a pull request, please follow these guidelines:

1. Open an issue on our GitHub repository with your issue that you’d like to fix or feature that you’d like to imple-
ment.

2. Perform the changes, commit and push them either to new a branch within Ouranosinc/xclim or to your personal
fork of xclim.

Warning: Try to keep your contributions within the scope of the issue that you are addressing. While it might be
tempting to fix other aspects of the library as it comes up, it’s better to simply to flag the problems in case others
are already working on it.

Consider adding a “# TODO:” comment if the need arises.

3. Pull requests should raise test coverage for the xclim library. Code coverage is an indicator of how extensively
tested the library is. If you are adding a new set of functions, they must be tested and coverage percentage
should not significantly decrease.

4. If the pull request adds functionality, your functions should include docstring explanations. So long as the doc-
strings are syntactically correct, sphinx-autodoc will be able to automatically parse the information. Please

316 Chapter 12. Contributing

https://github.com/Ouranosinc/xclim

xclim Documentation, Release 0.39.0

ensure that the docstrings and documentation adhere to the following standards (badly formed docstrings will
fail build tests):

• numpydoc

• reStructuredText (ReST)

Note: If you aren’t accustomed to writing documentation in reStructuredText (.rst), we encourage you to spend a few
minutes going over the incredibly well-summarized reStructuredText Primer from the sphinx-doc maintainer commu-
nity.

5. The pull request should work for Python 3.8, 3.9, and 3.10 as well as raise test coverage. Pull requests are also
checked for documentation build status and for PEP8 compliance.

The build statuses and build errors for pull requests can be found at: https://github.com/Ouranosinc/xclim/actions

Warning: PEP8, black, pytest (with xdoctest) and pydocstyle (for numpy docstrings) conventions are strongly
enforced. Ensure that your changes pass all tests prior to pushing your final commits to your branch. Code formatting
errors are treated as build errors and will block your pull request from being accepted.

6. The version changes (HISTORY.rst) should briefly describe changes introduced in the Pull request. Changes
should be organized by type (ie: New indicators, New features and enhancements, Breaking changes, Bug fixes,
Internal changes) and the GitHub Pull Request, GitHub Issue. Your name and/or GitHub handle should also be
listed among the contributors to this version. This can be done as follows:

Contributors to this version: John Jacob Jingleheimer Schmidt (:user:`username`).

Internal changes
^^^^^^^^^^^^^^^^
* Updated the contribution guidelines. (:issue:`868`, :pull:`869`).

If this is your first contribution to Ouranosinc/xclim, we ask that you also add your name to the AUTHORS.rst,
under Contributors as well as to the .zenodo.json, at the end of the creators block.

12.4 Tips

To run a subset of tests, we suggest a few approaches. For running only a test file:

$ pytest xclim/testing/tests/test_xclim.py

To skip all slow tests:

$ pytest -m "not slow"

To run all conventions tests at once:

$ pre-commit run --all-files

12.4. Tips 317

https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
https://www.jetbrains.com/help/pycharm/using-docstrings-to-specify-types.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://peps.python.org/pep-0008/
https://github.com/Ouranosinc/xclim/actions
https://github.com/Ouranosinc/xclim/blob/master/AUTHORS.rst
https://github.com/Ouranosinc/xclim/blob/master/.zenodo.json

xclim Documentation, Release 0.39.0

12.5 Versioning

In order to update and release the library to PyPI, it’s good to use a semantic versioning scheme. The method we use
is as follows:

major.minor.patch-release

Major releases denote major changes resulting in a stable API;

Minor is to be used when adding a module, process or set of components;

Patch should be used for bug fixes and optimizations;

Release is a keyword used to specify the degree of production readiness (beta [, and optionally, gamma]). Only versions
built from the main development branch will ever have this tag!

An increment to the Major or Minor will reset the Release to beta. When a build is promoted above beta
(ie: release-ready), it’s a good idea to push this version towards PyPi.

12.6 Deploying

A reminder for the maintainers on how to prepare the library for a tagged version.

Make sure all your changes are committed (including an entry in HISTORY.rst). Then run:

$ bump2version <option> # possible options: major / minor / patch / release

These commands will increment the version and create a commit with an autogenerated message.

For PyPI releases/stable versions, ensure that the last version bumping command run is $ bump2version release to
remove the -dev. These changes can now be merged to the main development branch:

$ git push

With this performed, we can tag a version that will act as the GitHub-provided stable source archive. Be sure to only
tag from the main branch when all changes from PRs have been merged! Commands needed are:

$ git tag v1.2.3-XYZ
$ git push --tags

Note: Starting from October, 2021, all tags pushed to GitHub will trigger a build and publish a package to TestPyPI
by default. TestPyPI is a testing ground that is not indexed or easily available to pip. The test package can be found at
xclim on TestPyPI.

318 Chapter 12. Contributing

https://test.pypi.org/project/xclim/

xclim Documentation, Release 0.39.0

12.7 Packaging

When a new version has been minted (features have been successfully integrated test coverage and stability is adequate),
maintainers should update the pip-installable package (wheel and source release) on PyPI as well as the binary on
conda-forge.

12.7.1 The Automated Approach

The simplest way to package xclim is to “publish” a version on GitHuh. GitHub CI Actions are presently configured
to build the library and publish the packages on PyPI automatically.

When publishing on GitHub, maintainers will need to generate the release notes for the current version, replacing the
:issue:, :pull:, and :user: tags. The xclim CLI offers a helper function for performing this action:

For Markdown format (needed when publishing a new version on GitHub):
$ xclim release_notes -m
For ReStructuredText format (offered for convenience):
$ xclim release_notes -r

When publishing to GitHub, you will still need to replace subsection headers in the Markdown (^^^^ -> ###) and the
history published should not extend past the changes for the current version. This behaviour may eventually change.

Warning: Be warned that a published package version on PyPI can never be overwritten. Be sure to verify that
the package published at https://test.pypi.org/project/xclim/ matches expectations before publishing a version on
GitHub.

12.7.2 The Manual Approach

The manual approach to library packaging for general support (pip wheels) requires the following packages
installed:

• setuptools

• wheel

• twine

From the command line on your Linux distribution, simply run the following from the clone’s main dev branch:

To build the packages (sources and wheel)
$ python setup.py sdist bdist_wheel

To upload to PyPI
$ twine upload dist/*

The new version based off of the version checked out will now be available via pip ($ pip install xclim).

12.7. Packaging 319

https://test.pypi.org/project/xclim/

xclim Documentation, Release 0.39.0

12.7.3 Releasing on conda-forge

Initial Release

In order to prepare an initial release on conda-forge, we strongly suggest consulting the following links:
• https://conda-forge.org/docs/maintainer/adding_pkgs.html

• https://github.com/conda-forge/staged-recipes

Subsequent releases

If the conda-forge feedstock recipe is built from PyPI, then when a new release is published on PyPI, regro-cf-autotick-
bot will open Pull Requests automatically on the conda-forge feedstock. It is up to the conda-forge feedstock maintainers
to verify that the package is building properly before merging the Pull Request to the main branch.

Before updating the main conda-forge recipe, we strongly suggest performing the following checks:
• Ensure that dependencies and dependency versions correspond with those of the tagged version, with open

or pinned versions for the host requirements.

• If possible, configure tests within the conda-forge build CI (e.g. imports: xclim, commands: pytest xclim)

320 Chapter 12. Contributing

https://conda-forge.org/docs/maintainer/adding_pkgs.html
https://github.com/conda-forge/staged-recipes

CHAPTER

THIRTEEN

CREDITS

13.1 Development Lead

• Travis Logan <logan.travis@ouranos.ca> @tlogan2000

13.2 Co-Developers

• Abel Aoun <aoun.abel@gmail.com> @bzah

• Pascal Bourgault <bourgault.pascal@ouranos.ca> @aulemahal

• David Huard <huard.david@ouranos.ca> @huard

• Juliette Lavoie <lavoie.juliette@ouranos.ca> @juliettelavoie

• Gabriel Rondeau-Genesse <rondeau-genesse.gabriel@ouranos.ca> @RondeauG

• Trevor James Smith <smith.trevorj@ouranos.ca> @Zeitsperre

13.3 Contributors

• Raquel Alegre <raquel.alegre@gmail.com> @raquelalegre

• Clair Barnes <clair.barnes.16@ucl.ac.uk> @clairbarnes

• Sébastien Biner <biner.sebastien@ouranos.ca> @sbiner

• David Caron @davidcaron

• Carsten Ehbrecht <ehbrecht@dkrz.de> @cehbrecht

• Jeremy Fyke @jeremyfyke

• Tom Keel <thomas.keel.18@ucl.ac.uk> @Thomasjkeel

• Jwen Fai Low @jwenfai

• Marie-Pier Labonté @marielabonte

• Jamie Quinn <jamiejquinn@jamiejquinn.com> @JamieJQuinn

• Philippe Roy <roy.philippe@ouranos.ca> @Balinus

• Yannick Rousseau

• Dougie Squire <dougiesquire@gmail.com> @dougiesquire

321

mailto:logan.travis@ouranos.ca
https://github.com/tlogan2000
mailto:aoun.abel@gmail.com
https://github.com/bzah
mailto:bourgault.pascal@ouranos.ca
https://github.com/aulemahal
mailto:huard.david@ouranos.ca
https://github.com/huard
mailto:lavoie.juliette@ouranos.ca
https://github.com/juliettelavoie
mailto:rondeau-genesse.gabriel@ouranos.ca
https://github.com/RondeauG
mailto:smith.trevorj@ouranos.ca
https://github.com/Zeitsperre
mailto:raquel.alegre@gmail.com
https://github.com/raquelalegre
mailto:clair.barnes.16@ucl.ac.uk
https://github.com/clairbarnes
mailto:biner.sebastien@ouranos.ca
https://github.com/sbiner
https://github.com/davidcaron
mailto:ehbrecht@dkrz.de
https://github.com/cehbrecht
https://github.com/jeremyfyke
mailto:thomas.keel.18@ucl.ac.uk
https://github.com/Thomasjkeel
https://github.com/jwenfai
https://github.com/marielabonte
mailto:jamiejquinn@jamiejquinn.com
https://github.com/JamieJQuinn
mailto:roy.philippe@ouranos.ca
https://github.com/Balinus
mailto:dougiesquire@gmail.com
https://github.com/dougiesquire

xclim Documentation, Release 0.39.0

• Ag Stephens <ag.stephens@stfc.ac.uk> @agstephens

• Maliko Tanguy <malngu@ceh.ac.uk> @malngu

322 Chapter 13. Credits

mailto:ag.stephens@stfc.ac.uk
https://github.com/agstephens
mailto:malngu@ceh.ac.uk
https://github.com/malngu

CHAPTER

FOURTEEN

HISTORY

14.1 0.39.0 (2022-11-01)

Contributors to this version: Trevor James Smith (@Zeitsperre), Abel Aoun (@bzah), Éric Dupuis (@coxipi), Travis
Logan (@tlogan2000), Pascal Bourgault (@aulemahal).

14.1.1 New features and enhancements

• The general xclim description and ReadMe have been updated to reflect recent enhancements. (GH/1185,
PR/1209).

• Documentation now supports intersphinx mapping references within code examples via sphinx-codeautolink and
copying of code blocks via sphinx-copybutton. (PR/1182).

• Log-logistic distribution added to stats.py for use with standardized_precipitation_index and
standardized_precipitation_evapotranspiration_index. (GH/1141, PR/1183).

• New option in many indices allowing for resampling in given periods after run_length operations. (GH/505,
GH/916, GH/917, PR/1161).

• New base indicator class for sdba: StatisticalPropertyMeasure, those measures that also reduce the time
(as a property does). (PR/1198).

• xclim.core.calendar.common_calendar to find the best calendar to use when uniformizing an heteroge-
neous collection of data. (PR/1217).

• xclim.ensembles.create_ensemble now accepts calendar=None, and uses the above function to guess the
best one. It also now accepts cal_kwargs to fine tune the calendar conversion. (GH/1190, PR/1217).

• New data check : xclim.core.datachecks.check_common_time that ensures all inputs of multivariate in-
dicators have the same frequency (and the same time anchoring for daily and hourly data). (GH/1111, PR/1217).

14.1.2 New indicators

• New indices first_day_temperature_{above | below} and indicators xclim.indices.
first_day_{tn | tg | tx}_{above | below}. These indices/indicators accept operator (op) keyword
for finer threshold comparison controls. (GH/1175, PR/1186).

• New generic indice cumulative_difference for calculating difference between values and thresholds across
time (e.g. temperature: degree-days, precipitation: moisture deficit), with or without resampling/accumulating
by frequency. (PR/1202).

• New spatial sdba properties and measures : spatial_correlogram, scorr and first_eof. The later needs
the optional dependency eofs. (PR/1198).

323

https://github.com/Zeitsperre
https://github.com/bzah
https://github.com/coxipi
https://github.com/tlogan2000
https://github.com/aulemahal
https://github.com/Ouranosinc/xclim/issues/1185
https://github.com/Ouranosinc/xclim/pull/1209
https://github.com/Ouranosinc/xclim/pull/1182
https://github.com/Ouranosinc/xclim/issues/1141
https://github.com/Ouranosinc/xclim/pull/1183
https://github.com/Ouranosinc/xclim/issues/505
https://github.com/Ouranosinc/xclim/issues/916
https://github.com/Ouranosinc/xclim/issues/917
https://github.com/Ouranosinc/xclim/pull/1161
https://github.com/Ouranosinc/xclim/pull/1198
https://github.com/Ouranosinc/xclim/pull/1217
https://github.com/Ouranosinc/xclim/issues/1190
https://github.com/Ouranosinc/xclim/pull/1217
https://github.com/Ouranosinc/xclim/issues/1111
https://github.com/Ouranosinc/xclim/pull/1217
https://github.com/Ouranosinc/xclim/issues/1175
https://github.com/Ouranosinc/xclim/pull/1186
https://github.com/Ouranosinc/xclim/pull/1202
https://ajdawson.github.io/eofs/
https://github.com/Ouranosinc/xclim/pull/1198

xclim Documentation, Release 0.39.0

14.1.3 Breaking changes

• Indices that accept lat or lon coordinates in their call signatures will now use cf-xarray accessors to gather
these variables in the event that they are not explicitly supplied. (PR/1180). This affects the following:

– huglin_index, biologically_effective_degree_days, cool_night_index,
latitude_temperature_index, water_budget, potential_evapotranspiration

• cool_night_index now optionally accepts lat: str = "north" | "south" for calculating CNI over
DataArrays lacking a latitude coordinate. (PR/1180).

• The offset value in standardized_precipitation_evapotranspiration_index is changed to better re-
produce results in the reference library monocongo/climate_indices. (GH/1141, PR/1183).

• The first_day_below and first_day_above indices are now deprecated in order to clearly
communicate the variables they act upon (GH/1175, PR/1186). The suggested migrations are as follows:

– xclim.indices.first_day_above -> xclim.indices.first_day_temperature_above

– xclim.indices.first_day_below -> xclim.indices.first_day_temperature_below

• The first_day_below and first_day_above atmos indicators are now deprecated in order to clearly
communicate the variables they act upon (GH/1175, PR/1186). The suggested migrations are as follows:

– xclim.atmos.first_day_above -> xclim.indices.first_day_{tn | tg | tx}_above

– xclim.atmos.first_day_below -> xclim.indices.first_day_{tn | tg | tx}_below

• The degree_days generic indice has been deprecated in favour of cumulative_difference that is not lim-
ited only to temperature variables (GH/1200, PR/1202). The indices for atmos.{heating | cooling |
growing}_degree_days are now built from generic.cumulative_difference.

• Running pytest now requires the pytest-dist distributed testing dependency. This library has been added to the
dev requirements and conda environment configuration. (PR/1203).

• Parameters reducer and window in xclim.indices.rle_statistics are now positional. (PR/1161).

• The relative_annual_cycle_amplitude and annual_cycle_amplitude have been rewritten to match the
version defined in the VALUE project, outputs will change drastically (for the better) (PR/1198).

• English indicator metadata has been adjusted to remove frequencies from fields in the long_name of indicators.
English indicators now have an explicit title and abstract. (GH/936, PR/1123).

• French indicator metadata translations are now more uniform and more closely follow agreed-upon grammar
conventions, while also removing frequency fields in long_name_fr. (GH/936, PR/1123).

• The freshet_start indice is now deprecated in favour of first_day_temperature_above with thresh=’0
degC’, window=5. The freshet_start indicator is now based on first_day_temperature_above, but is oth-
erwise unaffected. (GH/1195, PR/1196).

• Call signatures for several indices/indicators have been modified to optionally accept op for manually
setting threshold comparison operators (GH/1194, PR/1197). The affected indices and indicators as
follows:

– hot_spell_max_length, hot_spell_frequency, cold_spell_days, cold_spell_frequency,
heat_wave_index, warm_day_frequency (indice only), warm_night_frequency (indice only),
dry_days, wetdays, wetdays_prop.

• Cleaner xclim.core.calendar.parse_offset : fails on invalid frequencies, return implicit anchors (YS ->
JAN, Y -> DEC) and implicit is_start_anchored (D -> True). (GH/1213, , PR/1217).

324 Chapter 14. History

https://github.com/Ouranosinc/xclim/pull/1180
https://github.com/Ouranosinc/xclim/pull/1180
https://github.com/Ouranosinc/xclim/issues/1141
https://github.com/Ouranosinc/xclim/pull/1183
https://github.com/Ouranosinc/xclim/issues/1175
https://github.com/Ouranosinc/xclim/pull/1186
https://github.com/Ouranosinc/xclim/issues/1175
https://github.com/Ouranosinc/xclim/pull/1186
https://github.com/Ouranosinc/xclim/issues/1200
https://github.com/Ouranosinc/xclim/pull/1202
https://github.com/Ouranosinc/xclim/pull/1203
https://github.com/Ouranosinc/xclim/pull/1161
https://github.com/Ouranosinc/xclim/pull/1198
https://github.com/Ouranosinc/xclim/issues/936
https://github.com/Ouranosinc/xclim/pull/1123
https://github.com/Ouranosinc/xclim/issues/936
https://github.com/Ouranosinc/xclim/pull/1123
https://github.com/Ouranosinc/xclim/issues/1195
https://github.com/Ouranosinc/xclim/pull/1196
https://github.com/Ouranosinc/xclim/issues/1194
https://github.com/Ouranosinc/xclim/pull/1197
https://github.com/Ouranosinc/xclim/issues/1213
https://github.com/Ouranosinc/xclim/pull/1217

xclim Documentation, Release 0.39.0

14.1.4 Bug fixes

• The docstring of cool_night_index suggested that lat was an optional parameter. This has been corrected.
(GH/1179, PR/1180).

• The mean_radiant_temperature indice was accessing hardcoded lat and lon coordinates from passed DataAr-
rays. This now uses cf-xarray accessors. (PR/1180).

• Adopt (and adapt) unit registry declaration and preprocessors from cf-xarray to circumvent bugs caused by a
refactor in pint 0.20. It also cleans the code a little bit. (GH/1211, PR/1212).

14.1.5 Internal changes

• The documentation build now relies on sphinx-codeautolink and sphinx-copybutton. (PR/1182).

• Many docstrings did not fully adhere to the numpy docstring format. Fields and entries for many classes and
functions have been adjusted to adhere better. (PR/1182).

• The xdoctest namespace now provides access to session-scoped {variable}_dataset accessors, as well as
a path_to_atmos_file object. These can be used for running doctests on all variables made in the pytest
atmosds() fixture. (PR/1882).

• Upgrade CodeQL GitHub Action to v2. (GH/1188, PR/1189).

• New generic index first_day_threshold_reached is now used to compose all first_day_XYZ indices.
(GH/1175, PR/1186).

• In order to reduce computation footprint, the GitHub CI full testing suite and doctests are now only run once
a pull request has been reviewed and approved. The number of simultaneously triggered builds has also been
reduced. (GH/1155, PR/1203).

• ReadTheDocs now only builds full documentation (including running notebooks) when pull requests are merged
to the main branch. (GH/1155, PR/1203).

• xclim now leverages pytest-xdist to distribute tests among Python workers and significantly speed up the testing
suite. (PR/1203).

• show_versions can now accept a list of dependencies so that other libraries can make use of this utility.
(PR/1215).

• Pull Requests now are automatically tagged (CI, docs, indicators, and/or sdba) according to files modified
using the GitHub Labeler Action. (PR/1214).

14.2 0.38.0 (2022-09-06)

Contributors to this version: Pascal Bourgault (@aulemahal), Éric Dupuis (@coxipi), Trevor James Smith
(@Zeitsperre), Abel Aoun (@bzah), Gabriel Rondeau-Genesse (@RondeauG), Dougie Squire (@dougiesquire).

14.2. 0.38.0 (2022-09-06) 325

https://github.com/Ouranosinc/xclim/issues/1179
https://github.com/Ouranosinc/xclim/pull/1180
https://github.com/Ouranosinc/xclim/pull/1180
https://github.com/Ouranosinc/xclim/issues/1211
https://github.com/Ouranosinc/xclim/pull/1212
https://github.com/Ouranosinc/xclim/pull/1182
https://numpydoc.readthedocs.io/en/latest/format.html
https://github.com/Ouranosinc/xclim/pull/1182
https://github.com/Ouranosinc/xclim/pull/1882
https://github.com/Ouranosinc/xclim/issues/1188
https://github.com/Ouranosinc/xclim/pull/1189
https://github.com/Ouranosinc/xclim/issues/1175
https://github.com/Ouranosinc/xclim/pull/1186
https://github.com/Ouranosinc/xclim/issues/1155
https://github.com/Ouranosinc/xclim/pull/1203
https://github.com/Ouranosinc/xclim/issues/1155
https://github.com/Ouranosinc/xclim/pull/1203
https://github.com/Ouranosinc/xclim/pull/1203
https://github.com/Ouranosinc/xclim/pull/1215
https://github.com/actions/labeler
https://github.com/Ouranosinc/xclim/pull/1214
https://github.com/aulemahal
https://github.com/coxipi
https://github.com/Zeitsperre
https://github.com/bzah
https://github.com/RondeauG
https://github.com/dougiesquire

xclim Documentation, Release 0.39.0

14.2.1 New features and enhancements

• Adjustment methods of SBCK are wrapped into xclim when that package is installed. (GH/1109,
PR/1115).

– Wrapped SBCK tests are also properly run in the tox testing ensemble. (PR/1119).

• Method FAO_PM98 (based on Penman-Monteith formula) to compute potential evapotranspiration. (PR/1122).

• New indices for droughts: SPI (standardized precipitations) and SPEI (standardized water budgets). (GH/131,
PR/1096).

• Most numba functions of sdba.nbutils now use the “lazy” compilation mode. This significantly accelerates
the import time of xclim. (GH/1135, PR/1167).

• Statistical properties and measures from xclim.sdba are now Indicator subclasses (PR/1149).

14.2.2 New indicators

• xclim now has the McArthur Forest Fire Danger Index and related indices under a new xclim.indices.fire
module. These indices are also available as indicators. (GH/1152, PR/1159)

• Drought-related indicators: SPI (standardized precipitations) and SPEI (standardized water budgets). (GH/131,
PR/1096).

• ensembles.create_ensembles now accepts a realizations argument to assign a coordinate to the “real-
ization” axis. It also accepts a dictionary as input so that keys are used as that coordinate. (PR/1153).

• ensembles.ensemble_percentiles, ensembles.ensemble_mean_std_max_min and ensembles.
change_significance now support weights (PR/1151).

• Many generic indicators that compare arrays or against thresholds or now accept an op keyword for
specifying the logical comparison operation to use in their calculations (i.e. {“>”, “>=”, “<”, “<=, “!=”,
“==”}). (GH/389, PR/1157).

– In order to prevent user error, many of these generic indices now have a constrain variable that
prevents calling an indice with an inappropriate comparison operator. (e.g. The following will raise
an error: op=">", constrain=("<", "<=")). This behaviour has been added to indices accepting
op where appropriate.

14.2.3 Breaking changes

• scipy has been pinned below version 1.9 until lmoments3 can be adapted to the new API. (GH/1142, PR/1143).

• xclim now requires xarray>=2022.06.0. (PR/1151).

• Documentation CI (ReadTheDocs) builds will now fail if there are any misconfigured pages, internal
link/reference warnings, or broken external hyperlinks. (GH/1094, PR/1131, GH/1139, PR/1140, PR/1160).

• Call signatures for generic indices have been reordered and/or modified to accept op, and optionally
constrain, in many cases, and condition/conditional/operation has been renamed to op for consistency.
(GH/389, PR/1157). The affected indices are as follows:

– get_op, compare, threshold_count, get_daily_events, count_level_crossings, count_occurrences,
first_occurrence, last_occurrence, spell_length, thresholded_statistics, temperature_sum, de-
gree_days.

• All indices in xclim.indices.generic now use threshold in lieu of thresh for consistency. (PR/1157).

• Existing function xclim.indices.generic.compare can now be used to construct operations with op and
constrain variables to allow for dynamic comparisons with user input handling. (GH/389, PR/1157).

326 Chapter 14. History

https://github.com/yrobink/SBCK
https://github.com/Ouranosinc/xclim/issues/1109
https://github.com/Ouranosinc/xclim/pull/1115
https://github.com/Ouranosinc/xclim/pull/1119
https://github.com/Ouranosinc/xclim/pull/1122
https://github.com/Ouranosinc/xclim/issues/131
https://github.com/Ouranosinc/xclim/pull/1096
https://github.com/Ouranosinc/xclim/issues/1135
https://github.com/Ouranosinc/xclim/pull/1167
https://github.com/Ouranosinc/xclim/pull/1149
https://github.com/Ouranosinc/xclim/issues/1152
https://github.com/Ouranosinc/xclim/pull/1159
https://github.com/Ouranosinc/xclim/issues/131
https://github.com/Ouranosinc/xclim/pull/1096
https://github.com/Ouranosinc/xclim/pull/1153
https://github.com/Ouranosinc/xclim/pull/1151
https://github.com/Ouranosinc/xclim/issues/389
https://github.com/Ouranosinc/xclim/pull/1157
https://github.com/Ouranosinc/xclim/issues/1142
https://github.com/Ouranosinc/xclim/pull/1143
https://github.com/Ouranosinc/xclim/pull/1151
https://github.com/Ouranosinc/xclim/issues/1094
https://github.com/Ouranosinc/xclim/pull/1131
https://github.com/Ouranosinc/xclim/issues/1139
https://github.com/Ouranosinc/xclim/pull/1140
https://github.com/Ouranosinc/xclim/pull/1160
https://github.com/Ouranosinc/xclim/issues/389
https://github.com/Ouranosinc/xclim/pull/1157
https://github.com/Ouranosinc/xclim/pull/1157
https://github.com/Ouranosinc/xclim/issues/389
https://github.com/Ouranosinc/xclim/pull/1157

xclim Documentation, Release 0.39.0

• Two deprecated indices have been removed from xclim. (PR/1157):
– xclim.indices._multivariate.daily_freezethaw_cycles -> Replaceable with the generic
multiday_temperature_swing with thresh_tasmax=’0 degC’, thresh_tasmin=’0 degC’, win-
dow=1, and op=’sum’. The indicator version (xclim.atmos.daily_freezethaw_cycles) is unaf-
fected.

– xclim.indices.generic.select_time -> Was previously moved to xclim.core.calendar.

• The clix-meta indicator table parsing function (xclim.core.utils.adapt_clix_meta_yaml) has been
adapted to support the new “op” operator handler. (PR/1157).

• Because they have been re-implemented as Indicator subclasses, statistical properties and measures of xclim.
sdba no longer preserve attributes of their inputs by default. Use xclim.set_options(keep_attrs=True)
to get the previous behaviour. (PR/1149).

• The xclim.indices.generic.extreme_temperature_range function has been fixed so it now does what
its definition says. Results from xclim.indicators.cf.etr will change. (GH/1172, PR/1173).

• xclim now has a dedicated indices.fire submodule that houses all fire-related indices. The previous xclim.
indices.fwi submodule is deprecated and will be removed in a future version. (GH/1152, PR/1159).

• The indicator xclim.indicators.atmos.fire_weather_indexes and indice xclim.indices.
fire_weather_indexes have both been deprecated and renamed to cffwis_indices. Calls using the
previous naming will be removed in a future version. (PR/1159).

• xclim now explicitly requires pybtex in order to generate documentation. (PR/1176).

14.2.4 Bug fixes

• Fixed saturation_vapor_pressure for temperatures in other units than Kelvins (also fixes
relative_humidity_from_dewpoint). (GH/1125, PR/1127).

• Indicators that do not care about the input frequency of the data will not check the cell methods of their inputs.
(PR/1128).

• Fixed the signature and docstring of heat_index by changing tasmax to tas. (GH/1126, PR/1128).

• Fixed a formatting issue with virtual indicator modules (_gen_returns_section) that was creating malformed
Returns sections in sphinx-generated documentation. (PR/1131).

• Fix biological_effective_degree_days for non-scalar latitudes, when using method “gladstones”.
(GH/1136, PR/1137).

• Fixed some extlink warnings found in sphinx and configured ReadTheDocs to use mamba as the dependency
solver. (GH/1139, PR/1140).

• Fixed some broken hyperlinks to articles, users, and external documentation throughout the code base and jupyter
notebooks. (PR/1160).

• Removed some artefact reference roles introduced in PR/1131 that were causing LaTeX builds of the documen-
tation to fail. (GH/1154, PR/1156).

• Fix biological_effective_degree_days for non-scalar latitudes, when using method “gladstones”.
(GH/1136, PR/1137).

• Fixed some extlink warnings found in sphinx and configured ReadTheDocs to use mamba as the dependency
solver. (GH/1139, PR/1140).

• Fixed some broken hyperlinks to articles, users, and external documentation throughout the code base and jupyter
notebooks. (PR/1160).

14.2. 0.38.0 (2022-09-06) 327

https://github.com/Ouranosinc/xclim/pull/1157
https://github.com/Ouranosinc/xclim/pull/1157
https://github.com/Ouranosinc/xclim/pull/1149
https://github.com/Ouranosinc/xclim/issues/1172
https://github.com/Ouranosinc/xclim/pull/1173
https://github.com/Ouranosinc/xclim/issues/1152
https://github.com/Ouranosinc/xclim/pull/1159
https://github.com/Ouranosinc/xclim/pull/1159
https://github.com/Ouranosinc/xclim/pull/1176
https://github.com/Ouranosinc/xclim/issues/1125
https://github.com/Ouranosinc/xclim/pull/1127
https://github.com/Ouranosinc/xclim/pull/1128
https://github.com/Ouranosinc/xclim/issues/1126
https://github.com/Ouranosinc/xclim/pull/1128
https://github.com/Ouranosinc/xclim/pull/1131
https://github.com/Ouranosinc/xclim/issues/1136
https://github.com/Ouranosinc/xclim/pull/1137
https://github.com/Ouranosinc/xclim/issues/1139
https://github.com/Ouranosinc/xclim/pull/1140
https://github.com/Ouranosinc/xclim/pull/1160
https://github.com/Ouranosinc/xclim/pull/1131
https://github.com/Ouranosinc/xclim/issues/1154
https://github.com/Ouranosinc/xclim/pull/1156
https://github.com/Ouranosinc/xclim/issues/1136
https://github.com/Ouranosinc/xclim/pull/1137
https://github.com/Ouranosinc/xclim/issues/1139
https://github.com/Ouranosinc/xclim/pull/1140
https://github.com/Ouranosinc/xclim/pull/1160

xclim Documentation, Release 0.39.0

• Addressed a bug that was causing pylint to stackoverflow by removing it from the tox configuration. pylint should
only be called from an active environment. (PR/1163)

• Fixed an issue with xclim.ensembles.kmeans_reduce_ensemble which caused it to fail when using dask
arrays. (PR/1170).

• Addressed a bug that was causing pylint to stackoverflow by removing it from the tox configuration. pylint should
only be called from an active environment. (PR/1163)

14.2.5 Internal changes

• Marked a test (test_release_notes_file_not_implemented) that can only pass when source files are avail-
able so that it can easily be skipped on conda-forge build tests. (GH/1116, PR/1117).

• Split a few YAML strings found in the virtual modules that regularly issued warnings on the code checking CI
steps. (PR/1118).

• Function xclim.core.calendar.build_climatology_bounds now exposed via __all__. (PR/1146).

• Clarifications added to docstring of xclim.core.bootstrapping.bootstrap_func. (PR/1146).

• Bibliographic references for supporting scientific articles are now found in a bibtex file (docs/references.bib).
These are now made available within the generated documentation using sphinxcontrib-bibtex. (GH/1094,
PR/1131).

• Added information URLs to setup.py in order to showcase issue tracker and other sites on PyPI page (PR/1156).

• Configured the LaTeX build of the documentation to ignore the custom bibliographies, as they were redundant
in the generated PDF. (PR/1158).

• Run length encoding (xclim.indices.run_length.rle) has been optimized. (GH/956, PR/1122).

• Added a sphinx-build -b linkcheck step to the tox-based “docs” build as well as to the ReadTheDocs configura-
tion. (PR/1160).

• pylint is now setup to use a pylintrc file, allowing for more granular control of warnings and exceptions. Many
errors are still present, so addressing them will need to occur gradually. (PR/1163).

• The generic indices count_level_crossings, count_occurrences, first_occurrence, and last_occurrence are now
fully tested. (PR/1157).

• Adjusted the ANUCLIM indices by removing “ANUCLIM” from their titles, modifying their docstrings, and
handling “op” input in a more user-friendly way. (GH/1055, PR/1169).

• Documentation for fire-based indices/indicators has been reorganized to reflect the new submodule structure.
(PR/1159).

14.3 0.37.0 (2022-06-20)

Contributors to this version: Abel Aoun (@bzah), Pascal Bourgault (@aulemahal), Trevor James Smith (@Zeitsperre),
Gabriel Rondeau-Genesse (@RondeauG), Juliette Lavoie (@juliettelavoie), Ludwig Lierhammer (@ludwiglierham-
mer).

328 Chapter 14. History

https://github.com/Ouranosinc/xclim/pull/1163
https://github.com/Ouranosinc/xclim/pull/1170
https://github.com/Ouranosinc/xclim/pull/1163
https://github.com/Ouranosinc/xclim/issues/1116
https://github.com/Ouranosinc/xclim/pull/1117
https://github.com/Ouranosinc/xclim/pull/1118
https://github.com/Ouranosinc/xclim/pull/1146
https://github.com/Ouranosinc/xclim/pull/1146
https://github.com/Ouranosinc/xclim/issues/1094
https://github.com/Ouranosinc/xclim/pull/1131
https://github.com/Ouranosinc/xclim/pull/1156
https://github.com/Ouranosinc/xclim/pull/1158
https://github.com/Ouranosinc/xclim/issues/956
https://github.com/Ouranosinc/xclim/pull/1122
https://github.com/Ouranosinc/xclim/pull/1160
https://github.com/Ouranosinc/xclim/pull/1163
https://github.com/Ouranosinc/xclim/pull/1157
https://github.com/Ouranosinc/xclim/issues/1055
https://github.com/Ouranosinc/xclim/pull/1169
https://github.com/Ouranosinc/xclim/pull/1159
https://github.com/bzah
https://github.com/aulemahal
https://github.com/Zeitsperre
https://github.com/RondeauG
https://github.com/juliettelavoie
https://github.com/ludwiglierhammer
https://github.com/ludwiglierhammer

xclim Documentation, Release 0.39.0

14.3.1 Announcements

• xclim is now compliant with PEP 563. Python3.10-style annotations are now permitted. (GH/1065, PR/1071).

• xclim is now fully compatible with xarray’s flox-enabled GroupBy and resample operations. (PR/1081).

• xclim now (properly) enforces docstring compliance checks using pydocstyle with modified numpy-style doc-
strings. Docstring errors will now cause build failures. See the pydocstyle documentation for more information.
(PR/1074).

• xclim now uses GitHub Actions to manage patch version bumping. Merged Pull Requests that modify xclim
code now trigger version-bumping automatically when pushed to the main development branch. Running $
bump2version patch within development branches is no longer necessary. (PR/1102).

14.3.2 New features and enhancements

• Add “Celsius” to aliases of “celsius” unit. (GH/1067, PR/1068).

• All indicators now have indexing enabled, except those computing statistics on spells. (GH/1069, PR/1070).

• A convenience function for returning the version numbers for relevant xclim dependencies
(xclim.testing.show_versions) is now offered. (PR/1073).

– A CLI version of this function is also available from the command line ($ xclim show_version_info).
(PR/1073).

• New “keep_attrs” option to control the handling of the attributes within the indicators. (GH/1026, PR/1076).

• Added a notebook showcasing some simple examples of Spatial Analogues. (GH/585, PR/1075).

• create_ensembles now accepts a glob string to find datasets. (PR/1081).

• Improved percentile based indicators metadata with the window, threshold and climatology period used to com-
pute percentiles. (GH/1047, PR/1050).

• New xclim.core.calendar.construct_offset, the inverse operation of parse_offset. (PR/1090).

• Rechunking operations in xclim.indices.run_length.rle are now synchronized with dask’s options.
(PR/1090).

• A mention of the “missing” checks and options is added to the history attribute of indicators, where appropriate.
(GH/1100, PR/1103).

14.3.3 Breaking changes

• xclim.atmos.water_budget has been separated into water_budget (calculated directly with ‘evspsblpot’)
and water_budget_from_tas (original function). (PR/1086).

• Injected parameters in indicators are now left out of a function’s signature and will not be included in the history
attribute. (PR/1086).

• The signature for the following Indicators have been modified (PR/1050):
– cold_spell_duration_index, tg90p, tg10p, tx90p, tx10p, tn90p, tn10p, warm_spell_duration_index,

days_over_precip_doy_thresh, days_over_precip_thresh, fraction_over_precip_doy_thresh,
fraction_over_precip_thresh, cold_and_dry_days, warm_and_dry_days, warm_and_wet_days,
cold_and_wet_days

• The parameter for percentile values is now named after the variable it is supposed to be computed upon.
(PR/1050).

14.3. 0.37.0 (2022-06-20) 329

https://peps.python.org/pep-0563
https://github.com/Ouranosinc/xclim/issues/1065
https://github.com/Ouranosinc/xclim/pull/1071
https://github.com/Ouranosinc/xclim/pull/1081
http://www.pydocstyle.org/en/stable/error_codes.html
https://github.com/Ouranosinc/xclim/pull/1074
https://github.com/Ouranosinc/xclim/pull/1102
https://github.com/Ouranosinc/xclim/issues/1067
https://github.com/Ouranosinc/xclim/pull/1068
https://github.com/Ouranosinc/xclim/issues/1069
https://github.com/Ouranosinc/xclim/pull/1070
https://github.com/Ouranosinc/xclim/pull/1073
https://github.com/Ouranosinc/xclim/pull/1073
https://github.com/Ouranosinc/xclim/issues/1026
https://github.com/Ouranosinc/xclim/pull/1076
https://github.com/Ouranosinc/xclim/issues/585
https://github.com/Ouranosinc/xclim/pull/1075
https://github.com/Ouranosinc/xclim/pull/1081
https://github.com/Ouranosinc/xclim/issues/1047
https://github.com/Ouranosinc/xclim/pull/1050
https://github.com/Ouranosinc/xclim/pull/1090
https://github.com/Ouranosinc/xclim/pull/1090
https://github.com/Ouranosinc/xclim/issues/1100
https://github.com/Ouranosinc/xclim/pull/1103
https://github.com/Ouranosinc/xclim/pull/1086
https://github.com/Ouranosinc/xclim/pull/1086
https://github.com/Ouranosinc/xclim/pull/1050
https://github.com/Ouranosinc/xclim/pull/1050

xclim Documentation, Release 0.39.0

• pytest-runner has been removed as a dependency (it was never needed for xclim development). (PR/1074).

• xclim.testing._utils.py has been renamed to xclim.testing.utils.py for added documentation visibility.
(PR/1074).

– Some unused functions and classes (as_tuple, TestFile, TestDataSet) have been removed.
(PR/1107).

14.3.4 New indicators

• universal_thermal_climate_index and mean_radiant_temperature for computing the universal
thermal climate index from the near-surface temperature, relative humidity, near-surface windspeed
and radiation. (GH/1060, PR/1062).

– A new method ITS90 has also been added for calculating saturation water vapour pressure. (GH/1060,
PR/1062).

14.3.5 Internal changes

• Typing syntax has been updated within pre-commit via isort. Pre-commit hooks now append from __future__
import annotations to all python module imports for backwards compatibility. (GH/1065, PR/1071)

• isort project configurations are now set in setup.cfg. (PR/1071).

• Many function docstrings, external target links, and internal section references have been adjusted to reduce
warnings when building the docs. (PR/1074).

• Code snippets within documentation are now checked and reformatted to black conventions with blackdoc. A
pre-commit hook is now in place to run these checks. (PR/1098).

• Test coverage statistic no longer includes coverage of the test files themselves. Coverage now reflects lines of
usable code covered. (PR/1101).

• Reordered listed authors alphabetically. Promoted @bzah to core contributor. (PR/1105).

• Tests have been added for some functions in xclim.testing.utils.py; some previously uncaught bugs in
list_input_variables, publish_release_notes, and show_versions have been patched. (GH/1078,
PR/1107).

• A convenience command for installing xclim with key development branches of some dependencies has
been added ($ make upstream). (GH/1088, PR/1092; amended in GH/1113, PR/1114).

– This build configuration is also available in tox for local development purposes ($ tox -e pyXX-
upstream).

14.3.6 Bug fixes

• Clean the bias_adjustement and history attributes created by xclim.sdba.adjust (e.g. when an argument is an
xr.DataArray, only print the name instead of the whole array). (GH/1083, PR/1087).

• pydocstyle checks were silently failing in the pre-commit configuration due to a badly-formed regex. This has
been adjusted. (PR/1074).

• adjust_doy_calendar was broken when the source or the target were seasonal. (GH/1097, GH/1091, PR/1099)

330 Chapter 14. History

https://github.com/Ouranosinc/xclim/pull/1074
https://github.com/Ouranosinc/xclim/pull/1074
https://github.com/Ouranosinc/xclim/pull/1107
https://github.com/Ouranosinc/xclim/issues/1060
https://github.com/Ouranosinc/xclim/pull/1062
https://github.com/Ouranosinc/xclim/issues/1060
https://github.com/Ouranosinc/xclim/pull/1062
https://github.com/Ouranosinc/xclim/issues/1065
https://github.com/Ouranosinc/xclim/pull/1071
https://github.com/Ouranosinc/xclim/pull/1071
https://github.com/Ouranosinc/xclim/pull/1074
https://github.com/Ouranosinc/xclim/pull/1098
https://github.com/Ouranosinc/xclim/pull/1101
https://github.com/bzah
https://github.com/Ouranosinc/xclim/pull/1105
https://github.com/Ouranosinc/xclim/issues/1078
https://github.com/Ouranosinc/xclim/pull/1107
https://github.com/Ouranosinc/xclim/issues/1088
https://github.com/Ouranosinc/xclim/pull/1092
https://github.com/Ouranosinc/xclim/issues/1113
https://github.com/Ouranosinc/xclim/pull/1114
https://github.com/Ouranosinc/xclim/issues/1083
https://github.com/Ouranosinc/xclim/pull/1087
https://github.com/Ouranosinc/xclim/pull/1074
https://github.com/Ouranosinc/xclim/issues/1097
https://github.com/Ouranosinc/xclim/issues/1091
https://github.com/Ouranosinc/xclim/pull/1099

xclim Documentation, Release 0.39.0

14.4 v0.36.0 (2022-04-29)

Contributors to this version: Pascal Bourgault (@aulemahal), Juliette Lavoie (@juliettelavoie), David Huard (@huard).

14.4.1 Bug fixes

• Invoking lazy_indexing twice in row (or more) using the same indexes (using dask) is now fixed. (GH/1048,
PR/1049).

• Filtering out the nans before choosing the first and last values as fill_value in _interp_on_quantiles_1D.
(GH/1056, PR/1057).

• Translations from virtual indicator modules do not override those of the base indicators anymore. (GH/1053,
PR/1058).

• Fix mmday unit definition (factor 1000 error). (GH/1061, PR/1063).

14.4.2 New features and enhancements

• xclim.sdba.measures.rmse and xclim.sdba.measures.mae now use numpy instead of sklearn. This im-
proves their performances when using dask. (PR/1051).

• Argument append_ends added to sdba.unpack_moving_yearly_window (PR/1059).

14.4.3 Internal changes

• Ipython was unpinned as version 8.2 fixed the previous issue. (GH/1005, PR/1064).

14.5 v0.35.0 (2022-04-01)

Contributors to this version: David Huard (@huard), Trevor James Smith (@Zeitsperre) and Pascal Bourgault
(@aulemahal).

14.5.1 New indicators

• New indicator specific_humidity_from_dewpoint, computing specific humidity from the dewpoint tem-
perature and air pressure. (GH/864, PR/1027)

14.5.2 New features and enhancements

• New spatial analogues method “szekely_rizzo” (PR/1033).

• Loess smoothing (and detrending) now skip NaN values, instead of propagating them. This can be controlled
through the skipna argument. (PR/1030).

14.4. v0.36.0 (2022-04-29) 331

https://github.com/aulemahal
https://github.com/juliettelavoie
https://github.com/huard
https://github.com/Ouranosinc/xclim/issues/1048
https://github.com/Ouranosinc/xclim/pull/1049
https://github.com/Ouranosinc/xclim/issues/1056
https://github.com/Ouranosinc/xclim/pull/1057
https://github.com/Ouranosinc/xclim/issues/1053
https://github.com/Ouranosinc/xclim/pull/1058
https://github.com/Ouranosinc/xclim/issues/1061
https://github.com/Ouranosinc/xclim/pull/1063
https://github.com/Ouranosinc/xclim/pull/1051
https://github.com/Ouranosinc/xclim/pull/1059
https://github.com/Ouranosinc/xclim/issues/1005
https://github.com/Ouranosinc/xclim/pull/1064
https://github.com/huard
https://github.com/Zeitsperre
https://github.com/aulemahal
https://github.com/Ouranosinc/xclim/issues/864
https://github.com/Ouranosinc/xclim/pull/1027
https://github.com/Ouranosinc/xclim/pull/1033
https://github.com/Ouranosinc/xclim/pull/1030

xclim Documentation, Release 0.39.0

14.5.3 Bug fixes

• xclim.analog.spatial_analogs is now compatible with dask-backed DataArrays. (PR/1033).

• Parameter dmin added to spatial analog method “zech_aslan”, to avoid singularities on identical points.
(PR/1033).

• xclim is now compatible with changes in xarray that enabled explicit indexing operations. (PR/1038, xarray PR).

14.5.4 Internal changes

• xclim now uses the check-json and pretty-format-json pre-commit checks to validate and format JSON
files. (PR/1032).

• The few logging artifacts in the xclim.ensembles module have been replaced with warnings.warn calls or
removed. (GH/1039, PR/1044).

14.6 v0.34.0 (2022-02-25)

Contributors to this version: Pascal Bourgault (@aulemahal), Trevor James Smith (@Zeitsperre), David Huard
(@huard), Aoun Abel (@bzah).

14.6.1 Announcements

• xclim now officially supports Python3.10. (PR/1013).

14.6.2 Breaking changes

• The version pin for bottleneck (<1.4) has been lifted. (PR/1013).

• packaging has been removed from the xclim run dependencies. (PR/1013).

• Quantile mapping adjustment objects (EQM, DQM and QDM) and sdba.utils.equally_spaced_nodeswill
not add additional endpoints to the quantile range. With those endpoints, variables are capped to the reference’s
range in the historical period, which can be dangerous with high variability in the extremes (ex: pr), especially if
the reference doesn’t reproduce those extremes credibly. (GH/1015, PR/1016). To retrieve the same functionality
as before use:

from xclim import sdba

NQ is the the number of equally spaced nodes, the argument previously given to␣
→˓nquantiles directly.
EQM = sdba.EmpiricalQuantileMapping.train(

ref, hist, nquantiles=sdba.equally_spaced_nodes(NQ, eps=1e-6), ...
)

• The “history” string attribute added by xclim has been modified for readability: (GH/963, PR/1018).
– The trailing dot (.) was dropped.

– None inputs are now printed as “None” (and not “<NoneType>”).

– Arguments are now always shown as keyword-arguments. This mostly impacts sdba functions, as it
was already the case for Indicators.

332 Chapter 14. History

https://github.com/Ouranosinc/xclim/pull/1033
https://github.com/Ouranosinc/xclim/pull/1033
https://github.com/Ouranosinc/xclim/pull/1038
https://github.com/pydata/xarray/pull/5692
https://github.com/Ouranosinc/xclim/pull/1032
https://github.com/Ouranosinc/xclim/issues/1039
https://github.com/Ouranosinc/xclim/pull/1044
https://github.com/aulemahal
https://github.com/Zeitsperre
https://github.com/huard
https://github.com/bzah
https://github.com/Ouranosinc/xclim/pull/1013
https://github.com/Ouranosinc/xclim/pull/1013
https://github.com/Ouranosinc/xclim/pull/1013
https://github.com/Ouranosinc/xclim/issues/1015
https://github.com/Ouranosinc/xclim/pull/1016
https://github.com/Ouranosinc/xclim/issues/963
https://github.com/Ouranosinc/xclim/pull/1018

xclim Documentation, Release 0.39.0

• The cell_methods string attribute appends only the operation from the indicator itself. In previous version, some
indicators also appended the input data’s own cell_method. The clix-meta importer has been modified to follow
the same convention. (GH/983, PR/1022)

14.6.3 New features and enhancements

• publish_release_notes now leverages much more regular expression logic for link translations to markdown.
(PR/1023).

• Improve performances of percentile bootstrap algorithm by using xarray.map_block (GH/932, PR/1017).

14.6.4 Bug fixes

• Loading virtual python modules with build_indicator_module_from_yaml is now fixed on some systems
where the current directory was not part of python’s path. Furthermore, paths of the python and json files can
now be passed directly to the indices and translations arguments, respectively. (GH/1020, PR/1021).

14.6.5 Internal changes

• Due to an upstream bug in bottleneck’s support of virtualenv, tox builds for Python3.10 now depend on a
patched fork of bottleneck. This workaround will be removed once the fix is merged upstream. (PR/1013,
see: bottleneck PR/397).

– This has been removed with the release of bottleneck version 1.3.4. (PR/1025).

• GitHub CI actions now use the deadsnakes python PPA Action for gathering the Python3.10 development headers.
(PR/1013).

• The “is_dayofyear” attribute added by several indices is now a numpy.int32 instance, instead of python’s int.
This ensures a THREDDS server can read it when the variable is saved to a netCDF file with xarray/netCDF4-
python. (GH/980, PR/1019).

• The xclim git repository now offers Issue Forms for some general issue types.

14.7 v0.33.2 (2022-02-09)

Contributors to this version: Pascal Bourgault (@aulemahal), Juliette Lavoie (@juliettelavoie), Trevor James Smith
(@Zeitsperre).

14.7.1 Announcements

• xclim no longer supports Python3.7. Code conventions and new features for Python3.8 (PEP 569) are now
accepted. (GH/966, PR/1000).

14.7. v0.33.2 (2022-02-09) 333

https://github.com/Ouranosinc/xclim/issues/983
https://github.com/Ouranosinc/xclim/pull/1022
https://github.com/Ouranosinc/xclim/pull/1023
https://github.com/Ouranosinc/xclim/issues/932
https://github.com/Ouranosinc/xclim/pull/1017
https://github.com/Ouranosinc/xclim/issues/1020
https://github.com/Ouranosinc/xclim/pull/1021
https://github.com/Ouranosinc/xclim/pull/1013
https://github.com/pydata/bottleneck/pull/397/
https://pypi.org/project/Bottleneck/1.3.4/
https://github.com/Ouranosinc/xclim/pull/1025
https://github.com/deadsnakes/action
https://github.com/Ouranosinc/xclim/pull/1013
https://github.com/Ouranosinc/xclim/issues/980
https://github.com/Ouranosinc/xclim/pull/1019
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository#creating-issue-forms
https://github.com/aulemahal
https://github.com/juliettelavoie
https://github.com/Zeitsperre
https://peps.python.org/pep-0569/
https://github.com/Ouranosinc/xclim/issues/966
https://github.com/Ouranosinc/xclim/pull/1000

xclim Documentation, Release 0.39.0

14.7.2 Breaking changes

• Python3.7 (PEP 537) support has been officially deprecated. Continuous integration testing is no longer run
against this version of Python. (GH/966, PR/1000).

14.7.3 Bug fixes

• Adjusted behaviour in dataflags.ecad_compliant to remove data_vars of invalids checks that return None,
causing issues with dask. (PR/1002).

• Temporarily pinned ipython below version 8.0 due to behaviour causing hangs in GitHub Actions and ReadThe-
Docs. (GH/1005, PR/1006).

• indices.stats methods where adapted to handle dask-backed arrays. (GH/1007, :pull:`1011).

• sdba.utils.interp_on_quantiles, with extrapolation='constant', now interpolates the limits of the
interpolation along the time grouping index, fixing a issue with “time.month” grouping. (GH/1008, PR/1009).

14.7.4 Internal changes

• pre-commit now uses Black 22.1.0 with Python3.8 style conventions. Existing code has been adjusted.
(PR/1000).

• tox builds for Python3.7 have been deprecated. (PR/1000).

• Docstrings and documentation has been adjusted for grammar and typos. (PR/1000).

• sdba.utils.extrapolate_qm has been removed, as announced for xclim 0.33. (PR/1009).

14.8 v0.33.0 (2022-01-28)

Contributors to this version: Trevor James Smith (@Zeitsperre), Pascal Bourgault (@aulemahal), Tom Keel
(@Thomasjkeel), Jeremy Fyke (@JeremyFyke), David Huard (@huard), Abel Aoun (@bzah), Juliette Lavoie (@juli-
ettelavoie), Yannick Rousseau.

14.8.1 Announcements

• Deprecation: Release 0.33.0 of xclim will be the last version to explicitly support Python3.7 and xarray<0.21.0.

• xclim now requires yaml files to pass yamllint checks on Pull Requests. (PR/981).

• xclim now requires docstrings have valid ReStructuredText formatting to pass basic linting checks.
(PR/993). Checks generally require:

– Working hyperlinks and reference tags.

– Valid content references (e.g. :py:func:).

– Valid NumPy-formatted docstrings.

• The xclim developer community has now adopted the ‘Contributor Covenant’ Code of Conduct v2.1 (text).
(GH/948, PR/996).

334 Chapter 14. History

https://peps.python.org/pep-0537/
https://github.com/Ouranosinc/xclim/issues/966
https://github.com/Ouranosinc/xclim/pull/1000
https://github.com/Ouranosinc/xclim/pull/1002
https://github.com/Ouranosinc/xclim/issues/1005
https://github.com/Ouranosinc/xclim/pull/1006
https://github.com/Ouranosinc/xclim/issues/1007
https://github.com/Ouranosinc/xclim/issues/1008
https://github.com/Ouranosinc/xclim/pull/1009
https://github.com/Ouranosinc/xclim/pull/1000
https://github.com/Ouranosinc/xclim/pull/1000
https://github.com/Ouranosinc/xclim/pull/1000
https://github.com/Ouranosinc/xclim/pull/1009
https://github.com/Zeitsperre
https://github.com/aulemahal
https://github.com/Thomasjkeel
https://github.com/JeremyFyke
https://github.com/huard
https://github.com/bzah
https://github.com/juliettelavoie
https://github.com/juliettelavoie
https://github.com/Ouranosinc/xclim/pull/981
https://github.com/Ouranosinc/xclim/pull/993
https://www.contributor-covenant.org/version/2/1/code_of_conduct/
https://github.com/Ouranosinc/xclim/issues/948
https://github.com/Ouranosinc/xclim/pull/996

xclim Documentation, Release 0.39.0

14.8.2 New indicators

• jetstream_metric_woollings indicator returns latitude and strength of jet-stream in u-wind field. (GH/923,
PR/924).

14.8.3 New features and enhancements

• Features added and modified to allow proper multivariate adjustments. (PR/964).
– Added xclim.sdba.processing.to_additive_space and xclim.sdba.processing.
from_additive_space to transform “multiplicative” variables to the additive space. An example of
multivariate adjustment using this technique was added to the “Advanced” sdba notebook.

– xclim.sdba.processing.normalize now also returns the norm. xclim.sdba.processing.
jitter was created by combining the “under” and “over” methods.

– xclim.sdba.adjustment.PrincipalComponent was modified to have a simpler signature. The
“full” method for finding the best PC orientation was added. (GH/697).

• New xclim.indices.stats.parametric_cdf function to facilitate the computation of return periods over
DataArrays of statistical distribution parameters (GH/876, PR/984).

• Add copy parameter to percentile_doy to control if the array input can be dumped after computing percentiles
(GH/932, PR/985).

• New improved algorithm for dry_spell_total_length, performing the temporal indexing at the right moment
and with control on the aggregation operator (op) for determining the dry spells.

• Added properties.py and measures.py in order to perform diagnostic tests of sdba (GH/424, PR/967).

• Update how percentile_doy rechunk the input data to preserve the initial chunk size. This should make the
computation memory footprint more predictable (GH/932, PR/987).

14.8.4 Breaking changes

• To reduce import complexity, select_time has been refactored/moved from xclim.indices.generic to
xclim.core.calendar. (GH/949, PR/969).

• The stacking dimension of xclim.sdba.stack_variables has been renamed to “multivar” to avoid name
conflicts with the “variables” property of xarray Datasets. (PR/964).

• xclim now requires cf-xarray>=0.6.1. (GH/923, PR/924).

• xclim now requires statsmodels. (GH/424, PR/967).

14.8.5 Internal changes

• Added a CI hook in .pre-commit-config.yaml to perform automated pre-commit corrections with GitHub
CI. (PR/965).

• Adjusted CI hooks to fail earlier if lint checks fail. (PR/972).

• TrainAdjust and Adjust object have a new skip_input_checks keyword arg to their train and adjust methods. When
True, all unit-, calendar- and coordinate-related input checks are skipped. This is an ugly solution to disappearing
attributes when using xr.map_blocks with dask. (PR/964).

• Some slow tests were marked slow to help speed up the standard test ensemble. (PR/969).
– Tox testing ensemble now also reports slowest tests using the --durations flag.

14.8. v0.33.0 (2022-01-28) 335

https://github.com/Ouranosinc/xclim/issues/923
https://github.com/Ouranosinc/xclim/pull/924
https://github.com/Ouranosinc/xclim/pull/964
https://github.com/Ouranosinc/xclim/issues/697
https://github.com/Ouranosinc/xclim/issues/876
https://github.com/Ouranosinc/xclim/pull/984
https://github.com/Ouranosinc/xclim/issues/932
https://github.com/Ouranosinc/xclim/pull/985
https://github.com/Ouranosinc/xclim/issues/424
https://github.com/Ouranosinc/xclim/pull/967
https://github.com/Ouranosinc/xclim/issues/932
https://github.com/Ouranosinc/xclim/pull/987
https://github.com/Ouranosinc/xclim/issues/949
https://github.com/Ouranosinc/xclim/pull/969
https://github.com/Ouranosinc/xclim/pull/964
https://github.com/Ouranosinc/xclim/issues/923
https://github.com/Ouranosinc/xclim/pull/924
https://github.com/Ouranosinc/xclim/issues/424
https://github.com/Ouranosinc/xclim/pull/967
https://github.com/Ouranosinc/xclim/pull/965
https://github.com/Ouranosinc/xclim/pull/972
https://github.com/Ouranosinc/xclim/pull/964
https://github.com/Ouranosinc/xclim/pull/969

xclim Documentation, Release 0.39.0

• pint no longer emits warnings about redefined units when the logging module is loaded. (GH/990, PR/991).

• Added a CI step for cancelling running workflows in pull requests that receive multiple pushes. (PR/988).

14.8.6 Bug fixes

• Fix mistake in the units of spell_length_distribution. (GH/1003, PR/1004)

14.9 v0.32.1 (2021-12-17)

14.9.1 Bug fixes

• Adjusted a test (test_cli::test_release_notes) that prevented conda-forge test ensemble from passing.
(PR/962).

14.10 v0.32.0 (2021-12-17)

Contributors to this version: Pascal Bourgault (@aulemahal), Travis Logan (@tlogan2000), Trevor James Smith
(@Zeitsperre), Abel Aoun (@bzah), David Huard (@huard), Clair Barnes (@clairbarnes), Raquel Alegre (@raque-
lalegre), Jamie Quinn (@JamieJQuinn), Maliko Tanguy (@malngu), Aaron Spring (@aaronspring).

14.10.1 Announcements

• Code coverage (coverage/coveralls) is now a required CI check for merging Pull Requests. Requirements
are now:

– No individual run may report <80% code coverage.

– Some drop in coverage is now tolerable, but runs cannot dip below -0.25% relative to the main branch.

14.10.2 New features and enhancements

• Added an optimized pathway for xclim.indices.run_length functions when window=1. (PR/911, GH/910).

• The data input frequency expected by Indicator is now in the src_freq attribute and is thus controllable by
subclassing existing indicators. (GH/898, PR/927).

• New **indexer keyword args added to many indicators, it accepts the same arguments as xclim.indices.
generic.select_time, which has been improved. Unless otherwise specified, the time selection is done before
any computation. (PR/934, GH/899).

• Rewrite of xclim.sdba.ExtremeValues, now fixed with a correct algorithm. It has not been tested extensively
and should be considered experimental. (PR/914, GH/789, GH/790).

• Added days_over_precip_doy_thresh and fraction_over_precip_doy_thresh indicators to distinguish between
WMO and ECAD definition of the Rxxp and RxxpTot indices. (GH/931, PR/940).

• Update xclim.core.utils.nan_calc_percentiles to improve maintainability. (PR/942).

• Added heat_index indicator. Added heat_index indicator. This is similar to humidex but uses a different dew
point as well as heat balance equations which account for variables other than vapor pressure. (GH/807) and
(PR/915).

336 Chapter 14. History

https://github.com/Ouranosinc/xclim/issues/990
https://github.com/Ouranosinc/xclim/pull/991
https://github.com/Ouranosinc/xclim/pull/988
https://github.com/Ouranosinc/xclim/issues/1003
https://github.com/Ouranosinc/xclim/pull/1004
https://github.com/Ouranosinc/xclim/pull/962
https://github.com/aulemahal
https://github.com/tlogan2000
https://github.com/Zeitsperre
https://github.com/bzah
https://github.com/huard
https://github.com/clairbarnes
https://github.com/raquelalegre
https://github.com/raquelalegre
https://github.com/JamieJQuinn
https://github.com/malngu
https://github.com/aaronspring
https://github.com/Ouranosinc/xclim/pull/911
https://github.com/Ouranosinc/xclim/issues/910
https://github.com/Ouranosinc/xclim/issues/898
https://github.com/Ouranosinc/xclim/pull/927
https://github.com/Ouranosinc/xclim/pull/934
https://github.com/Ouranosinc/xclim/issues/899
https://github.com/Ouranosinc/xclim/pull/914
https://github.com/Ouranosinc/xclim/issues/789
https://github.com/Ouranosinc/xclim/issues/790
https://github.com/Ouranosinc/xclim/issues/931
https://github.com/Ouranosinc/xclim/pull/940
https://github.com/Ouranosinc/xclim/pull/942
https://github.com/Ouranosinc/xclim/issues/807
https://github.com/Ouranosinc/xclim/pull/915

xclim Documentation, Release 0.39.0

• Added alternative method for xclim.indices.potential_evapotranspiration based on mcguinnessbor-
dne05 (from Tanguay et al. 2018). (PR/926, GH/925).

• Added snw_max and snw_max_doy indicators to compute the maximum snow amount and the day of year of the
maximum snow amount respectively. (GH/776, PR/950).

• Added index for calculating ratio of convective to total precipitation. (GH/920, PR/921).

• Added wetdays_prop indicator to calculate the proportion of days in a period where the precipitation is greater
than a threshold. (PR/919, GH/918).

14.10.3 Breaking changes

• Following version 1.9 of the CF Conventions, published in September 2021, the calendar name “gregorian” is
deprecated. core.calendar.get_calendar will return “standard”, even if the underlying cftime objects still
use “gregorian” (cftime <= 1.5.1). (PR/935).

• xclim.sdba.utils.extrapolate_qm is now deprecated and will be removed in version 0.33. (PR/941).

• Dependency pint minimum necessary version is now 0.10. (PR/959).

14.10.4 Internal changes

• Removed some logging configurations in xclim.core.dataflags that were polluting python’s main logging
configuration. (PR/909).

• Synchronized logging formatters in xclim.ensembles and xclim.core.utils. (PR/909).

• Added a helper function for generating the release notes with dynamically-generated ReStructuredText or
Markdown-formatted hyperlinks (PR/922, GH/907).

• Split of resampling-related functionality of Indicator into new ResamplingIndicator and
ResamplingIndicatorWithIndexing subclasses. The use of new (private) methods makes it easier to
inject functionality in indicator subclasses. (GH/867, PR/927, PR/934).

• French translation metadata fields are now cleaner and much more internally consistent, and many empty meta-
data fields (e.g. comment_fr) have been removed. (PR/930, GH/929).

• Adjustments to the tox builds so that slow tests are now run alongside standard tests (for more accurate coverage
reporting). (PR/938).

• Use xarray.apply_ufunc to vectorize statistical functions. (PR/943).

• Refactor of xclim.sdba.utils.interp_on_quantiles so that it now handles the extrapolation directly and
to better handle missing values. (PR/941).

• Updated heating_degree_days and fraction_over_precip_thresh documentations. (GH/952, PR/953).

• Added an intersphinx mapping to xarray. (PR/955).

• Added a CodeQL security analysis GitHub CI hook on push to master and on Friday nights. (PR/960).

14.10. v0.32.0 (2021-12-17) 337

https://github.com/Ouranosinc/xclim/pull/926
https://github.com/Ouranosinc/xclim/issues/925
https://github.com/Ouranosinc/xclim/issues/776
https://github.com/Ouranosinc/xclim/pull/950
https://github.com/Ouranosinc/xclim/issues/920
https://github.com/Ouranosinc/xclim/pull/921
https://github.com/Ouranosinc/xclim/pull/919
https://github.com/Ouranosinc/xclim/issues/918
https://github.com/Ouranosinc/xclim/pull/935
https://github.com/Ouranosinc/xclim/pull/941
https://github.com/Ouranosinc/xclim/pull/959
https://github.com/Ouranosinc/xclim/pull/909
https://github.com/Ouranosinc/xclim/pull/909
https://github.com/Ouranosinc/xclim/pull/922
https://github.com/Ouranosinc/xclim/issues/907
https://github.com/Ouranosinc/xclim/issues/867
https://github.com/Ouranosinc/xclim/pull/927
https://github.com/Ouranosinc/xclim/pull/934
https://github.com/Ouranosinc/xclim/pull/930
https://github.com/Ouranosinc/xclim/issues/929
https://github.com/Ouranosinc/xclim/pull/938
https://github.com/Ouranosinc/xclim/pull/943
https://github.com/Ouranosinc/xclim/pull/941
https://github.com/Ouranosinc/xclim/issues/952
https://github.com/Ouranosinc/xclim/pull/953
https://github.com/Ouranosinc/xclim/pull/955
https://github.com/Ouranosinc/xclim/pull/960

xclim Documentation, Release 0.39.0

14.10.5 Bug fixes

• Fix bugs in the cf_attrs and/or abstract of continuous_snow_cover_end and continuous_snow_cover_start.
(PR/908).

• Remove unnecessary keep_attrs from resample call which would raise an error in futur Xarray version. (PR/937).

• Fixed a bug in the regex that parses usernames in the history. (PR/945).

• Fixed a bug in xclim.indices.generic.doymax and xclim.indices.generic.doymin that prevented the
use of the functions on multidimensional data. (PR/950, GH/951).

• Skip all missing values in xclim.sdba.utils.interp_on_quantiles, drop them from both the old and new
coordinates, as well as from the old values. (PR/941).

• “degrees_north” and “degrees_east” (and their variants) are now considered independent units, so that pint and
xclim.core.units.ensure_cf_units don’t convert them to “deg”. (PR/959).

• Fixed a bug in xclim.core.dataflags that would misidentify the “extra” variable to be called when running
multivariate checks. (PR/957, GH/861).

14.11 v0.31.0 (2021-11-05)

Contributors to this version: Abel Aoun (@bzah), Pascal Bourgault (@aulemahal), David Huard (@huard), Juliette
Lavoie (@juliettelavoie), Travis Logan (@tlogan2000), Trevor James Smith (@Zeitsperre).

14.11.1 New indicators

• thawing_degree_days indicator returns degree-days above a default of thresh=”0 degC”. (PR/895, GH/887).

• freezing_degree_days indicator returns degree-days below a default of thresh=”0 degC”. (PR/895,
GH/887).

• Several frost-free season calculations are now available as both indices and indicators. (PR/895, GH/887):
– frost_free_season_start

– frost_free_season_end

– frost_free_season_length

• growing_season_start is now offered as an indice and as an indicator to complement other growing season-
based indicators (threshold calculation with op=”>=”). (PR/895, GH/887).

14.11.2 New features and enhancements

• Improve cell_methods checking to search the wanted method within the whole string. (PR/866, GH/863).

• New align_on='random option for xclim.core.calendar.convert_calendar, for conversions involving
‘360_day’ calendars. (PR/875, GH/841).

• dry_spell_frequency now has a parameter op: {“sum”, “max”} to choose if the threshold is compared
against the accumulated or maximal precipitation, over the given window. (PR/879).

• maximum_consecutive_frost_free_days is now checking that the minimum temperature is above or equal
to the threshold (instead of only above). (PR/883, GH/881).

• The ANUCLIM virtual module has been updated to accept weekly and monthly inputs and with improved meta-
data. (PR/885, GH/538)

338 Chapter 14. History

https://github.com/Ouranosinc/xclim/pull/908
https://github.com/Ouranosinc/xclim/pull/937
https://github.com/Ouranosinc/xclim/pull/945
https://github.com/Ouranosinc/xclim/pull/950
https://github.com/Ouranosinc/xclim/issues/951
https://github.com/Ouranosinc/xclim/pull/941
https://github.com/Ouranosinc/xclim/pull/959
https://github.com/Ouranosinc/xclim/pull/957
https://github.com/Ouranosinc/xclim/issues/861
https://github.com/bzah
https://github.com/aulemahal
https://github.com/huard
https://github.com/juliettelavoie
https://github.com/tlogan2000
https://github.com/Zeitsperre
https://github.com/Ouranosinc/xclim/pull/895
https://github.com/Ouranosinc/xclim/issues/887
https://github.com/Ouranosinc/xclim/pull/895
https://github.com/Ouranosinc/xclim/issues/887
https://github.com/Ouranosinc/xclim/pull/895
https://github.com/Ouranosinc/xclim/issues/887
https://github.com/Ouranosinc/xclim/pull/895
https://github.com/Ouranosinc/xclim/issues/887
https://github.com/Ouranosinc/xclim/pull/866
https://github.com/Ouranosinc/xclim/issues/863
https://github.com/Ouranosinc/xclim/pull/875
https://github.com/Ouranosinc/xclim/issues/841
https://github.com/Ouranosinc/xclim/pull/879
https://github.com/Ouranosinc/xclim/pull/883
https://github.com/Ouranosinc/xclim/issues/881
https://github.com/Ouranosinc/xclim/pull/885
https://github.com/Ouranosinc/xclim/issues/538

xclim Documentation, Release 0.39.0

• The sdba.loess algorithm has been optimized to run faster in all cases, with an even faster special case
(equal_spacing=True) when the x coordinate is equally spaced. When activated, this special case might
return results different from without, up to around 0.1%. (PR/865).

• Add support for group’s window and additional dimensions in LoessDetrend. Add new RollingMeanDetrend
object. (PR/865).

• Missing value algorithms now try to infer the source timestep of the input data when it is not given. (PR/885).

• On indices, bootstrap parameter documentation has been updated to explain when and why it should be used.
(PR/893, GH/846).

14.11.3 Breaking changes

• Major changes in the YAML schema for virtual submodules, now closer to how indicators are declared dynami-
cally, see the doc for details. (PR/849, GH/848).

• Removed xclim.generic.daily_downsampler, as it served no purpose now that xarray’s resampling works
with cftime (PR/888, GH/889).

• Refactor of xclim.core.calendar.parse_offset, output types were changed to useful ones (PR/885).

• Major changes on how parameters are passed to indicators. (PR/873):
– Their signature is now consistent : input variables (DataArrays, optional or not) are positional or

keyword arguments and all other parameters are keyword only. (GH/855, GH/857)

– Some indicators have modified signatures because we now rename variables when wrapping generic
indices. This is the case for the whole cf module, for example.

– Indicator.parameters is now a property generated from Indicator._all_parameters, as the
latter includes the injected parameters. The keys of the former are instances of new xclim.core.
indicator.Parameter, and not dictionaries as before.

– New Indicator.injected_parameters to see which compute function arguments will be injected
at call time.

– See the pull request (PR/873) for all information.

• The call signature for huglin_index has been modified to reflect the correct variables used in its formula (tasmin
-> tas; thresh_tasmin -> thresh). (PR/903, GH/902).

14.11.4 Internal changes

• Pull Request contributions now require hyperlinks to the issue and pull request pages on GitHub listed alongside
changess in HISTORY.rst. (PR/860, GH/854).

• Updated the contribution guidelines to better give credit to contributors and more easily track changes. (PR/869,
GH/868).

• Enabled coveralls code coverage reporting for GitHub CI. (PR/870).

• Added automated TestPyPI and PyPI-publishing workflows for GitHub CI. (PR/872).

• Changes on how indicators are constructed. (PR/873).

• Added missing algorithms tests for conversion from hourly to daily. (PR/888).

• Updated pre-commit hooks to use black v21.10.b0. (PR/896).

14.11. v0.31.0 (2021-11-05) 339

https://github.com/Ouranosinc/xclim/pull/865
https://github.com/Ouranosinc/xclim/pull/865
https://github.com/Ouranosinc/xclim/pull/885
https://github.com/Ouranosinc/xclim/pull/893
https://github.com/Ouranosinc/xclim/issues/846
https://github.com/Ouranosinc/xclim/pull/849
https://github.com/Ouranosinc/xclim/issues/848
https://github.com/Ouranosinc/xclim/pull/888
https://github.com/Ouranosinc/xclim/issues/889
https://github.com/Ouranosinc/xclim/pull/885
https://github.com/Ouranosinc/xclim/pull/873
https://github.com/Ouranosinc/xclim/issues/855
https://github.com/Ouranosinc/xclim/issues/857
https://github.com/Ouranosinc/xclim/pull/873
https://github.com/Ouranosinc/xclim/pull/903
https://github.com/Ouranosinc/xclim/issues/902
https://github.com/Ouranosinc/xclim/pull/860
https://github.com/Ouranosinc/xclim/issues/854
https://github.com/Ouranosinc/xclim/pull/869
https://github.com/Ouranosinc/xclim/issues/868
https://github.com/Ouranosinc/xclim/pull/870
https://github.com/Ouranosinc/xclim/pull/872
https://github.com/Ouranosinc/xclim/pull/873
https://github.com/Ouranosinc/xclim/pull/888
https://github.com/Ouranosinc/xclim/pull/896

xclim Documentation, Release 0.39.0

• Moved stack_variables, unstack_variables, construct_moving_yearly_window and
unpack_moving_yearly_window from xclim.sdba.base to xclim.sdba.processing. They still
are imported in xclim.sdba as before. (PR/892).

• Many improvements to the documentation. (PR/892, GH/880).

• Added regex replacement handling in setup.py to facilitate publishing contributor/contribution links on PyPI.
(PR/906).

14.11.5 Bug fixes

• Fix a bug in bootstrapping where computation would fail when the dataset time coordinate is encoded using
cftime.datetime. (PR/859).

• Fix a bug in build_indicator_module_from_yaml where bases classes (Daily, Hourly, etc) were not usable
with the base field. (PR/885).

• percentile_doy alpha and beta parameters are now properly transmitted to bootstrap calls of this function.
(PR/893, GH/846).

• When called with a 1D da and ND index, xclim.indices.run_length.lazy_indexing now drops the aux-
iliary coordinate corresponding to da’s index. This fixes a bug with ND data in xclim.indices.run_length.
season. (PR/900).

• Fix name of heating degree days in French (“chauffe” -> “chauffage”). (PR/895).

• Corrected several French indicator translation description strings (bad usages of “.” in description and
long_name fields). (PR/895).

• Fixed an error with the formula for huglin_index where tasmin was being used in the calculation instead of
tas. (PR/903, GH/902).

14.12 v0.30.1 (2021-10-01)

14.12.1 Bug fixes

• Fix a bug in xclim.sdba’s map_groups where 1D input including an auxiliary coordinate would fail with an
obscure error on a reducing operation.

14.13 v0.30.0 (2021-09-28)

14.13.1 New indicators

• climatological_mean_doy indice returns the mean and standard deviation across a climatology according to
day-of-year (xarray.DataArray.groupby(“time.dayofyear”)). A moving window averaging of days can also be
supplied (default:window=1).

• within_bnds_doy indice returns a boolean array indicating whether or not array’s values are within bounds for
each day of the year.

• Added atmos.wet_precip_accumulation, an indicator accumulating precipitation over wet days.

• Module ICCLIM now includes PRCPTOT, which accumulates precipitation for days with precipitation above 1
mm/day.

340 Chapter 14. History

https://github.com/Ouranosinc/xclim/pull/892
https://github.com/Ouranosinc/xclim/pull/892
https://github.com/Ouranosinc/xclim/issues/880
https://github.com/Ouranosinc/xclim/pull/906
https://github.com/Ouranosinc/xclim/pull/859
https://github.com/Ouranosinc/xclim/pull/885
https://github.com/Ouranosinc/xclim/pull/893
https://github.com/Ouranosinc/xclim/issues/846
https://github.com/Ouranosinc/xclim/pull/900
https://github.com/Ouranosinc/xclim/pull/895
https://github.com/Ouranosinc/xclim/pull/895
https://github.com/Ouranosinc/xclim/pull/903
https://github.com/Ouranosinc/xclim/issues/902

xclim Documentation, Release 0.39.0

14.13.2 New features and enhancements

• xclim.core.utils.nan_calc_percentiles now uses a custom algorithm instead of numpy.
nanpercentiles to have more flexibility on the interpolation method. The performance is also improved.

• xclim.core.calendar.percentile_doy now uses the 8th method of Hyndman & Fan for linear interpolation
(alpha = beta = 1/3). Previously, the function used Numpy’s percentile, which corresponds to the 7th method.
This change is motivated by the fact that the 8th is recommended by Hyndman & Fay and it ensures consistency
with other climate indices packages (climdex, icclim). Using alpha = beta = 1 restores the previous behaviour.

• xclim.core.utils._cal_perc is now only a proxy for xc.core.utils.nan_calc_percentiles with
some axis moves.

• xclim now implements many data quality assurance flags (xclim.core.dataflags) for temperature and
precipitation based on ICCLIM documentation guidelines. These checks include the following:

– Temperature (variables: tas, tasmin, tasmax): tasmax_below_tasmin,
tas_exceeds_tasmax, tas_below_tasmin, temperature_extremely_low (thresh=”-90
degC”), temperature_extremely_high (thresh=”60 degC”).

– Precipitation-specific (variables: pr, prsn,): negative_accumulation_values,
very_large_precipitation_events (thresh=”300 mm d-1”).

– Wind-specific (variables: sfcWind, wsgsmax/sfcWindMax): wind_values_outside_of_bounds

– Generic: outside_n_standard_deviations_of_climatology,
values_repeating_for_n_or_more_days, values_op_thresh_repeating_for_n_or_more_days,
percentage_values_outside_of_bounds.

These quality-assurance checks are selected according to CF-standard variable names, and can be triggered
via xclim.core.dataflags.data_flags(xarray.DataArray, xarray.Dataset). These checks
are separate from the Indicator-defined datachecks and must be launched manually. They’ll return an array
of data_flags as boolean variables. If called with raise_flags=True, will raise an Exception with comments
for each quality control check raised.

• A convenience function (xclim.core.dataflags.ecad_compliant) is also offered as a method for assert-
ing that data adheres to all relevant ECAD/ICCLIM checks. For more information on usage, consult the doc-
string/documentation.

• A new utility “dataflags” is also available for performing fast quality control checks from the command-line
(xclim dataflags –help). See the CLI documentation page for usage examples.

• Added missing typed call signatures, expected returns and docstrings for many xclim.core.calendar func-
tions.

14.13.3 Breaking changes

• All “ANUCLIM” indices and indicators have lost their src_timestep argument. Most of them were not using it
and now every function infers the frequency from the data directly. This may add stricter constraints on the time
coordinate, the same as for xarray.infer_freq.

• Many functions found within xclim.core.cfchecks (generate_cfcheck and check_valid_*) have been
removed as existing indicator CF-standard checks and data checks rendered them redundant/obsolete.

14.13. v0.30.0 (2021-09-28) 341

https://www.ecad.eu/documents/atbd.pdf

xclim Documentation, Release 0.39.0

14.13.4 Bug fixes

• Fixes in sdba for (1) inputs with dimensions without coordinates, for (2) sdba.detrending.MeanDetrend and
for (3) DetrendedQuantileMapping when used with dask’s distributed scheduler.

• Replaced instances of ‘◦’ (“White bullet”) with ‘°’ (“Degree Sign”) in icclim.yaml as it was causing issues for
non-UTF8 environments.

• Addressed an edge case where test_sdba::test_standardize randomness could generate values that sur-
pass the test error tolerance.

• Added a missing .txt file to the MANIFEST of the source distributable in order to be able to run all tests.

• xc.core.units.rate2amount is now exact when the sampling frequency is monthly, seasonal or yearly. Ear-
lier, monthly and yearly data were computed using constant month and year length. End-of-period frequencies
are also correctly understood (ex: “M” vs “MS”).

• In the potential_evapotranspiration indice, add abbreviated method names to docstring.

• Fixed an issue that prevented using the default group arg in adjustment objects.

• Fix bug in missing_wmo, where a period would be considered valid if all months met WMO criteria, but com-
plete months in a year were missing. Now if any month does not meet criteria or is absent, the period will be
considered missing.

• Fix bootstrapping with dask arrays. Dask does not support using loc with multiple indexes to set new values so
a workaround was necessary.

• Fix bootstrapping when the bootstrapped year must be converted to a 366_day calendar.

• Virtual modules and translations now use ‘UTF-8’ by default when reading yaml or json file, instead of a machine-
dependent encoding.

14.13.5 Internal Changes

• xclim code quality checks now use the newest black (v21.8-beta). Checks launched via tox and pre-commit now
run formatting modifications over Jupyter notebooks found under docs.

14.14 v0.29.0 (2021-08-30)

14.14.1 Announcements

• It was found that the ExtremeValues adjustment algorithm was not as accurate and stable as first thought. It is
now hidden from xclim.sdba but can still be accessed via xclim.sdba.adjustment, with a warning. Work
on improving the algorithm is ongoing, and a better implementation will be in a future version.

• It was found that the add_dims argument of sdba.Grouper had some caveats throughout sdba. This argument
is to be used with care before a careful analysis and more testing is done within xclim.

342 Chapter 14. History

xclim Documentation, Release 0.39.0

14.14.2 Breaking changes

• xclim has switched back to updating the history attribute (instead of xclim_history). This impacts all indi-
cators, most ensemble functions, percentile_doy and sdba.processing (see below).

• Refactor of sdba.processing. Now all functions take one or more DataArrays as input, plus some parame-
ters. And output one or more dataarrays (not Datasets). Units and metadata is handled. This impacts sdba.
processing.adapt_freq especially.

• Add unit handling in sdba. Most parameters involving quantities are now expecting strings (and not numbers).
Adjustment objects will ensure ref, hist and sim all have the same units (taking ref as reference).

• The Adjustment` classes of xclim.sdba have been refactored into 2 categories:

– TrainAdjust objects (most of the algorithms), which are created and trained in the same call: obj =
Adj.train(ref, hist, **kwargs). The .adjust step stays the same.

– Adjust objects (only NpdfTransform), which are never initialized. Their adjust class method performs
all the work in one call.

• snowfall_approximation used a “<” condition instead of “<=” to determine the snow fraction based on the
freezing point temperature. The new version sticks to the convention used in the Canadian Land Surface Scheme
(CLASS).

• Removed the “gis”, “docs”, “test” and “setup”`extra dependencies from ``setup.py`. The dev recipe now
includes all tools needed for xclim’s development.

14.14.3 New features and enhancements

• snowfall_approximation has gained support for new estimation methods used in CLASS: ‘brown’ and ‘auer’.

• A ValidationError will be raised if temperature units are given as ‘deg C’, which is misinterpreted by pint.

• Functions computing run lengths (sequences of consecutive “True” values) now take the index argument. Pos-
sible values are first and last, indicating which item in the run should be used to index the run length. The
default is set to “first”, preserving the current behavior.

• New sdba_encode_cf option to workaround a cftime/xarray performance issue when using dask.

14.14.4 New indicators

• effective_growing_degree_days indice returns growing degree days using dynamic start and end dates for
the growing season (based on Bootsma et al. (2005)). This has also been wrapped as an indicator.

• qian_weighted_mean_average (based on Qian et al. (2010)) is offered as an alternate method for determining
the start date using a weighted 5-day average (method="qian"). Can also be used directly as an indice.

• cold_and_dry_days indicator returns the number of days where the mean daily temperature is below the 25th
percentile and the mean daily precipitation is below the 25th percentile over period. Added as CD indicator to
ICCLIM module.

• warm_and_dry_days indicator returns the number of days where the mean daily temperature is above the 75th
percentile and the mean daily precipitation is below the 25th percentile over period. Added as WD indicator to
ICCLIM module.

• warm_and_wet_days indicator returns the number of days where the mean daily temperature is above the 75th
percentile and the mean daily precipitation is above the 75th percentile over period. Added as WW indicator to
ICCLIM module.

14.14. v0.29.0 (2021-08-30) 343

xclim Documentation, Release 0.39.0

• cold_and_wet_days indicator returns the number of days where the mean daily temperature is below the 25th
percentile and the mean daily precipitation is above the 75th percentile over period. Added as CW indicator to
ICCLIM module.

• calm_days indicator returns the number of days where surface wind speed is below threshold.

• windy_days indicator returns the number of days where surface wind speed is above threshold.

14.14.5 Bug fixes

• Various bug fixes in bootstrapping:
– in percentile_bootstrap decorator, fix the popping of bootstrap argument to propagate in to the

function call.

– in bootstrap_func, fix some issues with the resampling frequency which was not working when
anchored.

• Made argument thresh of sdba.LOCI required, as not giving it raised an error. Made defaults explicit in the
adjustments docstrings.

• Fixes in sdba.processing.adapt_freq and sdba.nbutils.vecquantiles when handling all-nan slices.

• Dimensions in a grouper’s add_dims are now taken into consideration in function wrapped with map_blocks/
groups. This feature is still not fully tested throughout sdba though, so use with caution.

• Better dtype preservation throughout sdba.

• “constant” extrapolation in the quantile mappings’ adjustment is now padding values just above and under the
target’s max and min, instead of ±np.inf.

• Fixes in sdba.LOCI for the case where a grouping with additionnal dimensions is used.

14.14.6 Internal Changes

• The behaviour of xclim.testing._utils.getfile was adjusted to launch file download requests for web-
hosted md5 files for every call to compare against local test data. This was done to validate that locally-stored test
data is identical to test data available online, without resorting to git-based actions. This approach may eventually
be revised/optimized in the future.

14.15 v0.28.1 (2021-07-29)

14.15.1 Announcements

• The xclim binary package available on conda-forge will no longer supply clisops by default. Installation of
clisops must be performed explicitly to preserve subsetting and bias correction capabilities.

344 Chapter 14. History

xclim Documentation, Release 0.39.0

14.15.2 New indicators

• snow_depth indicator returns the mean snow depth over period. Added as SD to ICCLIM module.

14.15.3 Internal Changes

• Minor modifications to many function call signatures (type hinting) and docstrings (numpy docstring compli-
ance).

14.16 v0.28.0 (2021-07-07)

14.16.1 New features and enhancements

• Automatic load of translations on import and possibility to pass translations for virtual modules.

• New xclim.testing.list_datasets function listing all available test datasets in repo xclim-testdata.

• spatial_analogs accepts multi-indexes as the dist_dim parameter and will work with candidates and target
arrays of different lengths.

• humidex can be computed using relative humidity instead of dewpoint temperature.

• New sdba.construct_moving_yearly_window and sdba.unpack_moving_yearly_window for moving
window adjustments.

• New sdba.adjustment.NpdfTransform which is an adaptation of Alex Cannon’s version of Pitié’s N-
dimensional probability density function transform. Uses new sdba.utils.rand_rot_matrix. Experimental,
subject to changes.

• New sdba.processing.standardize, .unstandardize and .reordering. All of them, tools needed to
replicate Cannon’s MBCn algorithm.

• New sdba.processing.escore, backed by sdba.nbutils._escore to evaluate the performance of the N
pdf transform.

• New function xclim.indices.clausius_clapeyron_scaled_precipitation can be used to scale precip-
itation according to changes in mean temperature.

• Percentile based indices gained a bootstrap argument that applies a bootstrapping algorithm to reduce biases
on exceedance frequencies computed over in base and out of base periods. Experimental, subject to changes.

• Added a .zenodo.json file for collecting and maintaining author order and tracking ORCIDs.

14.16.2 Bug fixes

• Various bug fixes in sdba :

– in QDM.adjust, fix bug occurring with coords of ‘object’ dtype and interp='nearest'.

– in nbutils.quantiles, fix dtype bug when using float32 data.

– raise a proper error when ref and hist have a different calendar for map_blocks-backed adjustments.

14.16. v0.28.0 (2021-07-07) 345

xclim Documentation, Release 0.39.0

14.16.3 Breaking changes

• spatial_analogs does not support sequence of dist_dim anymore. Users are responsible for stacking di-
mensions prior to calling spatial_analogs.

14.16.4 New indicators

• biologically_effective_degree_days (with method="gladstones") indice computes degree-days be-
tween two specific dates, with a capped daily max value as well as latitude and temperature range swing as
modifying coefficients (based on Gladstones, J. (1992)). This has also been wrapped as an indicator.

• An alternative implementation of biologically_effective_degree_days (with method="icclim", based
on ICCLIM formula) ignores latitude and temperature range swing modifiers and uses an alternate end_date.
Wrapped and available as an ICCLIM indicator.

• cool_night_index indice returns the mean minimum temperature in September (lat >= 0 deg N) or March
(lat < 0 deg N), based on Tonietto & Carbonneau, 2004 (10.1016/j.agrformet.2003.06.001). Also available as
an indicator (see indices Notes section on indicator usage recommendations).

• latitude_temperature_index indice computes LTI values based on mean temperature of warmest month
and a parameterizable latitude coefficient (default: lat_factor=75) based on Jackson & Cherry, 1988, and
Kenny & Shao, 1992 (10.1080/00221589.1992.11516243). This has also been wrapped as an indicator.

• huglin_index indice computes Huglin Heliothermal Index (HI) values based on growing degrees and a latitude-
influenced coefficient for day-length (based on Huglin. (1978)). The indice supports several methods of estimat-
ing the latitude coefficient:

– method="smoothed": Marks latitudes between -40 N and 40 N with k=1, and linearly increases to k=1.06
at |lat|==50.

– method="icclim": Uses a stepwise function based on the the original method as presented by Huglin
(1978). Identical to the ICCLIM implementation.

– method="jones": Uses a more robust calculation for calculating day-lengths, based on Hall & Jones
(2010). This method is now also available for biologically_effective_degree_days.

• The generic indice day_length, used for calculating approximate daily day-length in hours per day or, given
start_date and end_date, the total aggregated day-hours over period. Uses axial tilt, start and end dates,
calendar, and approximate date of northern hemisphere summer solstice, based on Hall & Jones (2010).

14.16.5 Internal Changes

• aggregate_between_dates (introduced in v0.27.0) now accepts DayOfYear-like strings for supplying start
and end dates (e.g. start="02-01", end="10-31").

• The indicator call sequence now considers “variable” the inputs annoted so. Dropped the nvar attribute.

• Default cfcheck is now to check metadata according to the variable name, using CMIP6 names in
xclim/data/variable.yml.

• Indicator.missing defaults to “skip” if freq is absent from the list of parameters.

• Minor modifications to the GitHub Pull Requests template.

• Simplification of some yaml elements for virtual modules.

• Allow injecting freq without the missing checks failing.

346 Chapter 14. History

xclim Documentation, Release 0.39.0

14.17 v0.27.0 (2021-05-28)

14.17.1 New features and enhancements

• Rewrite of nearly all adjustment methods in sdba, with use of xr.map_blocks to improve scalability with dask.
Rewrite of some parts of the algorithms with numba-accelerated code.

• “GFWED” specifics for fire weather computation implemented back into the FWI module. Outputs are within
3% of GFWED data.

• Addition of the run_length_ufunc option to control which run length algorithm gets run. Defaults stay the same
(automatic switch dependent of the input array : the 1D version is used with non-dask arrays with less than 9000
points per slice).

• Indicator modules built from YAML can now use custom indices. A mapping or module of them can be given
to build_indicator_module_from_yaml with the indices keyword.

• Virtual submodules now include an iter_indicators function to iterate over the pairs of names and indicator
objects in that module.

• The indicator string formatter now accepts a “r” modifier which passes the raw strings instead of the adjective
version.

• Addition of the sdba_extra_output option to adds extra diagnostic variables to the outputs of Adjustment objects.
Implementation of sim_q in QuantileDeltaMapping and nclusters in ExtremeValues.

14.17.2 Breaking changes

• The tropical_nights indice is being deprecated in favour of tn_days_above with thresh="20 degC". The indi-
cator remains valid, now wrapping this new indice.

• Results of sdba.Grouper.apply for Grouper``s without a group (ex: ``Grouper('time')) will
contain a group singleton dimension.

• The daily_freezethaw_cycles indice is being deprecated in favour of multiday_temperature_swingwith temp
thresholds at 0 degC and window=1, op="sum". The indicator remains valid, now wrapping this new indice.

• CMIP6 variable names have been adopted whenever possible in xclim. Changes are:

– swe is now snw (snw is the snow amount [kg / m2] and swe the liquid water equivalent thickness [m])

– rh is now hurs

– dtas is now tdps

– ws (in FWI) is now sfcWind

– sic is now siconc

– area (of sea ice indicators) is now areacello

– Indicators RH and RH_FROMDEWPOINT have be renamed to HURS and HURS_FROMDEWPOINT. These are
changes in the _identifiers_, the python names (relative_humidity[...]) are unchanged.

14.17. v0.27.0 (2021-05-28) 347

xclim Documentation, Release 0.39.0

14.17.3 New indicators

• atmos.corn_heat_units computes the daily temperature-based index for corn growth.

• New indices and indicators for tx_days_below, tg_days_above, tg_days_below, and tn_days_above.

• atmos.humidex returns the Canadian humidex, an indicator of perceived temperature account for relative humid-
ity.

• multiday_temperature_swing indice for returning general statistics based on spells of doubly-thresholded tem-
peratures (Tmin < T1, Tmax > T2).

• New indicators atmos.freezethaw_frequency, atmos.freezethaw_spell_mean_length, at-
mos.freezethaw_spell_max_length for statistics of Tmin < 0 degC and Tmax > 0 deg C days now available
(wrapped from multiday_temperature_swing).

• atmos.wind_chill_index computes the daily wind chill index. The default is similar to what Environment and
Climate Change Canada does, options are tunable to get the version of the National Weather Service.

14.17.4 Internal Changes

• run_length.rle_statistics now accepts a window argument.

• Common arguments to the op parameter now have better adjective and noun formattings.

• Added and adjusted typing in call signatures and docstrings, with grammar fixes, for many xclim.indices opera-
tions.

• Added internal function aggregate_between_dates for array aggregation operations using xarray datetime
arrays with start and end DayOfYear values.

14.18 v0.26.1 (2021-05-04)

• Bug fix release adding ExtremeValues to publicly exposed bias-adjustment methods.

14.19 v0.26.0 (2021-04-30)

14.19.1 Announcements

• xclim no longer supports Python3.6. Code conventions and new features from Python3.7 (PEP 537 Features) are
now accepted.

14.19.2 New features and enhancements

• core.calendar.doy_to_days_since and days_since_to_doy to allow meaningful statistics on doy data.

• New bias second-order adjustment method “ExtremeValues”, intended for re-adjusting extreme precipitation
values.

• Virtual indicators modules can now be built from YAML files.

• Indicators can now be built from dictionaries.

• New generic indices, implementation of clix-meta’s index functions.

348 Chapter 14. History

https://peps.python.org/pep-0537/#features-for-3-7

xclim Documentation, Release 0.39.0

• On-the-fly generation of climate and forecasting convention (CF) checks with xc.core.cfchecks.generate_cfcheck,
for a few known variables only.

• New xc.indices.run_length.rle_statistics for min, max, mean, std (etc) statistics on run lengths.

• New virtual submodule cf, with CF standard indices defined in clix-meta.

• Indices returning day-of-year data add two new attributes to the output: is_dayofyear (=1) and calendar.

14.19.3 Breaking changes

• xclim now requires xarray>=0.17.

• Virtual submodules icclim and anuclim are not available at the top level anymore (only through xclim.indicators).

• Virtual submodules icclim and anuclim now provide Indicators and not indices.

• Spatial analog methods “KLDIV” and “Nearest Neighbor” now require scipy>=1.6.0.

14.19.4 Bug fixes

• from_string object creation in sdba has been removed. Now replaced with use of a new dependency, jsonpickle.

14.19.5 Internal Changes

• pre-commit linting checks now run formatting hook black==21.4b2.

• Code cleaning (more accurate call signatures, more use of https links, docstring updates, and typo fixes).

14.20 v0.25.0 (2021-03-31)

14.20.1 Announcements

• Deprecation: Release 0.25.0 of xclim will be the last version to explicitly support Python3.6 and xarray<0.17.0.

14.20.2 New indicators

• land.winter_storm computes days with snow accumulation over threshold.

• land.blowing_snow computes days with both snow accumulation over last days and high wind speeds.

• land.snow_melt_we_max computes the maximum snow melt over n days, and land.melt_and_precip_max the
maximum combined snow melt and precipitation.

• snd_max_doy returns the day of the year where snow depth reaches its maximum value.

• atmos.high_precip_low_temp returns days with freezing rain conditions (low temperature and precipitations).

• land.snow_cover_duration computes the number of days snow depth exceeds some minimal threshold.

• land.continuous_snow_cover_start and land.continuous_snow_cover_end identify the day of the year when
snow depth crosses a threshold for a given period of time.

• days_with_snow, counts days with snow between low and high thresholds, e.g. days with high amount of snow
(indice and indicator available).

14.20. v0.25.0 (2021-03-31) 349

https://github.com/clix-meta/clix-meta

xclim Documentation, Release 0.39.0

• fire_season, creates a fire season mask from temperature and, optionally, snow depth time-series.

14.20.3 New features and enhancements

• generic.count_domain counts values within low and high thresholds.

• run_length.season returns a dataset storing the start, end and length of a season.

• Fire Weather indices now support dask-backed data.

• Objects from the xclim.sdba submodule can be created from their string repr or from the dataset they created.

• Fire Weather Index submodule replicates the R code of cffdrs, including fire season determination and overwin-
tering of the drought_code.

• New run_bounds and keep_longest_run utilities in xclim.indices.run_length.

• New bias-adjustment method: PrincipalComponent (based on Hnilica et al. 2017 https://doi.org/10.1002/joc.
4890).

14.20.4 Internal changes

• Small changes in the output of indices.run_length.rle.

14.21 v0.24.0 (2021-03-01)

14.21.1 New indicators

• days_over_precip_thresh, fraction_over_precip_thresh, liquid_precip_ratio, warm_spell_duration_index, all
from eponymous indices.

• maximum_consecutive_warm_days from indice maximum_consecutive_tx_days.

14.21.2 Breaking changes

• Numerous changes to xclim.core.calendar.percentile_doy:

– per now accepts a sequence as well as a scalar and as such the output has a percentiles axis.

– per argument is now expected to between 0-100 (not 0-1).

– input data must have a daily (or coarser) time frequency.

• Change in unit handling paradigm for indices, which as a result will lead to some indices returning values with
different units. Note that related Indicator objects remain unchanged and will return units consistent with CF
Convention. If you are concerned with code stability, please use Indicator objects. The change was necessary to
resolve inconsistencies with xarray’s keep_attrs=True context.

– Indice functions now return output units that preserve consistency with input units. That is, feeding inputs
in Celsius will yield outputs in Celsius instead of casting to Kelvin. In all cases the dimensionality is
preserved.

– Indice functions now accept non-daily data, but daily frequency is assumed by default if the frequency
cannot be inferred.

350 Chapter 14. History

https://doi.org/10.1002/joc.4890
https://doi.org/10.1002/joc.4890

xclim Documentation, Release 0.39.0

• Removed the explicitly-installed netCDF4 python library from the base installation, as this is never explicitly
used (now only installed in the docs recipe for sdba documented example).

• Removed xclim.core.checks, which was deprecated since v0.18.

14.21.3 New features and enhancements

• Indicator now have docstrings generated from their metadata.

• Units and fixed choices set are parsed from indice docstrings into Indicator.parameters.

• Units of indices using the declare_units decorator are stored in indice.in_units and indice.out_units.

• Changes to Indicator.format and Indicator.json to ensure the resulting json really is serializable.

14.21.4 Internal changes

• Leave missing_options undefined in land.fit indicator to allow control via set_options.

• Modified xclim.core.calendar.percentile_doy to improve performance.

• New xclim.core.calendar.compare_offsets for comparing offset strings.

• New xclim.indices.generic.get_op to retrieve a function from a string representation of that operator.

• The CI pipeline has been migrated from Travis CI to GitHub Actions. All stages are still built using tox.

• Indice functions must always set the units (the declare_units decorator does no check anymore).

• New xclim.core.units.rate2amout to convert rates like precipitation to amounts.

• xclim.core.units.pint2cfunits now removes ‘ * ‘ symbols and changes ° to delta_deg.

• New xclim.core.units.to_agg_units and xclim.core.units.infer_sampling_units for unit handling involving aggre-
gation operations along the time dimension.

• Added an indicators API page to the docs and links to there from the Climate Indicators page.

14.21.5 Bug fixes

• The unit handling change resolved a bug that prevented the use of xr.set_options(keep_attrs=True) with indices.

14.22 v0.23.0 (2021-01-22)

14.22.1 Breaking changes

• Renamed indicator atmos.degree_days_depassment_date to atmos.degree_days_exceedance_date.

• In degree_days_exceedance_date : renamed argument start_date to after_date.

• Added cfchecks for Pr+Tas-based indicators.

• Refactored test suite to now be available as part of the standard library installation (xclim.testing.tests).

• Running pytest with xdoctest now requires the rootdir to point at tests location (pytest –rootdir xclim/testing/tests/
–xdoctest xclim).

• Development checks now require working jupyter notebooks (assessed via the pytest –nbval command).

14.22. v0.23.0 (2021-01-22) 351

xclim Documentation, Release 0.39.0

14.22.2 New indicators

• rain_approximation and snowfall_approximation for computing prlp and prsn from pr and tas (or tasmin or
tasmax) according to some threshold and method.

• solid_precip_accumulation and liquid_precip_accumulation now accept a thresh parameter to control the binary
snow/rain temperature threshold.

• first_snowfall and last_snowfall to compute the date of first/last snowfall exceeding a threshold in a period.

14.22.3 New features and enhancements

• New kind entry in the parameters property of indicators, differentiating between [optional] variables and param-
eters.

• The git pre-commit hooks (pre-commit run –all) now clean the jupyter notebooks with nbstripout call.

14.22.4 Bug fixes

• Fixed a bug in indices.run_length.lazy_indexing that occurred with 1D coords and 0D indexes when using the
dask backend.

• Fixed a bug with default frequency handling affecting fit indicator.

• Set missing method to ‘skip’ for freq_analysis indicator.

• Fixed a bug in ensembles._ens_align_datasets that occurred when inputs are .nc filepaths but files lack a time
dimension.

14.22.5 Internal changes

• core.cfchecks.check_valid now accepts a sequence of strings as its expected argument.

• Clean up in the tests to speed up testing. Addition of a marker to include “slow” tests when desired (-m slow).

• Fixes in the tests to support sklearn>=0.24, clisops>=0.5 and build xarray@master against python 3.7.

• Moved the testing suite to within xclim and simplified tox to manage its own tempdir.

• Indicator class now has a default_freq method.

14.23 v0.22.0 (2020-12-07)

14.23.1 Breaking changes

• Statistical functions (frequency_analysis, fa, fit, parametric_quantile) are now solely accessible via indices.stats.

352 Chapter 14. History

mailto:xarray@master

xclim Documentation, Release 0.39.0

14.23.2 New indicators

• atmos.degree_days_depassment_date, the day of year when the degree days sum exceeds a threshold.

14.23.3 New features and enhancements

• Added unique titles to atmos calculations employing wrapped_partials.

• xclim.core.calendar.convert_calendar now accepts a missing argument.

• Added xclim.core.calendar.date_range and xclim.core.calendar.date_range_like wrapping pandas’ date_range
and xarray’s cftime_range.

• xclim.core.calendar.get_calendar now accepts many different types of data, including datetime object directly.

• New module xclim.analog and method xclim.analog.spatial_analogs to compute spatial analogs.

• Indicators can now accept dataset in their new ds call argument. Variable arguments (that use the DataArray
annotation) can now be given with strings that correspond to variable names in the dataset, and default to their
own name.

• Clarification to frequency_analysis notebook.

• Now officially supporting PEP596 (Python3.9).

• New methods xclim.ensembles.change_significance and xclim.ensembles.knutti_sedlacek to qualify climate
change agreement among members of an ensemble.

14.23.4 Bug fixes

• Fixed bug that prevented the use of xclim.core.missing.MissingBase and subclasses with an indexer and a cftime
datetime coordinate.

• Fixed issues with metadata handling in statistical indices.

• Various small fixes to the documentation (re-establishment of some internally and externally linked documents).

14.23.5 Internal changes

• Passing align_on to xclim.core.calendar.convert_calendar without using ‘360_day’ calendars will not raise a
warning anymore.

• Added formatting utilities for metadata attributes (update_cell_methods, prefix_attrs and unprefix_attrs).

• xclim/ensembles.py moved to xclim/ensembles/*.py, splitting stats/creation, reduction and robustness methods.

• With the help of the mypy library, added several typing fixes to better identify inputs/outputs, and reduce object
type mutations.

• Fixed some doctests in ensembles and set_options.

• clisops v0.4.0+ is now an optional requirements for non-Windows builds.

• New xclim.core.units.str2pint method to convert quantity strings to quantity objects. Main improvement is to
make “3 degC days” a valid string that converts to “3 K days”.

14.23. v0.22.0 (2020-12-07) 353

xclim Documentation, Release 0.39.0

14.24 v0.21.0 (2020-10-23)

14.24.1 Breaking changes

• Statistical functions (frequency_analysis, fa, fit, parametric_quantile) moved from indices.generic to indices.stats
to make them more visible.

14.24.2 New indicators

14.24.3 New features and enhancements

• New xclim.testing.open_dataset method to read data from the remote testdata repo.

• Added a notebook, ensembles-advanced.ipynb, to the documentation detailing ensemble reduction techniques
and showing how to make use of built-in figure-generating commands.

• Added a notebook, frequency_analysis.ipynb, with examples showcasing frequency analysis capabilities.

14.24.4 Bug fixes

• Fixed a bug in the attributes of frost_season_length.

• indices.run_length methods using dates now respect the array’s calendar.

• Worked around an xarray bug in sdba.QuantileDeltaMapping when multidimensional arrays are used with linear
or cubic interpolation.

14.24.5 Internal changes

14.25 v0.20.0 (2020-09-18)

14.25.1 Breaking changes

• xclim.subset has been deprecated and now relies on clisops to perform specialized spatio-temporal subsetting.
Install with pip install xclim[gis] in order to retain the same functionality.

• The python library pandoc is no longer listed as a docs build requirement. Documentation still requires a current
version of pandoc binaries installed at system-level.

• ANUCLIM indices have seen their input_freq parameter renamed to src_timestep for clarity.

• A clean-up and harmonization of the indicators metadata has changed some of the indicator identifiers,
long_names, abstracts and titles. xclim.atmos.drought_code and fire_weather_indexes now have indentifiers “dc”
and “fwi” (lowercase version of the previous identifiers).

• xc.indices.run_length.run_length_with_dates becomes xc.indices.run_length.season_length. Its argument date
is now optional and the default changes from “07-01” to None.

• xc.indices.consecutive_frost_days becomes xc.indices.maximum_consecutive_frost_days.

• Changed the history indicator output attribute to xclim_history in order to respect CF conventions.

354 Chapter 14. History

xclim Documentation, Release 0.39.0

14.25.2 New indicators

• atmos.max_pr_intensity acting on hourly data.

• atmos.wind_vector_from_speed, also the wind_speed_from_vector now also returns the “wind from direction”.

• Richards-Baker flow flashiness indicator (xclim.land.rb_flashiness_index).

• atmos.max_daily_temperature_range.

• atmos.cold_spell_frequency.

• atmos.tg_min and atmos.tg_max.

• atmos.frost_season_length, atmos.first_day_above. Also, atmos.consecutive_frost_days now takes a thresh ar-
gument (default : 0 degC).

14.25.3 New features and enhancements

• sdba.loess submodule implementing LOESS smoothing tools used in sdba.detrending.LoessDetrend.

• xclim now depends on clisops for subsetting, offloading several heavy GIS dependencies. This improves main-
tainability and reduces the size of a “vanilla” xclim installation considerably.

• New generic.parametric_quantile function taking parameters estimated by generic.fit as an input.

• Add support for using probability weighted moments method in generic.fit function. Requires the lmoments3
package, which is not included in dependencies because it is unmaintained. Install manually if needed.

• Implemented _fit_start utility function providing initial conditions for statistical distribution parameters estima-
tion, reducing the likelihood of poor fits.

• Added support for indicators based on hourly (1H) inputs, and a first hourly indicator called max_pr_intensity
returning hourly precipitation intensity.

• Indicator instances can be retrieved through their class with the get_instance() class method. This allows the use
of xclim.core.indicator.registry as an instance registry.

• Indicators now have a realm attribute. It must be given when creating indicators outside xclim.

• Better docstring parsing for indicators: parameters description, annotation and default value are accessible in the
json output and Indicator.parameters.

• New command line interface xclim for simple indicator computing tasks.

• New sdba.processing.jitter_over_thresh for variables with a upper bound.

• Added op parameter to xclim.indices.daily_temperature_range to allow resample reduce operations other than
mean

• core.formatting.AttrFormatter (and thus, locale dictionaries) can now use glob-like pattern for matching values
to translate.

14.25. v0.20.0 (2020-09-18) 355

xclim Documentation, Release 0.39.0

14.25.4 Bug fixes

The ICCLIM module was identified as icclim in the documentation but the module available under ICCLIM. Now
icclim == ICCLIM and ICCLIM will be deprecated in a future release.

14.25.5 Internal changes

• xclim.subset now attempts to load and expose the functions of clisops.core.subset. This is an API workaround
preserving backwards compatibility.

• Code styling now conforms to the latest release of black (v0.20.8).

• New IndicatorRegistrar class that takes care of adding indicator classes and instances to the appropriate registries.
Indicator now inherits from it.

14.26 v0.19.0 (2020-08-18)

14.26.1 Breaking changes

• Refactoring of the Indicator class. The cfprobe method has been renamed to cfcheck and the validate method
has been renamed to datacheck. More importantly, instantiating Indicator creates a new subclass on the fly and
stores it in a registry, allowing users to subclass existing indicators easily. The algorithm for missing values is
identified by its registered name, e.g. “any”, “pct”, etc, along with its missing_options.

• xclim now requires xarray >= 0.16, ensuring that xclim.sdba is fully functional.

• The dev requirements now include xdoctest – a rewrite of the standard library module, doctest.

• xclim.core.locales.get_local_attrs now uses the indicator’s class name instead of the indicator itself and no longer
accepts the fill_missing keyword. Behaviour is now the same as passing False.

• Indicator.cf_attrs is now a list of dictionaries. Indicator.json puts all the metadata attributes in the key “outputs”
(a list of dicts). All variable metadata (names in Indicator._cf_names) might be strings or lists of strings when
accessed as object attributes.

• Passing doctests are now strictly enforced as a build requirement in the Travis CI testing ensemble.

14.26.2 New features and enhancements

• New ensembles.kkz_reduce_ensemble method to select subsets of an ensemble based on the KKZ algorithm.

• Create new Indicator Daily, Daily2D subclasses for indicators using daily input data.

• The Indicator class now supports outputting multiple indices for the same inputs.

• xclim.core.units.declare_units now works with indices outputting multiple DataArrays.

• Doctests now make use of the xdoctest_namespace in order to more easily access modules and testdata.

356 Chapter 14. History

xclim Documentation, Release 0.39.0

14.26.3 Bug fixes

• Fix generic.fit dimension ordering. This caused errors when “time” was not the first dimension in a DataArray.

14.26.4 Internal changes

• datachecks.check_daily now uses xr.infer_freq.

• Indicator subclasses Tas, Tasmin, Tasmax, Pr and Streamflow now inherit from Daily.

• Indicator subclasses TasminTasmax and PrTas now inherit from Daily2D.

• Docstring style now enforced using the pydocstyle with numpy docstring conventions.

• Doctests are now performed for all docstring Examples using xdoctest. Failing examples must be explicitly
skipped otherwise build will now fail.

• Indicator methods update_attrs and format are now classmethods, attrs to update must be passed.

• Indicators definitions without an accompanying translation (presently French) will cause build failures.

• Major refactoring of the internal machinery of Indicator to support multiple outputs.

14.27 v0.18.0 (2020-06-26)

• Optimization options for xclim.sdba : different grouping for the normalization steps of DQM and save training
or fitting datasets to temporary files.

• xclim.sdba.detrending objects can now act on groups.

• Replaced dask[complete] with dask[array] in basic installation and added distributed to docs build dependencies.

• xclim.core.locales now supported in Windows build environments.

• ensembles.ensemble_percentiles modified to compute along a percentiles dimension by default, instead of cre-
ating different variables.

• Added indicator first_day_below and run length helper first_run_after_date.

• Added ANUCLIM model climate indices mappings.

• Renamed areacella to areacello in sea ice tests.

• Sea ice extent and area outputs now have units of m2 to comply with CF-Convention.

• Split checks.py into cfchecks.py, datachecks.py and missing.py. This change will only affect users creating custom
indices using utilities previously located in checks.py.

• Changed signature of daily_freeze_thaw_cycles, daily_temperature_range, daily_temperature_range_variability
and extreme_temperature_range to take (tasmin, tasmax) instead of (tasmax, tasmin) and match signature of other
similar multivariate indices.

• Added FromContext subclass of MissingBase to have a uniform API for missing value operations.

• Remove logging commands that captured all xclim warnings. Remove deprecated xr.set_options calls.

14.27. v0.18.0 (2020-06-26) 357

xclim Documentation, Release 0.39.0

14.28 v0.17.0 (2020-05-15)

• Added support for operations on dimensionless variables (units = ‘1’).

• Moved xclim.locales to xclim.core.locales in a batch of internal changes aimed to removed most potential cyclic
imports cases.

• Missing checks and input validation refactored with addition of custom missing class registration
(xclim.core.checks.register_missing_method) and simple validation method decorator (xclim.core.checks.check).

• New xclim.set_options context to control the missing checks, input validation and locales.

• New xclim.sdba module for statistical downscaling and bias-adjustment of climate data.

• Added convert_calendar and interp_calendar to help in the conversion between calendars.

• Added at_least_n_valid function, identifying null calculations based on minimum threshold.

• Added support for freq=None in missing calculations.

• Fixed outdated code examples in the docs and docstrings.

• Doctests are now run as part of the test suite.

14.29 v0.16.0 (2020-04-23)

• Added vectorize flag to subset_shape and create_mask_vectorize function based on shapely.vectorize as default
backend for mask creation.

• Removed start_yr and end_yr flags from subsetting functions.

• Add multi gridpoints support in subset.subset_gridpoint.

• Better wrapped_partial for more meaningful inspection.

• Add indices for relative humidity, specific humidity and saturation vapor pressure with a few choices of method.

• Allow lazy units conversion.

• CRS definitions of projected DataSets are now written to file according to Climate and Forecast-convention
standards.

• Add utilities to merge attributes and update history in xclim.core.formatting.

• Ensembles : Allow alignment of datasets with same frequency but different offsets.

• Bug fixes in run_length for run-with-dates methods when the date is not found in the run.

• Remove deepcopy from subset.subset_shape to improve memory usage.

• Add missing_wmo function, identifying null calculations based on criteria from WMO.

• Add missing_pct function, identifying null calculations based on percentage of missing values.

358 Chapter 14. History

xclim Documentation, Release 0.39.0

14.30 v0.15.x (2020-03-12)

• Improvement in FWI: Vectorization of DC, DMC and FFMC with numba and small code refactoring for better
maintainability.

• Added example notebook for creating a catalog of selected indices

• Added growing_season_end, last_spring_frost, dry_days, hot_spell_frequency, hot_spell_max_length, and max-
imum_consecutive_frost_free_days indices.

• Dropped use of fiona.crs class in lieu of the newer pyproj CRS handler for subset_shape operations.

• Complete internal reorganization of xclim.

• Internationalization of xclim : add locales submodule for localized metadata.

• Add feature to retrieve coordinate values instead of index in run_length.first_run. Add run_length.last_run.

• Fix bug in subset_gridpoint to work on lat/lon coords of any dimension when they are not a dimension of the
data.

14.31 v0.14.x (2020-02-21)

• Refactoring of the documentation.

• Added support for pint 0.10

• Add atmos.heat_wave_total_length (fixing a namespace issue)

• Fixes in utils.percentile_doy and indices.winter_rain_ratio for multidimensionnal datasets.

• Rewrote the subset.subset_shape function to allow for dask.delayed (lazy) computation.

• Added utility functions to compute time_bnds when resampling data encoded with CFTimeIndex (non-standard
calendars).

• Fix in subset.subset_gridpoint for dask array coordinates.

• Modified subset_shape to support subsetting with GeoPandas datatypes directly.

• Fix in subset.wrap_lons_and_split_at_greenwich to preserve multi-region dataframes.

• Improve the memory use of indices.growing_season_length.

• Better handling of data with atypically named lat and lon dimensions.

• Added six Fire Weather indices.

14.32 v0.13.x (2020-01-10)

• Documentation improvements: list of indicators, RTD theme, notebook example.

• Added sea_ice_extent and sea_ice_area indicators.

• Reverted #311, removing the _rolling util function. Added optimal keywords to rolling() calls.

• Fixed ensembles.create_ensemble errors for builds against xarray master branch.

• Reformatted code to make better use of Python3.6 conventions (f-strings and object signatures).

• Fixed randomly failing tests of checks.missing_any.

14.30. v0.15.x (2020-03-12) 359

xclim Documentation, Release 0.39.0

• Improvement of ensemble.ensemble_percentile and ensemble.create_ensemble.

14.33 v0.12.x-beta (2019-11-18)

• Added a distance function computing the geodesic distance to a point.

• Added a tolerance argument to subset_gridpoint raising an error if distance to closest point is larger than toler-
ance.

• Created land module for standardized access to streamflow indices.

• Enhancement to utils.Indicator to have more dynamic attributes using callables.

• Added indices heat_wave_total_length and tas / tg to average tasmin and tasmax into tas.

• Fixed a bug with typed call signatures that caused downstream failures on library import.

• Added a _rolling util function to fix memory issues on large dask datasets.

• Added the subset_shape function to subset utilities for clipping region-masked datasets via polygons.

• Fixed a bug where certain dependencies caused ReadTheDocs builds to fail.

• Added many statically typed function signatures for better function documentation.

• Improved DeprecationWarnings and UserWarnings ensemble for xclim subsetting functions.

• Dropped support for Python3.5.

14.34 v0.11.x-beta (2019-10-17)

• Added type hinting to call signatures of many functions for more explicit type-checking.

• Added Kmeans clustering ensemble reduction algorithms.

• Added utilities for converting between wind velocity (sfcWind) and wind components (uas, vas) arrays.

• Added type hinting to call signatures of many functions for more explicit type-checking.

• Now supporting explicit builds for Windows OS via Travis CI.

• Fix failing test with Python 3.7.

• Fixed bug in subset.subset_bbox that could add unwanted coordinates/dims to some variables when applied to
an entire dataset.

• Reformatted packaging configuration to pure Py3 wheel that ignore tests and test data.

• Now officially supporting Python3.8!

• Enhancement to precip_accumulation() to allow estimated amounts solid (or liquid) phase precipitation.

• Bugfix for frequency analysis choking on time series with NaNs only.

360 Chapter 14. History

xclim Documentation, Release 0.39.0

14.35 v0.10.x-beta (2019-06-18)

• Added indices to ICCLIM module.

• Added indices days_over_precip_thresh and fraction_over_precip_thresh.

• Migrated to a major.minor.patch-release semantic versioning system.

• Removed attributes in netCDF output from Indicators that are not in the CF-convention.

• Added fit indicator to fit the parameters of a distribution to a series.

• Added utilities with ensemble, run length, and subset algorithms to the documentation.

• Source code development standards now implement Python Black formatting.

• Pre-commit is now used to launch code formatting inspections for local development.

• Documentation now includes more detailed usage and an example workflow notebook.

• Development build configurations are now available via both Anaconda and pip install methods.

• Modified create_ensembles() to allow creation of ensemble dataset without a time dimension as well as from
xr.Datasets.

• Modified create ensembles() to pad input data with nans when time dimensions are unequal.

• Updated subset_gridpoint() and subset_bbox() to use .sel method if ‘lon’ and ‘lat’ dims are present.

• Added Azure Pipelines to automatically build xclim in Microsoft Windows environments. – REMOVED
• Now employing PEP8 + Black compatible autoformatting.

• Added Windows and macOS images to Travis CI build ensemble.

• Added variable thresholds for tasmax and tasmin in daily_freezethaw_events.

• Updated subset.py to use date formatted strings (“%Y”, “%Y%m” etc.) in temporal subsetting.

• Clean-up of day-of-year resampling. Precipitation percentile threshold will work without a doy index.

• Addressed deprecations for xarray 0.13.0.

• Added a decorator function that verifies validity and reformats subset calls using start_date or end_date signa-
tures.

• Fixed a bug where ‘lon’ or ‘lon_bounds’ would return false values if either signatures were set to 0.

14.36 v0.10-beta (2019-06-06)

• Dropped support for Python 2.

• Added support for period of the year subsetting in checks.missing_any.

• Now allow for passing positive longitude values when subsetting data with negative longitudes.

• Improved runlength calculations for small grid size arrays via ufunc_1dim flag.

14.35. v0.10.x-beta (2019-06-18) 361

xclim Documentation, Release 0.39.0

14.37 v0.9-beta (2019-05-13)

This is a significant jump in the release. Many modifications have been made and will be added to the documentation
in the coming days. Among the many changes:

• New indices have been added with documentation and call examples.

• Run_length based operations have been optimized.

• Support for CF non-standard calendars.

• Automated/improved unit conversion and management via pint library.

• Added ensemble utilities for creation and analysis of muti-model climate ensembles.

• Added subsetting utilities for spatio-temporal subsets of xarray data objects.

• Added streamflow indicators.

• Refactoring of the code : separation of indices.py into a directory with sub-files (simple, threshold and multi-
variate); ensembles and subset utilities separated into distinct modules (pulled from utils.py).

• Indicators are now split into packages named by realms. import xclim.atmos to load indicators related to atmo-
spheric variables.

14.38 v0.8-beta (2019-02-11)

This was a staging release and is functionally identical to 0.7-beta.

14.39 0.7-beta (2019-02-05)

Major Changes:

• Support for resampling of data structured using non-standard CF-Time calendars.

• Added several ICCLIM and other indicators.

• Dropped support for Python 3.4.

• Now under Apache v2.0 license.

• Stable PyPI-based dependencies.

• Dask optimizations for better memory management.

• Introduced class-based indicator calculations with data integrity verification and CF-Compliant-like metadata
writing functionality.

Class-based indicators are new methods that allow index calculation with error-checking and provide on-the-fly meta-
data checks for CF-Compliant (and CF-compliant-like) data that are passed to them. When written to NetCDF, outputs
of these indicators will append appropriate metadata based on the indicator, threshold values, moving window length,
and time period / resampling frequency examined.

362 Chapter 14. History

xclim Documentation, Release 0.39.0

14.40 v0.6-alpha (2018-10-03)

• File attributes checks.

• Added daily downsampler function.

• Better documentation on ICCLIM indices.

14.41 v0.5-alpha (2018-09-26)

• Added total precipitation indicator.

14.42 v0.4-alpha (2018-09-14)

• Fully PEP8 compliant and available under MIT License.

14.43 v0.3-alpha (2018-09-4)

• Added icclim module.

• Reworked documentation, docs theme.

14.44 v0.2-alpha (2018-08-27)

• Added first indices.

14.45 v0.1.0-dev (2018-08-23)

• First release on PyPI.

14.40. v0.6-alpha (2018-10-03) 363

xclim Documentation, Release 0.39.0

364 Chapter 14. History

CHAPTER

FIFTEEN

API

The API of the statistical downscaling and bias adjustment module (sdba) is documented on this page. The API of the
cfchecks, datachecks, missing and dataflags modules are in Health Checks. Finally, the API of the translating
tools is on the Internationalization page.

15.1 Indicators

15.1.1 Atmospheric indicators

While the indices module stores the computing functions, this module defines Indicator classes and instances that
include a number of functionalities, such as input validation, unit conversion, output meta-data handling, and missing
value masking.

The concept followed here is to define Indicator subclasses for each input variable, then create instances for each
indicator.

xclim.indicators.atmos.biologically_effective_degree_days(tasmin: Union[DataArray, str] =
'tasmin', tasmax: Union[DataArray, str]
= 'tasmax', lat: Union[DataArray, str] =
'lat', *, thresh_tasmin: str = '10 degC',
method: str = 'gladstones', low_dtr: str
= '10 degC', high_dtr: str = '13 degC',
max_daily_degree_days: str = '9 degC',
start_date: DayOfYearStr = '04-01',
end_date: DayOfYearStr = '11-01', freq:
str = 'YS', ds: Dataset = None)→
DataArray

Biologically effective degree days (realm: atmos)

Considers daily minimum and maximum temperature with a given base threshold between 1 April and 31 Octo-
ber, with a maximum daily value for cumulative degree days (typically 9°C), and integrates modification coeffi-
cients for latitudes between 40°N and 50°N as well as for swings in daily temperature range. Metric originally
published in Gladstones (1992).

This indicator will check for missing values according to the method “from_context”. Based on indice
biologically_effective_degree_days().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

365

xclim Documentation, Release 0.39.0

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• lat (str or DataArray) – Latitude coordinate. If None and method in [“gladstones”, “icclim”],
a CF-conformant “latitude” field must be available within the passed DataArray. Default :
ds.lat. [Required units : []]

• thresh_tasmin (quantity (string with units)) – The minimum temperature threshold. Default
: 10 degC. [Required units : [temperature]]

• method ({‘icclim’, ‘jones’, ‘gladstones’}) – The formula to use for the calculation. The
“gladstones” integrates a daily temperature range and latitude coefficient. End_date should
be “11-01”. The “icclim” method ignores daily temperature range and latitude coefficient.
End date should be “10-01”. The “jones” method integrates axial tilt, latitude, and day-of-
year on coefficient. End_date should be “11-01”. Default : gladstones.

• low_dtr (quantity (string with units)) – The lower bound for daily temperature range adjust-
ment (default: 10°C). Default : 10 degC. [Required units : [temperature]]

• high_dtr (quantity (string with units)) – The higher bound for daily temperature range ad-
justment (default: 13°C). Default : 13 degC. [Required units : [temperature]]

• max_daily_degree_days (quantity (string with units)) – The maximum amount of biologi-
cally effective degrees days that can be summed daily. Default : 9 degC. [Required units :
[temperature]]

• start_date (date (string, MM-DD)) – The hemisphere-based start date to consider (north =
April, south = October). Default : 04-01.

• end_date (date (string, MM-DD)) – The hemisphere-based start date to consider (north =
October, south = April). This date is non-inclusive. Default : 11-01.

• freq (offset alias (string)) – Resampling frequency (default: “YS”; For Southern Hemi-
sphere, should be “AS-JUL”). Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
bedd (DataArray) – Integral of mean daily temperature above {thresh_tasmin}, with maximum
value of {max_daily_degree_days}, multiplied by day-length coefficient and temperature range
modifier based on {method} method for days between {start_date} and {end_date} [K days],
with additional attributes: description: Heat-summation index for agroclimatic suitability esti-
mation, developed specifically for viticulture. Computed with {method} formula (Summation
of min((max((Tn + Tx)/2 - {thresh_tasmin}, 0) * k) + TR_adj, Dmax), where coefficient k is a
latitude-based day-length for days between {start_date} and {end_date}), coefficient TR_adj is
a modifier accounting for large temperature swings, and Dmax is the maximum possibleamount
of degree days that can be gained within a day ({max_daily_degree_days}).

Notes

The tasmax ceiling of 19°C is assumed to be the max temperature beyond which no further gains from daily
temperature occur. Indice originally published in Gladstones [1992].

Let 𝑇𝑋𝑖 and 𝑇𝑁𝑖 be the daily maximum and minimum temperature at day 𝑖, 𝑙𝑎𝑡 the latitude of the point of
interest, 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥 the maximum amount of degrees that can be summed per day (typically, 9). Then the sum
of daily biologically effective growing degree day (BEDD) units between 1 April and 31 October is:

𝐵𝐸𝐷𝐷𝑖 =

October 31∑︁
𝑖=April 1

𝑚𝑖𝑛

(︂(︂
𝑚𝑎𝑥

(︂
𝑇𝑋𝑖 + 𝑇𝑁𝑖)

2
− 10, 0

)︂
* 𝑘

)︂
+ 𝑇𝑅𝑎𝑑𝑗 , 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥

)︂

366 Chapter 15. API

xclim Documentation, Release 0.39.0

𝑇𝑅𝑎𝑑𝑗 = 𝑓(𝑇𝑋𝑖, 𝑇𝑁𝑖) =

⎧⎪⎨⎪⎩
0.25(𝑇𝑋𝑖 − 𝑇𝑁𝑖 − 13), if (𝑇𝑋𝑖 − 𝑇𝑁𝑖) > 13

0, if 10 < (𝑇𝑋𝑖 − 𝑇𝑁𝑖) < 13

0.25(𝑇𝑋𝑖 − 𝑇𝑁𝑖 − 10), if (𝑇𝑋𝑖 − 𝑇𝑁𝑖) < 10

𝑘 = 𝑓(𝑙𝑎𝑡) = 1 +

(︂
|𝑙𝑎𝑡|
50

* 0.06, if 40 < |𝑙𝑎𝑡| < 50, else 0
)︂

A second version of the BEDD (method=”icclim”) does not consider 𝑇𝑅𝑎𝑑𝑗 and 𝑘 and employs a different end
date (30 September) [Project team ECA&D and KNMI, 2013]. The simplified formula is as follows:

𝐵𝐸𝐷𝐷𝑖 =

September 30∑︁
𝑖=April 1

𝑚𝑖𝑛

(︂
𝑚𝑎𝑥

(︂
𝑇𝑋𝑖 + 𝑇𝑁𝑖)

2
− 10, 0

)︂
, 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥

)︂

References

Gladstones [1992], Project team ECA&D and KNMI [2013]

xclim.indicators.atmos.calm_days(sfcWind: Union[DataArray, str] = 'sfcWind', *, thresh: str = '2 m s-1',
freq: str = 'MS', ds: Dataset = None, **indexer)→ DataArray

Calm days (realm: atmos)

Number of days with surface wind speed below threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
calm_days().

Parameters
• sfcWind (str or DataArray) – Daily windspeed. Default : ds.sfcWind. [Required units :

[speed]]

• thresh (quantity (string with units)) – Threshold average near-surface wind speed on which
to base evaluation. Default : 2 m s-1. [Required units : [speed]]

• freq (offset alias (string)) – Resampling frequency. Default : MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
calm_days (DataArray) – Number of days with surface wind speed below {thresh} (num-
ber_of_days_with_sfcWind_below_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with surface wind speed below
{thresh}.

Notes

Let 𝑊𝑆𝑖𝑗 be the windspeed at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑊𝑆𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑠− 1]

15.1. Indicators 367

xclim Documentation, Release 0.39.0

xclim.indicators.atmos.cffwis_indices(tas: Union[DataArray, str] = 'tas', pr: Union[DataArray, str] =
'pr', sfcWind: Union[DataArray, str] = 'sfcWind', hurs:
Union[DataArray, str] = 'hurs', lat: Union[DataArray, str] = 'lat',
snd: Optional[Union[DataArray, str]] = None, ffmc0:
Optional[Union[DataArray, str]] = None, dmc0:
Optional[Union[DataArray, str]] = None, dc0:
Optional[Union[DataArray, str]] = None, season_mask:
Optional[Union[DataArray, str]] = None, *, season_method: str |
None = None, overwintering: bool = False, dry_start: str | None =
None, initial_start_up: bool = True, ds: Dataset = None,
**params)→ Tuple[DataArray, DataArray, DataArray, DataArray,
DataArray, DataArray]

Canadian Fire Weather Index System indices. (realm: atmos)

Computes the 6 fire weather indexes as defined by the Canadian Forest Service: the Drought Code, the Duff-
Moisture Code, the Fine Fuel Moisture Code, the Initial Spread Index, the Build Up Index and the Fire Weather
Index.

This indicator will check for missing values according to the method “skip”. Based on indice
cffwis_indices().

Parameters
• tas (str or DataArray) – Noon temperature. Default : ds.tas. [Required units : [temperature]]

• pr (str or DataArray) – Rain fall in open over previous 24 hours, at noon. Default : ds.pr.
[Required units : [precipitation]]

• sfcWind (str or DataArray) – Noon wind speed. Default : ds.sfcWind. [Required units :
[speed]]

• hurs (str or DataArray) – Noon relative humidity. Default : ds.hurs. [Required units : []]

• lat (str or DataArray) – Latitude coordinate Default : ds.lat. [Required units : []]

• snd (str or DataArray, optional) – Noon snow depth, only used if season_method=’LA08’
is passed. [Required units : [length]]

• ffmc0 (str or DataArray, optional) – Initial values of the fine fuel moisture code. [Required
units : []]

• dmc0 (str or DataArray, optional) – Initial values of the Duff moisture code. [Required units
: []]

• dc0 (str or DataArray, optional) – Initial values of the drought code. [Required units : []]

• season_mask (str or DataArray, optional) – Boolean mask, True where/when the fire season
is active. [Required units : []]

• season_method ({‘LA08’, ‘GFWED’, None, ‘WF93’}) – How to compute the start-up and
shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar to
the R fire function. Ignored if season_mask is given. Default : None.

• overwintering (boolean) – Whether to activate DC overwintering or not. If True, either
season_method or season_mask must be given. Default : False.

• dry_start ({‘CFS’, ‘GFWED’, None}) – Whether to activate the DC and DMC “dry start”
mechanism or not, see fire_weather_ufunc(). Default : None.

• initial_start_up (boolean) – If True (default), gridpoints where the fire season is active on
the first timestep go through a start_up phase for that time step. Otherwise, previous codes

368 Chapter 15. API

xclim Documentation, Release 0.39.0

must be given as a continuing fire season is assumed for those points. Any other keyword pa-
rameters as defined in fire_weather_ufunc() and in default_params. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• params – Default : None.

Returns
dc (DataArray) – Drought Code (drought_code), with additional attributes: description: Nu-
meric rating of the average moisture content of deep, compact organic layers.dmc : DataArray
Duff Moisture Code (duff_moisture_code), with additional attributes: description: Numeric rat-
ing of the average moisture content of loosely compacted organic layers of moderate depth.ffmc
: DataArray Fine Fuel Moisture Code (fine_fuel_moisture_code), with additional attributes: de-
scription: Numeric rating of the average moisture content of litter and other cured fine fuels.isi
: DataArray Initial Spread Index (initial_spread_index), with additional attributes: description:
Numeric rating of the expected rate of fire spread.bui : DataArray Buildup Index (buildup_index),
with additional attributes: description: Numeric rating of the total amount of fuel available for
combustion.fwi : DataArray Fire Weather Index (fire_weather_index), with additional attributes:
description: Numeric rating of fire intensity.

Notes

See Natural Resources Canada [n.d.], the xclim.indices.fire module documentation, and the docstring of
fire_weather_ufunc() for more information.

References

Wang, Anderson, and Suddaby [2015]

xclim.indicators.atmos.cold_and_dry_days(tas: Union[DataArray, str] = 'tas', pr: Union[DataArray, str]
= 'pr', tas_per: Union[DataArray, str] = 'tas_per', pr_per:
Union[DataArray, str] = 'pr_per', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Cold and dry days (realm: atmos)

Number of days with temperature below a given percentile and precipitation below a given percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_and_dry_days().

Parameters
• tas (str or DataArray) – Mean daily temperature values Default : ds.tas. [Required units :

[temperature]]

• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• tas_per (str or DataArray) – First quartile of daily mean temperature computed by month.
Default : ds.tas_per. [Required units : [temperature]]

• pr_per (str or DataArray) – First quartile of daily total precipitation computed by month. ..
warning:: Before computing the percentiles, all the precipitation below 1mm must be filtered
out! Otherwise, the percentiles will include non-wet days. Default : ds.pr_per. [Required
units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

15.1. Indicators 369

xclim Documentation, Release 0.39.0

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
cold_and_dry_days (DataArray) – Number of days where temperature is below
{tas_per_thresh}th percentile and precipitation is below {pr_per_thresh}th percentile [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number
of days where temperature is below {tas_per_thresh}th percentile and precipitation is below
{pr_per_thresh}th percentile.

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indicators.atmos.cold_and_wet_days(tas: Union[DataArray, str] = 'tas', pr: Union[DataArray, str]
= 'pr', tas_per: Union[DataArray, str] = 'tas_per', pr_per:
Union[DataArray, str] = 'pr_per', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Cold and wet days (realm: atmos)

Number of days with temperature below a given percentile and precipitation above a given percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_and_wet_days().

Parameters
• tas (str or DataArray) – Mean daily temperature values Default : ds.tas. [Required units :

[temperature]]

• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• tas_per (str or DataArray) – First quartile of daily mean temperature computed by month.
Default : ds.tas_per. [Required units : [temperature]]

• pr_per (str or DataArray) – Third quartile of daily total precipitation computed by month.
Default : ds.pr_per. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
cold_and_wet_days (DataArray) – Number of days where temperature is below
{tas_per_thresh}th percentile and precipitation is above {pr_per_thresh}th percentile [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number

370 Chapter 15. API

xclim Documentation, Release 0.39.0

of days where temperature is below {tas_per_thresh}th percentile and precipitation is above
{pr_per_thresh}th percentile.

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indicators.atmos.cold_spell_days(tas: Union[DataArray, str] = 'tas', *, thresh: str = '-10 degC',
window: int = 5, freq: str = 'AS-JUL', op: str = '<',
resample_before_rl: bool = True, ds: Dataset = None)→
DataArray

Cold spell days (realm: atmos)

The number of days that are part of a cold spell. A cold spell is defined as a minimum number of consecutive
days with mean daily temperature below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_spell_days().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature below which a cold spell be-
gins. Default : -10 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature below threshold to qualify
as a cold spell. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
cold_spell_days (DataArray) – Total number of days constituting events of at least {window}
consecutive days where the mean daily temperature is below {thresh} (cold_spell_days) [days],
with additional attributes: description: {freq} number of days that are part of a cold spell. A
cold spell is defined as {window} or more consecutive days with mean daily temperature below
{thresh}.

15.1. Indicators 371

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑖 be the mean daily temperature on day 𝑖, the number of cold spell days during period 𝜑 is given by:

∑︁
𝑖∈𝜑

𝑖+5∏︁
𝑗=𝑖

[𝑇𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

xclim.indicators.atmos.cold_spell_duration_index(tasmin: Union[DataArray, str] = 'tasmin',
tasmin_per: Union[DataArray, str] = 'tasmin_per',
*, window: int = 6, freq: str = 'YS',
resample_before_rl: bool = True, bootstrap: bool =
False, op: str = '<', ds: Dataset = None)→
DataArray

Cold Spell Duration Index (CSDI) (realm: atmos)

Number of days part of a percentile-defined cold spell. A cold spell occurs when the daily minimum temperature
is below a given percentile for a given number of consecutive days.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_spell_duration_index().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmin_per (str or DataArray) – nth percentile of daily minimum temperature with day-
ofyear coordinate. Default : ds.tasmin_per. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature below threshold to qualify
as a cold spell. Default : 6.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
csdi_{window} (DataArray) – Total number of days constituting events of at least {window}
consecutive days where the daily minimum temperature is below the {tasmin_per_thresh}th
percentile (cold_spell_duration_index) [days], with additional attributes: description: {freq}
number of days with at least {window} consecutive days where the daily minimum tempera-
ture is below the {tasmin_per_thresh}th percentile. A {tasmin_per_window} day(s) window,
centred on each calendar day in the {tasmin_per_period} period, is used to compute the {tas-
min_per_thresh}th percentile(s).

372 Chapter 15. API

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑁𝑖 be the minimum daily temperature for the day of the year 𝑖 and 𝑇𝑁10𝑖 the 10th percentile of the
minimum daily temperature over the 1961-1990 period for day of the year 𝑖, the cold spell duration index over
period 𝜑 is defined as:

∑︁
𝑖∈𝜑

𝑖+6∏︁
𝑗=𝑖

[𝑇𝑁𝑗 < 𝑇𝑁10𝑗]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

References

From the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI; [Zhang et al., 2011]).

xclim.indicators.atmos.cold_spell_frequency(tas: Union[DataArray, str] = 'tas', *, thresh: str = '-10
degC', window: int = 5, freq: str = 'AS-JUL', op: str = '<',
resample_before_rl: bool = True, ds: Dataset = None)→
DataArray

Cold spell frequency (realm: atmos)

The number of cold spell events. A cold spell is defined as a minimum number of consecutive days with mean
daily temperature below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_spell_frequency().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature below which a cold spell be-
gins. Default : -10 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature below threshold to qualify
as a cold spell. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
cold_spell_frequency (DataArray) – Total number of series of at least {window} consecutive
days where the mean daily temperature is below {thresh} (cold_spell_frequency), with additional
attributes: description: {freq} number cold spell events. A cold spell is defined as a minimum
number of consecutive days with mean daily temperature below {thresh}.

xclim.indicators.atmos.consecutive_frost_days(tasmin: Union[DataArray, str] = 'tasmin', *, thresh: str
= '0 degC', freq: str = 'AS-JUL', ds: Dataset = None)→
DataArray

Consecutive frost days (realm: atmos)

Maximum number of consecutive days where the daily minimum temperature is below 0°C

15.1. Indicators 373

xclim Documentation, Release 0.39.0

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_frost_days().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature. Default : 0 degC. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
consecutive_frost_days (DataArray) – Maximum number of con-
secutive days where minimum daily temperature is below {thresh}
(spell_length_of_days_with_air_temperature_below_threshold) [days], with additional at-
tributes: cell_methods: time: maximum over days; description: {freq} maximum number of
consecutive days where minimum daily temperature is below {thresh}.

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a minimum daily temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold below which a day is
considered a frost day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that is,
the days where the temperature crosses the threshold. Then the maximum number of consecutive frost days is
given by

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indicators.atmos.cool_night_index(tasmin: Union[DataArray, str] = 'tasmin', lat:
Optional[Union[DataArray, str]] = None, *, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Cool night index (realm: atmos)

A night coolness variable which takes into account the mean minimum night temperatures during the month
when ripening usually occurs beyond the ripening period.

This indicator will check for missing values according to the method “from_context”. Based on indice
cool_night_index().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• lat ({‘north’, ‘south’}) – Latitude coordinate as an array, float or string. If None, a CF-
conformant “latitude” field must be available within the passed DataArray.

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
cool_night_index (DataArray) – Cool night index [degC], with additional attributes:

374 Chapter 15. API

xclim Documentation, Release 0.39.0

cell_methods: time: mean over days; description: Mean minimum temperature for Septem-
ber (northern hemisphere) or March (southern hemisphere).

Notes

Given that this indice only examines September and March months, it is possible to send in DataArrays containing
only these timesteps. Users should be aware that due to the missing values checks in wrapped Indicators, datasets
that are missing several months will be flagged as invalid. This check can be ignored by setting the following
context:

References

Tonietto and Carbonneau [2004]

xclim.indicators.atmos.cooling_degree_days(tas: Union[DataArray, str] = 'tas', *, thresh: str = '18.0
degC', freq: str = 'YS', ds: Dataset = None, **indexer)→
DataArray

Cooling degree days (realm: atmos)

The cumulative degree days for days when the mean daily temperature is above a given threshold and buildings
must be air conditioned.

This indicator will check for missing values according to the method “from_context”. Based on indice
cooling_degree_days().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Temperature threshold above which air is cooled. De-
fault : 18.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
cooling_degree_days (DataArray) – Cumulative sum of temperature degrees for mean daily
temperature above {thresh} (integral_of_air_temperature_excess_wrt_time) [K days], with ad-
ditional attributes: cell_methods: time: sum over days; description: {freq} cumulative cooling
degree days (mean temperature above {thresh}).

15.1. Indicators 375

xclim Documentation, Release 0.39.0

Notes

Let 𝑥𝑖 be the daily mean temperature at day 𝑖. Then the cooling degree days above temperature threshold 𝑡ℎ𝑟𝑒𝑠ℎ
over period 𝜑 is given by: ∑︁

𝑖∈𝜑

(𝑥𝑖 − 𝑡ℎ𝑟𝑒𝑠ℎ[𝑥𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

xclim.indicators.atmos.corn_heat_units(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *, thresh_tasmin: str = '4.44
degC', thresh_tasmax: str = '10 degC', ds: Dataset = None)→
DataArray

Corn heat units (realm: atmos)

A temperature-based index used to estimate the development of corn crops. Corn growth occurs when the daily
minimum and maximum temperatures exceed given thresholds.

This indicator will check for missing values according to the method “skip”. Based on indice
corn_heat_units().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The minimum temperature threshold needed
for corn growth. Default : 4.44 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The maximum temperature threshold needed
for corn growth. Default : 10 degC. [Required units : [temperature]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
chu (DataArray) – Corn heat units (Tmin > {thresh_tasmin} and Tmax > {thresh_tasmax}), with
additional attributes: description: Temperature-based index used to estimate the development
of corn crops. Corn growth occurs when the minimum and maximum daily temperatures both
exceed {thresh_tasmin} and {thresh_tasmax}, respectively.

Notes

Formula used in calculating the Corn Heat Units for the Agroclimatic Atlas of Quebec [Audet et al., 2012].

The thresholds of 4.44°C for minimum temperatures and 10°C for maximum temperatures were selected follow-
ing the assumption that no growth occurs below these values.

Let 𝑇𝑋𝑖 and 𝑇𝑁𝑖 be the daily maximum and minimum temperature at day 𝑖. Then the daily corn heat unit is:

𝐶𝐻𝑈𝑖 =
𝑌 𝑋𝑖 + 𝑌 𝑁𝑖

2

with

𝑌 𝑋𝑖 = 3.33(𝑇𝑋𝑖 − 10)− 0.084(𝑇𝑋𝑖 − 10)2, if 𝑇𝑋𝑖 > 10𝐶

𝑌 𝑁𝑖 = 1.8(𝑇𝑁𝑖 − 4.44), if 𝑇𝑁𝑖 > 4.44𝐶

where 𝑌 𝑋𝑖 and 𝑌 𝑁𝑖 is 0 when 𝑇𝑋𝑖 ≤ 10𝐶 and 𝑇𝑁𝑖 ≤ 4.44𝐶, respectively.

376 Chapter 15. API

xclim Documentation, Release 0.39.0

References

Audet, Côté, Bachand, and Mailhot [2012], Bootsma, Tremblay, and Filion [1999]

xclim.indicators.atmos.daily_freezethaw_cycles(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *, thresh_tasmin: str
= '0 degC', thresh_tasmax: str = '0 degC', op_tasmin:
str = '<=', op_tasmax: str = '>', freq: str = 'YS',
resample_before_rl: bool = True, ds: Dataset = None,
**indexer)→ DataArray

Daily freeze-thaw cycles (realm: atmos)

The number of days with a freeze-thaw cycle. A freeze-thaw cycle is defined as a day where maximum daily
temperature is above a given threshold and minimum daily temperature is at or below a given threshold, usually
0°C for both.

This indicator will check for missing values according to the method “from_context”. Based on indice
multiday_temperature_swing(). With injected parameters: window=1, op=sum.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The temperature threshold needed to trigger
a freeze event. Default : 0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The temperature threshold needed to trigger
a thaw event. Default : 0 degC. [Required units : [temperature]]

• op_tasmin ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation for tasmin. Default: “<=”. De-
fault : <=.

• op_tasmax ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation for tasmax. Default: “>”. De-
fault : >.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
dlyfrzthw (DataArray) – Number of days where maximum daily temperatures are above
{thresh_tasmax} and minimum daily temperatures are at or below {thresh_tasmin} [days], with
additional attributes: description: {freq} number of days with a diurnal freeze-thaw cycle, where
maximum daily temperatures are above {thresh_tasmax} and minimum daily temperatures are
at or below {thresh_tasmin}.

15.1. Indicators 377

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖 be the maximum temperature at day 𝑖 and 𝑇𝑁𝑖 be the daily minimum temperature at day 𝑖. Then freeze
thaw spells during a given period are consecutive days where:

𝑇𝑋𝑖 > 0 ∧ 𝑇𝑁𝑖 < 0

This indice returns a given statistic of the found lengths, optionally dropping those shorter than the window
argument. For example, window=1 and op=’sum’ returns the same value as daily_freezethaw_cycles().

xclim.indicators.atmos.daily_pr_intensity(pr: Union[DataArray, str] = 'pr', *, thresh: str = '1 mm/day',
freq: str = 'YS', ds: Dataset = None, **indexer)→ DataArray

Simple Daily Intensity Index (realm: atmos)

Average precipitation for days with daily precipitation above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
daily_pr_intensity().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
sdii (DataArray) – Average precipitation during days with daily precipitation over {thresh} (Sim-
ple Daily Intensity Index: SDII) (lwe_thickness_of_precipitation_amount) [mm d-1], with ad-
ditional attributes: description: {freq} Simple Daily Intensity Index (SDII) or {freq} average
precipitation for days with daily precipitation over {thresh}.

Notes

Let p = 𝑝0, 𝑝1, . . . , 𝑝𝑛 be the daily precipitation and 𝑡ℎ𝑟𝑒𝑠ℎ be the precipitation threshold defining wet days.
Then the daily precipitation intensity is defined as:∑︀𝑛

𝑖=0 𝑝𝑖[𝑝𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ]∑︀𝑛
𝑖=0[𝑝𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

xclim.indicators.atmos.daily_temperature_range(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *, freq: str = 'YS',
ds: Dataset = None, **indexer)→ DataArray

Mean of daily temperature range (realm: atmos)

The average difference between the daily maximum and minimum temperatures.

This indicator will check for missing values according to the method “from_context”. Based on indice
daily_temperature_range(). With injected parameters: op=mean.

378 Chapter 15. API

xclim Documentation, Release 0.39.0

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
dtr (DataArray) – Mean diurnal temperature range (air_temperature) [K], with additional at-
tributes: cell_methods: time range within days time: mean over days; description: {freq} mean
diurnal temperature range.

Notes

For a default calculation using op=’mean’ :

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the mean diurnal
temperature range in period 𝑗 is:

𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=1(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)

𝐼

xclim.indicators.atmos.daily_temperature_range_variability(tasmin: Union[DataArray, str] =
'tasmin', tasmax: Union[DataArray,
str] = 'tasmax', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→
DataArray

Variability of daily temperature range (realm: atmos)

The average day-to-day variation in daily temperature range.

This indicator will check for missing values according to the method “from_context”. Based on indice
daily_temperature_range_variability().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
dtrvar (DataArray) – Mean diurnal temperature range variability (air_temperature) [K], with

15.1. Indicators 379

xclim Documentation, Release 0.39.0

additional attributes: cell_methods: time range within days time: difference over days time:
mean over days; description: {freq} mean diurnal temperature range variability, defined as the
average day-to-day variation in daily temperature range for the given time period.

Notes

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then calculated is
the absolute day-to-day differences in period 𝑗 is:

𝑣𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=2 |(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)− (𝑇𝑋𝑖−1,𝑗 − 𝑇𝑁𝑖−1,𝑗)|

𝐼

xclim.indicators.atmos.days_over_precip_doy_thresh(pr: Union[DataArray, str] = 'pr', pr_per:
Union[DataArray, str] = 'pr_per', *, thresh: str =
'1 mm/day', freq: str = 'YS', bootstrap: bool =
False, op: str = '>', ds: Dataset = None,
**indexer)→ DataArray

Number of days with precipitation above a given daily percentile (realm: atmos)

Number of days in a period where precipitation is above a given daily percentile and a fixed threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
days_over_precip_thresh().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – Percentile of wet day precipitation flux. Either computed daily
(one value per day of year) or computed over a period (one value per spatial point). Default
: ds.pr_per. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
days_over_precip_doy_thresh (DataArray) – Number of days with daily pre-
cipitation flux above the {pr_per_thresh}th percentile of {pr_per_period} (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_above_daily_threshold) [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number of
days with precipitation above the {pr_per_thresh}th daily percentile. Only days with at least

380 Chapter 15. API

xclim Documentation, Release 0.39.0

{thresh} are counted. A {pr_per_window} day(s) window, centered on each calendar day in the
{pr_per_period} period, is used to compute the {pr_per_thresh}th percentile(s).

xclim.indicators.atmos.days_over_precip_thresh(pr: Union[DataArray, str] = 'pr', pr_per:
Union[DataArray, str] = 'pr_per', *, thresh: str = '1
mm/day', freq: str = 'YS', bootstrap: bool = False, op:
str = '>', ds: Dataset = None, **indexer)→ DataArray

Number of days with precipitation above a given percentile (realm: atmos)

Number of days in a period where precipitation is above a given percentile, calculated over a given period and a
fixed threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
days_over_precip_thresh().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – Percentile of wet day precipitation flux. Either computed daily
(one value per day of year) or computed over a period (one value per spatial point). Default
: ds.pr_per. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
days_over_precip_thresh (DataArray) – Number of days with precipita-
tion flux above the {pr_per_thresh}th percentile of {pr_per_period} (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_above_threshold) [days], with
additional attributes: cell_methods: time: sum over days; description: {freq} number of days
with precipitation above the {pr_per_thresh}th percentile of {pr_per_period} period. Only days
with at least {thresh} are counted.

xclim.indicators.atmos.days_with_snow(prsn: Union[DataArray, str] = 'prsn', *, low: str = '0 kg m-2 s-1',
high: str = '1E6 kg m-2 s-1', freq: str = 'AS-JUL', ds: Dataset =
None, **indexer)→ DataArray

Days with snowfall (realm: atmos)

Number of days with snow between a lower and upper limit.

This indicator will check for missing values according to the method “from_context”. Based on indice
days_with_snow().

15.1. Indicators 381

xclim Documentation, Release 0.39.0

Parameters
• prsn (str or DataArray) – Solid precipitation flux. Default : ds.prsn. [Required units :

[precipitation]]

• low (quantity (string with units)) – Minimum threshold solid precipitation flux. Default : 0
kg m-2 s-1. [Required units : [precipitation]]

• high (quantity (string with units)) – Maximum threshold solid precipitation flux. Default :
1E6 kg m-2 s-1. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
days_with_snow (DataArray) – Number of days with solid precipitation flux between {low}
and {high} thresholds [days], with additional attributes: description: {freq} number of days
with solid precipitation flux larger than {low} and smaller or equal to {high}.

References

Matthews, Andrey, and Picketts [2017]

xclim.indicators.atmos.degree_days_exceedance_date(tas: Union[DataArray, str] = 'tas', *, thresh: str =
'0 degC', sum_thresh: str = '25 K days', op: str =
'>', after_date: DayOfYearStr = None, freq: str =
'YS', ds: Dataset = None)→ DataArray

Degree day exceedance date (realm: atmos)

The day of the year when the sum of degree days exceeds a threshold, occurring after a given date. Degree days
are calculated above or below a given temperature threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
degree_days_exceedance_date().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base degree-days
evaluation. Default : 0 degC. [Required units : [temperature]]

• sum_thresh (quantity (string with units)) – Threshold of the degree days sum. Default : 25
K days. [Required units : K days]

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’, ‘lt’, ‘<=’, ‘<’, ‘le’}) – If equivalent to ‘>’, degree days are computed
as tas - thresh and if equivalent to ‘<’, they are computed as thresh - tas. Default : >.

• after_date (date (string, MM-DD)) – Date at which to start the cumulative sum. In “mm-dd”
format, defaults to the start of the sampling period. Default : None.

• freq (offset alias (string)) – Resampling frequency. If after_date is given, freq should be
annual. Default : YS.

382 Chapter 15. API

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
degree_days_exceedance_date (DataArray) – Day of year when the integral of mean daily tem-
perature {op} {thresh} exceeds {sum_thresh} (day_of_year), with additional attributes: descrip-
tion: <Dynamically generated string>

Notes

Let 𝑇𝐺𝑖𝑗 be the daily mean temperature at day 𝑖 of period 𝑗, 𝑇 is the reference threshold and 𝑆𝑇 is the sum
threshold. Then, starting at day :math:i_0:, the degree days exceedance date is the first day 𝑘 such that{︃

𝑆𝑇 <
∑︀𝑘

𝑖=𝑖0
max(𝑇𝐺𝑖𝑗 − 𝑇, 0) if 𝑜𝑝 is ’>’

𝑆𝑇 <
∑︀𝑘

𝑖=𝑖0
max(𝑇 − 𝑇𝐺𝑖𝑗 , 0) if 𝑜𝑝 is ’<’

The resulting 𝑘 is expressed as a day of year.

Cumulated degree days have numerous applications including plant and insect phenology. See https://en.
wikipedia.org/wiki/Growing_degree-day for examples (Wikipedia Contributors [2021]).

xclim.indicators.atmos.drought_code(tas: Union[DataArray, str] = 'tas', pr: Union[DataArray, str] = 'pr',
lat: Union[DataArray, str] = 'lat', snd: Optional[Union[DataArray,
str]] = None, dc0: Optional[Union[DataArray, str]] = None,
season_mask: Optional[Union[DataArray, str]] = None, *,
season_method: str | None = None, overwintering: bool = False,
dry_start: str | None = None, initial_start_up: bool = True, ds:
Dataset = None, **params)→ DataArray

Daily drought code (realm: atmos)

The Drought Index is part of the Canadian Forest-Weather Index system. It is a numerical code that estimates
the average moisture content of organic layers.

This indicator will check for missing values according to the method “skip”. Based on indice drought_code().

Parameters
• tas (str or DataArray) – Noon temperature. Default : ds.tas. [Required units : [temperature]]

• pr (str or DataArray) – Rain fall in open over previous 24 hours, at noon. Default : ds.pr.
[Required units : [precipitation]]

• lat (str or DataArray) – Latitude coordinate Default : ds.lat. [Required units : []]

• snd (str or DataArray, optional) – Noon snow depth. [Required units : [length]]

• dc0 (str or DataArray, optional) – Initial values of the drought code. [Required units : []]

• season_mask (str or DataArray, optional) – Boolean mask, True where/when the fire season
is active. [Required units : []]

• season_method ({‘LA08’, ‘GFWED’, None, ‘WF93’}) – How to compute the start-up and
shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar to
the R fire function. Ignored if season_mask is given. Default : None.

• overwintering (boolean) – Whether to activate DC overwintering or not. If True, either
season_method or season_mask must be given. Default : False.

• dry_start ({‘CFS’, ‘GFWED’, None}) – Whether to activate the DC and DMC “dry start”
mechanism and which method to use. See fire_weather_ufunc(). Default : None.

15.1. Indicators 383

https://en.wikipedia.org/wiki/Growing_degree-day
https://en.wikipedia.org/wiki/Growing_degree-day

xclim Documentation, Release 0.39.0

• initial_start_up (boolean) – If True (default), grid points where the fire season is active on
the first timestep go through a start_up phase for that time step. Otherwise, previous codes
must be given as a continuing fire season is assumed for those points. Any other keyword pa-
rameters as defined in xclim.indices.fire.fire_weather_ufunc and in default_params. De-
fault : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• params – Default : None.

Returns
dc (DataArray) – Drought Code (drought_code), with additional attributes: description: Nu-
merical code estimating the average moisture content of organic layers.

Notes

See Natural Resources Canada [n.d.], the xclim.indices.fire module documentation, and the docstring of
fire_weather_ufunc() for more information.

References

Wang, Anderson, and Suddaby [2015]

xclim.indicators.atmos.dry_days(pr: Union[DataArray, str] = 'pr', *, thresh: str = '0.2 mm/d', freq: str =
'YS', op: str = '<', ds: Dataset = None, **indexer)→ DataArray

Number of dry days (realm: atmos)

The number of days with daily precipitation under a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
dry_days().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0.2 mm/d. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
dry_days (DataArray) – Number of dry days (number_of_days_with_lwe_thickness_of_precipitation_amount_below_threshold)
[days], with additional attributes: cell_methods: time: sum over days; description: {freq}
number of days with daily precipitation under {thresh}.

384 Chapter 15. API

xclim Documentation, Release 0.39.0

Notes

Let 𝑃𝑅𝑖𝑗 be the daily precipitation at day 𝑖 of period 𝑗. Then counted is the number of days where:∑︁
𝑃𝑅𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑚/𝑑𝑎𝑦]

xclim.indicators.atmos.dry_spell_frequency(pr: Union[DataArray, str] = 'pr', *, thresh: str = '1.0 mm',
window: int = 3, freq: str = 'YS', resample_before_rl: bool
= True, op: str = 'sum', ds: Dataset = None)→ DataArray

Dry spell frequency (realm: atmos)

The frequency of dry periods of N days or more, during which the accumulated or maximum precipitation over
a given time window of days is below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
dry_spell_frequency().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation amount under which a period is consid-
ered dry. The value against which the threshold is compared depends on op . Default : 1.0
mm. [Required units : [length]]

• window (number) – Minimum length of the spells. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• op ({‘sum’, ‘max’}) – Operation to perform on the window. Default is “sum”, which checks
that the sum of accumulated precipitation over the whole window is less than the threshold.
“max” checks that the maximal daily precipitation amount within the window is less than
the threshold. This is the same as verifying that each individual day is below the threshold.
Default : sum.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
dry_spell_frequency (DataArray) – Number of dry periods of {window} day(s) or more, during
which the {op} precipitation on a window of {window} day(s) is below {thresh}., with additional
attributes: description: The {freq} number of dry periods of {window} day(s) or more, during
which the {op} precipitation on a window of {window} day(s) is below {thresh}.

xclim.indicators.atmos.dry_spell_total_length(pr: Union[DataArray, str] = 'pr', *, thresh: str = '1.0
mm', window: int = 3, op: str = 'sum', freq: str = 'YS',
resample_before_rl: bool = True, ds: Dataset = None,
**indexer)→ DataArray

Dry spell total length (realm: atmos)

The total length of dry periods of N days or more, during which the accumulated or maximum precipitation over
a given time window of days is below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
dry_spell_total_length().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

15.1. Indicators 385

xclim Documentation, Release 0.39.0

• thresh (quantity (string with units)) – Accumulated precipitation value under which a period
is considered dry. Default : 1.0 mm. [Required units : [length]]

• window (number) – Number of days when the maximum or accumulated precipitation is
under threshold. Default : 3.

• op ({‘sum’, ‘max’}) – Reduce operation. Default : sum.

• freq (offset alias (string)) – Resampling frequency. Indexing parameters to compute the in-
dicator on a temporal subset of the data. It accepts the same arguments as xclim.indices.
generic.select_time(). Indexing is done after finding the dry days, but before finding
the spells. Default : YS.

• resample_before_rl (boolean) – Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Default : None.

Returns
dry_spell_total_length (DataArray) – Number of days in dry periods of {window} day(s) or
more, during which the {op} precipitation within windows of {window} day(s) is under {thresh}.
[days], with additional attributes: description: The {freq} number of days in dry periods of
{window} day(s) or more, during which the {op} precipitation within windows of {window}
day(s) is under {thresh}.

Notes

The algorithm assumes days before and after the timeseries are “wet”, meaning that the condition for being
considered part of a dry spell is stricter on the edges. For example, with window=3 and op=’sum’, the first day
of the series is considered part of a dry spell only if the accumulated precipitation within the first three days is
under the threshold. In comparison, a day in the middle of the series is considered part of a dry spell if any of the
three 3-day periods of which it is part are considered dry (so a total of five days are included in the computation,
compared to only three).

xclim.indicators.atmos.extreme_temperature_range(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *, freq: str = 'YS',
ds: Dataset = None, **indexer)→ DataArray

Extreme temperature range (realm: atmos)

The maximum of the maximum temperature minus the minimum of the minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
extreme_temperature_range().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

386 Chapter 15. API

xclim Documentation, Release 0.39.0

Returns
etr (DataArray) – Intra-period extreme temperature range (air_temperature) [K], with additional
attributes: description: {freq} range between the maximum of daily maximum temperature and
the minimum of dailyminimum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the extreme
temperature range in period 𝑗 is:

𝐸𝑇𝑅𝑗 = 𝑚𝑎𝑥(𝑇𝑋𝑖𝑗)−𝑚𝑖𝑛(𝑇𝑁𝑖𝑗)

xclim.indicators.atmos.fire_season(tas: Union[DataArray, str] = 'tas', snd: Optional[Union[DataArray,
str]] = None, *, method: str = 'WF93', freq: str | None = None,
temp_start_thresh: str = '12 degC', temp_end_thresh: str = '5 degC',
temp_condition_days: int = 3, snow_condition_days: int = 3,
snow_thresh: str = '0.01 m', ds: Dataset = None)→ DataArray

Fire season mask. (realm: atmos)

Binary mask of the active fire season, defined by conditions on consecutive daily temperatures and, optionally,
snow depths.

Based on indice fire_season().

Parameters
• tas (str or DataArray) – Daily surface temperature, cffdrs recommends using maximum daily

temperature. Default : ds.tas. [Required units : [temperature]]

• snd (str or DataArray, optional) – Snow depth, used with method == ‘LA08’. [Required
units : [length]]

• method ({‘LA08’, ‘GFWED’, ‘WF93’}) – Which method to use. “LA08” and “GFWED”
need the snow depth. Default : WF93.

• freq (offset alias (string)) – If given only the longest fire season for each period defined by
this frequency, Every “seasons” are returned if None, including the short shoulder seasons.
Default : None.

• temp_start_thresh (quantity (string with units)) – Minimal temperature needed to start the
season. Default : 12 degC. [Required units : [temperature]]

• temp_end_thresh (quantity (string with units)) – Maximal temperature needed to end the
season. Default : 5 degC. [Required units : [temperature]]

• temp_condition_days (number) – Number of days with temperature above or below the
thresholds to trigger a start or an end of the fire season. Default : 3.

• snow_condition_days (number) – Parameters for the fire season determination. See
fire_season(). Temperature is in degC, snow in m. The snow_thresh parameters is also
used when dry_start is set to “GFWED”. Default : 3.

• snow_thresh (quantity (string with units)) – Minimal snow depth level to end a fire season,
only used with method “LA08”. Default : 0.01 m. [Required units : [length]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
fire_season (DataArray) – Fire season mask, with additional attributes: description: Fire season
mask, computed with method {method}.

15.1. Indicators 387

xclim Documentation, Release 0.39.0

References

Lawson and Armitage [2008], Wotton and Flannigan [1993]

xclim.indicators.atmos.fire_weather_indexes(tas: Union[DataArray, str] = 'tas', pr: Union[DataArray,
str] = 'pr', sfcWind: Union[DataArray, str] = 'sfcWind',
hurs: Union[DataArray, str] = 'hurs', lat:
Union[DataArray, str] = 'lat', snd:
Optional[Union[DataArray, str]] = None, ffmc0:
Optional[Union[DataArray, str]] = None, dmc0:
Optional[Union[DataArray, str]] = None, dc0:
Optional[Union[DataArray, str]] = None, season_mask:
Optional[Union[DataArray, str]] = None, *,
season_method: str | None = None, overwintering: bool =
False, dry_start: str | None = None, initial_start_up: bool
= True, ds: Dataset = None, **params)→
Tuple[DataArray, DataArray, DataArray, DataArray,
DataArray, DataArray]

Fire weather indexes (realm: atmos)

Computes the 6 fire weather indexes as defined by the Canadian Forest Service: the Drought Code, the Duff-
Moisture Code, the Fine Fuel Moisture Code, the Initial Spread Index, the Build Up Index and the Fire Weather
Index.

This indicator will check for missing values according to the method “skip”. Based on indice
cffwis_indices().

Parameters
• tas (str or DataArray) – Noon temperature. Default : ds.tas. [Required units : [temperature]]

• pr (str or DataArray) – Rain fall in open over previous 24 hours, at noon. Default : ds.pr.
[Required units : [precipitation]]

• sfcWind (str or DataArray) – Noon wind speed. Default : ds.sfcWind. [Required units :
[speed]]

• hurs (str or DataArray) – Noon relative humidity. Default : ds.hurs. [Required units : []]

• lat (str or DataArray) – Latitude coordinate Default : ds.lat. [Required units : []]

• snd (str or DataArray, optional) – Noon snow depth, only used if season_method=’LA08’
is passed. [Required units : [length]]

• ffmc0 (str or DataArray, optional) – Initial values of the fine fuel moisture code. [Required
units : []]

• dmc0 (str or DataArray, optional) – Initial values of the Duff moisture code. [Required units
: []]

• dc0 (str or DataArray, optional) – Initial values of the drought code. [Required units : []]

• season_mask (str or DataArray, optional) – Boolean mask, True where/when the fire season
is active. [Required units : []]

• season_method ({‘LA08’, ‘GFWED’, None, ‘WF93’}) – How to compute the start-up and
shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar to
the R fire function. Ignored if season_mask is given. Default : None.

• overwintering (boolean) – Whether to activate DC overwintering or not. If True, either
season_method or season_mask must be given. Default : False.

388 Chapter 15. API

xclim Documentation, Release 0.39.0

• dry_start ({‘CFS’, ‘GFWED’, None}) – Whether to activate the DC and DMC “dry start”
mechanism or not, see fire_weather_ufunc(). Default : None.

• initial_start_up (boolean) – If True (default), gridpoints where the fire season is active on
the first timestep go through a start_up phase for that time step. Otherwise, previous codes
must be given as a continuing fire season is assumed for those points. Any other keyword pa-
rameters as defined in fire_weather_ufunc() and in default_params. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• params – Default : None.

Returns
dc (DataArray) – Drought code (drought_code), with additional attributes: description: Nu-
meric rating of the average moisture content of deep, compact organic layers.dmc : DataArray
Duff moisture code (duff_moisture_code), with additional attributes: description: Numeric rat-
ing of the average moisture content of loosely compacted organic layers of moderate depth.ffmc
: DataArray Fine fuel moisture code (fine_fuel_moisture_code), with additional attributes: de-
scription: Numeric rating of the average moisture content of litter and other cured fine fuels.isi
: DataArray Initial spread index (initial_spread_index), with additional attributes: description:
Numeric rating of the expected rate of fire spread.bui : DataArray Buildup index (buildup_index),
with additional attributes: description: Numeric rating of the total amount of fuel available for
combustion.fwi : DataArray Fire weather index (fire_weather_index), with additional attributes:
description: Numeric rating of fire intensity.

Notes

See Natural Resources Canada [n.d.], the xclim.indices.fire module documentation, and the docstring of
fire_weather_ufunc() for more information.

References

Wang, Anderson, and Suddaby [2015]

xclim.indicators.atmos.first_day_above(tasmin: Union[DataArray, str] = 'tasmin', *, thresh: str = '0
degC', op: str = '>', after_date: DayOfYearStr = '07-01', window:
int = 1, freq: str = 'YS', ds: Dataset = None)→ DataArray

First day above (realm: atmos)

Calculates the first day of a period when the temperature is higher than a certain threshold during a given number
of days, after a given calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_above().

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 07-01.

15.1. Indicators 389

xclim Documentation, Release 0.39.0

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_above (DataArray) – First day of year with temperature above threshold (day_of_year),
with additional attributes: description: First day of year with temperature above {thresh} for at
least {window} days after {after_date}.

Notes

Let 𝑥𝑖 be the daily mean|max|min temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366.
The first day above temperature threshold is given by the smallest index 𝑖 for which

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be exceeded, and [𝑃] is 1 if 𝑃 is true,
and 0 if false.

xclim.indicators.atmos.first_day_below(tasmin: Union[DataArray, str] = 'tasmin', *, thresh: str = '0
degC', op: str = '<', after_date: DayOfYearStr = '07-01', window:
int = 1, freq: str = 'YS', ds: Dataset = None)→ DataArray

First day below (realm: atmos)

Calculates the first day of a period when the temperature is lower than a certain threshold during a given number
of days, after a given calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_below().

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “>”. Default : <.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_below (DataArray) – First day of year with temperature below threshold
(day_of_year), with additional attributes: description: First day of year with temperature be-
low {thresh} for at least {window} days after {after_date}.

390 Chapter 15. API

xclim Documentation, Release 0.39.0

xclim.indicators.atmos.first_day_tg_above(tas: Union[DataArray, str] = 'tas', *, thresh: str = '0 degC',
op: str = '>', after_date: DayOfYearStr = '01-01', window:
int = 1, freq: str = 'YS', ds: Dataset = None)→ DataArray

First day of temperatures superior to a given temperature threshold. (realm: atmos)

Returns first day of period where temperature is superior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: January 1).

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_above().

Parameters
• tas (str or DataArray) – Daily temperature. Default : ds.tas. [Required units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 01-01.

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_tg_above (DataArray) – First day of year with a period of at least {window} days of
mean temperature above {thresh} (day_of_year), with additional attributes: description: First
day of year with mean temperature above {thresh} for at least {window} days.

Notes

Let 𝑥𝑖 be the daily mean|max|min temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366.
The first day above temperature threshold is given by the smallest index 𝑖 for which

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be exceeded, and [𝑃] is 1 if 𝑃 is true,
and 0 if false.

xclim.indicators.atmos.first_day_tg_below(tas: Union[DataArray, str] = 'tas', *, thresh: str = '0 degC',
op: str = '<', after_date: DayOfYearStr = '07-01', window:
int = 1, freq: str = 'YS', ds: Dataset = None)→ DataArray

First day of temperatures inferior to a given temperature threshold. (realm: atmos)

Returns first day of period where temperature is inferior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: July 1).

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_below().

Parameters
• tas (str or DataArray) – Daily temperature. Default : ds.tas. [Required units : [temperature]]

15.1. Indicators 391

xclim Documentation, Release 0.39.0

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “>”. Default : <.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_tg_below (DataArray) – First day of year with a period of at least {window} days of
mean temperature below {thresh} (day_of_year), with additional attributes: description: First
day of year with mean temperature below {thresh} for at least {window} days.

xclim.indicators.atmos.first_day_tn_above(tasmin: Union[DataArray, str] = 'tasmin', *, thresh: str = '0
degC', op: str = '>', after_date: DayOfYearStr = '01-01',
window: int = 1, freq: str = 'YS', ds: Dataset = None)→
DataArray

First day of temperatures superior to a given temperature threshold. (realm: atmos)

Returns first day of period where temperature is superior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: January 1).

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_above().

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 01-01.

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_tn_above (DataArray) – First day of year with a period of at least {window} days
of minimum temperature above {thresh} (day_of_year), with additional attributes: description:
First day of year with minimum temperature above {thresh} for at least {window} days.

392 Chapter 15. API

xclim Documentation, Release 0.39.0

Notes

Let 𝑥𝑖 be the daily mean|max|min temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366.
The first day above temperature threshold is given by the smallest index 𝑖 for which

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be exceeded, and [𝑃] is 1 if 𝑃 is true,
and 0 if false.

xclim.indicators.atmos.first_day_tn_below(tasmin: Union[DataArray, str] = 'tasmin', *, thresh: str = '0
degC', op: str = '<', after_date: DayOfYearStr = '07-01',
window: int = 1, freq: str = 'YS', ds: Dataset = None)→
DataArray

First day of temperatures inferior to a given temperature threshold. (realm: atmos)

Returns first day of period where temperature is inferior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: July 1).

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_below().

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “>”. Default : <.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_tn_below (DataArray) – First day of year with a period of at least {window} days
of minimum temperature below {thresh} (day_of_year), with additional attributes: description:
First day of year with minimum temperature below {thresh} for at least {window} days.

xclim.indicators.atmos.first_day_tx_above(tasmax: Union[DataArray, str] = 'tasmax', *, thresh: str = '0
degC', op: str = '>', after_date: DayOfYearStr = '01-01',
window: int = 1, freq: str = 'YS', ds: Dataset = None)→
DataArray

First day of temperatures superior to a given temperature threshold. (realm: atmos)

Returns first day of period where temperature is superior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: January 1).

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_above().

Parameters

15.1. Indicators 393

xclim Documentation, Release 0.39.0

• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required
units : K]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 01-01.

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_tx_above (DataArray) – First day of year with a period of at least {window} days of
maximum temperature above {thresh} (day_of_year), with additional attributes: description:
First day of year with maximum temperature above {thresh} for at least {window} days.

Notes

Let 𝑥𝑖 be the daily mean|max|min temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366.
The first day above temperature threshold is given by the smallest index 𝑖 for which

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be exceeded, and [𝑃] is 1 if 𝑃 is true,
and 0 if false.

xclim.indicators.atmos.first_day_tx_below(tasmax: Union[DataArray, str] = 'tasmax', *, thresh: str = '0
degC', op: str = '<', after_date: DayOfYearStr = '07-01',
window: int = 1, freq: str = 'YS', ds: Dataset = None)→
DataArray

First day of temperatures inferior to a given temperature threshold. (realm: atmos)

Returns first day of period where temperature is inferior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: July 1).

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_below().

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “>”. Default : <.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 1.

394 Chapter 15. API

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_tx_below (DataArray) – First day of year with a period of at least {window} days of
maximum temperature below {thresh} (day_of_year), with additional attributes: description:
First day of year with maximum temperature below {thresh} for at least {window} days.

xclim.indicators.atmos.first_snowfall(prsn: Union[DataArray, str] = 'prsn', *, thresh: str = '0.5 mm/day',
freq: str = 'AS-JUL', ds: Dataset = None, **indexer)→ DataArray

First day where solid precipitation flux exceeded a given threshold (realm: atmos)

The first day where the solid precipitation flux exceeded a given threshold during a time period.

This indicator will check for missing values according to the method “from_context”. Based on indice
first_snowfall().

Parameters
• prsn (str or DataArray) – Solid precipitation flux. Default : ds.prsn. [Required units :

[precipitation]]

• thresh (quantity (string with units)) – Threshold precipitation flux on which to base evalua-
tion. Default : 0.5 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
first_snowfall (DataArray) – Date of first day where the solid precipitation flux exceeded
{thresh} (day_of_year), with additional attributes: description: {freq} first day where the solid
precipitation flux exceeded {thresh}.

References

CBCL [2020].

xclim.indicators.atmos.fraction_over_precip_doy_thresh(pr: Union[DataArray, str] = 'pr', pr_per:
Union[DataArray, str] = 'pr_per', *, thresh:
str = '1 mm/day', freq: str = 'YS', bootstrap:
bool = False, op: str = '>', ds: Dataset =
None, **indexer)→ DataArray

(realm: atmos)

Percentage of the total precipitation over period occurring in days when the precipitation is above a threshold
defining wet days and above a given percentile for that day.

This indicator will check for missing values according to the method “from_context”. Based on indice
fraction_over_precip_thresh().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

15.1. Indicators 395

xclim Documentation, Release 0.39.0

• pr_per (str or DataArray) – Percentile of wet day precipitation flux. Either computed daily
(one value per day of year) or computed over a period (one value per spatial point). Default
: ds.pr_per. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
fraction_over_precip_doy_thresh (DataArray) – Fraction of precipitation due to days with
daily precipitation above {pr_per_thresh}th daily percentile, with additional attributes: descrip-
tion: {freq} fraction of total precipitation due to days with precipitation above {pr_per_thresh}th
daily percentile. Only days with at least {thresh} are included in the total. A {pr_per_window}
day(s) window, centered on each calendar day in the {pr_per_period} period, is used to compute
the {pr_per_thresh}th percentile(s).

xclim.indicators.atmos.fraction_over_precip_thresh(pr: Union[DataArray, str] = 'pr', pr_per:
Union[DataArray, str] = 'pr_per', *, thresh: str =
'1 mm/day', freq: str = 'YS', bootstrap: bool =
False, op: str = '>', ds: Dataset = None,
**indexer)→ DataArray

Fraction of precipitation due to wet days with daily precipitation over a given percentile. (realm: atmos)

Percentage of the total precipitation over period occurring in days when the precipitation is above a threshold
defining wet days and above a given percentile for that day.

This indicator will check for missing values according to the method “from_context”. Based on indice
fraction_over_precip_thresh().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – Percentile of wet day precipitation flux. Either computed daily
(one value per day of year) or computed over a period (one value per spatial point). Default
: ds.pr_per. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to

396 Chapter 15. API

xclim Documentation, Release 0.39.0

avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
fraction_over_precip_thresh (DataArray) – Fraction of precipitation due to days with precipi-
tation above {pr_per_thresh}th daily percentile, with additional attributes: description: {freq}
fraction of total precipitation due to days with precipitation above {pr_per_thresh}th percentile
of {pr_per_period} period. Only days with at least {thresh} are included in the total.

xclim.indicators.atmos.freezethaw_spell_frequency(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *,
thresh_tasmin: str = '0 degC', thresh_tasmax: str =
'0 degC', window: int = 1, op_tasmin: str = '<=',
op_tasmax: str = '>', freq: str = 'YS',
resample_before_rl: bool = True, ds: Dataset =
None)→ DataArray

Freeze-thaw spell frequency (realm: atmos)

Frequency of daily freeze-thaw spells. A freeze-thaw spell is defined as a number of consecutive days where
maximum daily temperatures are above a given threshold and minimum daily temperatures are at or below a
given threshold, usually 0°C for both.

This indicator will check for missing values according to the method “from_context”. Based on indice
multiday_temperature_swing(). With injected parameters: op=count.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The temperature threshold needed to trigger
a freeze event. Default : 0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The temperature threshold needed to trigger
a thaw event. Default : 0 degC. [Required units : [temperature]]

• window (number) – The minimal length of spells to be included in the statistics. Default :
1.

• op_tasmin ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation for tasmin. Default: “<=”. De-
fault : <=.

• op_tasmax ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation for tasmax. Default: “>”. De-
fault : >.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

15.1. Indicators 397

xclim Documentation, Release 0.39.0

Returns
freezethaw_spell_frequency (DataArray) – Frequency of events where maximum daily tem-
peratures are above {thresh_tasmax} and minimum daily temperatures are at or below
{thresh_tasmin} for at least {window} consecutive day(s). [days], with additional attributes: de-
scription: {freq} number of freeze-thaw spells, where maximum daily temperatures are above
{thresh_tasmax} and minimum daily temperatures are at or below {thresh_tasmin} for at least
{window} consecutive day(s).

Notes

Let 𝑇𝑋𝑖 be the maximum temperature at day 𝑖 and 𝑇𝑁𝑖 be the daily minimum temperature at day 𝑖. Then freeze
thaw spells during a given period are consecutive days where:

𝑇𝑋𝑖 > 0 ∧ 𝑇𝑁𝑖 < 0

This indice returns a given statistic of the found lengths, optionally dropping those shorter than the window
argument. For example, window=1 and op=’sum’ returns the same value as daily_freezethaw_cycles().

xclim.indicators.atmos.freezethaw_spell_max_length(tasmin: Union[DataArray, str] = 'tasmin',
tasmax: Union[DataArray, str] = 'tasmax', *,
thresh_tasmin: str = '0 degC', thresh_tasmax: str
= '0 degC', window: int = 1, op_tasmin: str =
'<=', op_tasmax: str = '>', freq: str = 'YS',
resample_before_rl: bool = True, ds: Dataset =
None)→ DataArray

Maximal length of freeze-thaw spells (realm: atmos)

Maximal length of daily freeze-thaw spells. A freeze-thaw spell is defined as a number of consecutive days where
maximum daily temperatures are above a given threshold and minimum daily temperatures are at or below a
threshold, usually 0°C for both.

This indicator will check for missing values according to the method “from_context”. Based on indice
multiday_temperature_swing(). With injected parameters: op=max.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The temperature threshold needed to trigger
a freeze event. Default : 0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The temperature threshold needed to trigger
a thaw event. Default : 0 degC. [Required units : [temperature]]

• window (number) – The minimal length of spells to be included in the statistics. Default :
1.

• op_tasmin ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation for tasmin. Default: “<=”. De-
fault : <=.

• op_tasmax ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation for tasmax. Default: “>”. De-
fault : >.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

398 Chapter 15. API

xclim Documentation, Release 0.39.0

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
freezethaw_spell_max_length (DataArray) – Maximal length of events where maximum daily
temperatures are above {thresh_tasmax} and minimum daily temperatures are at or below
{thresh_tasmin} for at least {window} consecutive day(s). [days], with additional attributes:
description: {freq} maximal length of freeze-thaw spells, where maximum daily temperatures
are above {thresh_tasmax} and minimum daily temperatures are at or below {thresh_tasmin} for
at least {window} consecutive day(s).

Notes

Let 𝑇𝑋𝑖 be the maximum temperature at day 𝑖 and 𝑇𝑁𝑖 be the daily minimum temperature at day 𝑖. Then freeze
thaw spells during a given period are consecutive days where:

𝑇𝑋𝑖 > 0 ∧ 𝑇𝑁𝑖 < 0

This indice returns a given statistic of the found lengths, optionally dropping those shorter than the window
argument. For example, window=1 and op=’sum’ returns the same value as daily_freezethaw_cycles().

xclim.indicators.atmos.freezethaw_spell_mean_length(tasmin: Union[DataArray, str] = 'tasmin',
tasmax: Union[DataArray, str] = 'tasmax', *,
thresh_tasmin: str = '0 degC', thresh_tasmax:
str = '0 degC', window: int = 1, freq: str = 'YS',
resample_before_rl: bool = True, ds: Dataset =
None)→ DataArray

Freeze-thaw spell mean length (realm: atmos)

Average length of daily freeze-thaw spells. A freeze-thaw spell is defined as a number of consecutive days where
maximum daily temperatures are above a given threshold and minimum daily temperatures are at or below a
given threshold, usually 0°C for both.

This indicator will check for missing values according to the method “from_context”. Based on indice
multiday_temperature_swing(). With injected parameters: op=mean, op_tasmin=<=, op_tasmax=>.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The temperature threshold needed to trigger
a freeze event. Default : 0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The temperature threshold needed to trigger
a thaw event. Default : 0 degC. [Required units : [temperature]]

• window (number) – The minimal length of spells to be included in the statistics. Default :
1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

15.1. Indicators 399

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
freezethaw_spell_mean_length (DataArray) – Average length of events where maximum daily
temperatures are above {thresh_tasmax} and minimum daily temperatures are at or below
{thresh_tasmin} for at least {window} consecutive day(s). [days], with additional attributes:
description: {freq} average length of freeze-thaw spells, where maximum daily temperatures
are above {thresh_tasmax} and minimum daily temperatures are at or below {thresh_tasmin} for
at least {window} consecutive day(s).

Notes

Let 𝑇𝑋𝑖 be the maximum temperature at day 𝑖 and 𝑇𝑁𝑖 be the daily minimum temperature at day 𝑖. Then freeze
thaw spells during a given period are consecutive days where:

𝑇𝑋𝑖 > 0 ∧ 𝑇𝑁𝑖 < 0

This indice returns a given statistic of the found lengths, optionally dropping those shorter than the window
argument. For example, window=1 and op=’sum’ returns the same value as daily_freezethaw_cycles().

xclim.indicators.atmos.freezing_degree_days(tas: Union[DataArray, str] = 'tas', *, thresh: str = '0
degC', freq: str = 'YS', ds: Dataset = None, **indexer)→
DataArray

Freezing degree days (realm: atmos)

The cumulative degree days for days when the average temperature is below a given threshold, typically 0°C.

This indicator will check for missing values according to the method “from_context”. Based on indice
heating_degree_days().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
freezing_degree_days (DataArray) – Cumulative sum of temperature degrees for mean daily
temperature below {thresh} (integral_of_air_temperature_deficit_wrt_time) [K days], with ad-
ditional attributes: cell_methods: time: sum over days; description: {freq} freezing degree
days (mean temperature below {thresh}).

400 Chapter 15. API

xclim Documentation, Release 0.39.0

Notes

This index intentionally differs from its ECA&D [Project team ECA&D and KNMI, 2013] equivalent: HD17.
In HD17, values below zero are not clipped before the sum. The present definition should provide a better
representation of the energy demand for heating buildings to the given threshold.

Let 𝑇𝐺𝑖𝑗 be the daily mean temperature at day 𝑖 of period 𝑗. Then the heating degree days are:

𝐻𝐷17𝑗 =

𝐼∑︁
𝑖=1

(17− 𝑇𝐺𝑖𝑗)|𝑇𝐺𝑖𝑗 < 17)

xclim.indicators.atmos.freshet_start(tas: Union[DataArray, str] = 'tas', *, thresh: str = '0 degC', op: str
= '>', after_date: DayOfYearStr = '01-01', window: int = 5, freq: str
= 'YS', ds: Dataset = None)→ DataArray

Day of year of spring freshet start (realm: atmos)

Day of year of the spring freshet start, defined as the first day when the temperature exceeds a certain threshold
for a given number of consecutive days.

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_above().

Parameters
• tas (str or DataArray) – Daily temperature. Default : ds.tas. [Required units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 01-01.

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
freshet_start (DataArray) – First day where temperature threshold of {thresh} is exceeded for at
least {window} days (day_of_year), with additional attributes: description: Day of year of the
spring freshet start, defined as the first day a temperature threshold of {thresh} is exceeded for at
least {window} days.

Notes

Let 𝑥𝑖 be the daily mean|max|min temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366.
The first day above temperature threshold is given by the smallest index 𝑖 for which

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be exceeded, and [𝑃] is 1 if 𝑃 is true,
and 0 if false.

15.1. Indicators 401

xclim Documentation, Release 0.39.0

xclim.indicators.atmos.frost_days(tasmin: Union[DataArray, str] = 'tasmin', *, thresh: str = '0 degC', freq:
str = 'YS', ds: Dataset = None, **indexer)→ DataArray

Frost days (realm: atmos)

Number of days where the daily minimum temperature is below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
frost_days().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Freezing temperature. Default : 0 degC. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
frost_days (DataArray) – Number of days where the daily minimum temperature is be-
low {thresh} (days_with_air_temperature_below_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where the daily mini-
mum temperature is below {thresh}.

Notes

Let 𝑇𝑁𝑖𝑗 be the daily minimum temperature at day 𝑖 of period 𝑗 and :math`TT` the threshold. Then counted is
the number of days where:

𝑇𝑁𝑖𝑗 < 𝑇𝑇

xclim.indicators.atmos.frost_free_season_end(tasmin: Union[DataArray, str] = 'tasmin', *, thresh: str =
'0 degC', mid_date: DayOfYearStr = '07-01', window: int
= 5, freq: str = 'YS', ds: Dataset = None)→ DataArray

Frost free season end (realm: atmos)

First day when the temperature is below a given threshold for a given number of consecutive days after a median
calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
frost_free_season_end().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• mid_date (date (string, MM-DD)) – Date of the year after which to look for the end of the
season. Should have the format ‘%m-%d’. Default : 07-01.

402 Chapter 15. API

xclim Documentation, Release 0.39.0

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
frost_free_season_end (DataArray) – First day, after {mid_date}, following a period of {win-
dow} days with minimum daily temperature below {thresh} (day_of_year), with additional at-
tributes: description: Day of the year of the end of the frost-free season, defined as the inter-
val between the first set of {window} days when the minimum daily temperature is at or above
{thresh} and the first set (after {mid_date}) of {window} days when it is below {thresh}.

xclim.indicators.atmos.frost_free_season_length(tasmin: Union[DataArray, str] = 'tasmin', *, window:
int = 5, mid_date: DayOfYearStr | None = '07-01',
thresh: str = '0 degC', freq: str = 'YS', ds: Dataset =
None)→ DataArray

Frost free season length (realm: atmos)

Duration of the frost free season, defined as the period when the minimum daily temperature is above 0°C without
a freezing window of N days, with freezing occurring after a median calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
frost_free_season_length().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• window (number) – Minimum number of days with temperature above threshold to mark
the beginning and end of frost free season. Default : 5.

• mid_date (date (string, MM-DD)) – Date the must be included in the season. It is the earliest
the end of the season can be. If None, there is no limit. Default : 07-01.

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
frost_free_season_length (DataArray) – Number of days between the first occurrence of at
least {window} consecutive days with minimum daily temperature at or above {thresh} and the
first occurrence of at least {window} consecutive days with minimum daily temperature below
{thresh} after {mid_date} (days_with_air_temperature_above_threshold) [days], with additional
attributes: cell_methods: time: sum over days; description: {freq} number of days between the
first occurrence of at least {window} consecutive days with minimum daily temperature at or
above {thresh} and the first occurrence of at least {window} consecutive days with minimum
daily temperature below {thresh} after {mid_date}.

15.1. Indicators 403

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the
first occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 >= 0

and the first subsequent occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 < 0

xclim.indicators.atmos.frost_free_season_start(tasmin: Union[DataArray, str] = 'tasmin', *, thresh: str
= '0 degC', window: int = 5, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Frost free season start (realm: atmos)

First day when minimum daily temperature exceeds a given threshold for a given number of consecutive days

This indicator will check for missing values according to the method “from_context”. Based on indice
frost_free_season_start().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
frost_free_season_start (DataArray) – First day following a period of {window} days with min-
imum daily temperature at or above {thresh} (day_of_year), with additional attributes: descrip-
tion: Day of the year of the beginning of the frost-free season, defined as the {window}th con-
secutive day when minimum daily temperature exceeds {thresh}.

Notes

Let 𝑥𝑖 be the daily mean temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366. The start
date of the start of growing season is given by the smallest index 𝑖 for which:

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 >= 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be met or exceeded, and [𝑃] is 1 if 𝑃 is
true, and 0 if false.

xclim.indicators.atmos.frost_season_length(tasmin: Union[DataArray, str] = 'tasmin', *, window: int =
5, mid_date: DayOfYearStr | None = '01-01', thresh: str = '0
degC', freq: str = 'AS-JUL', ds: Dataset = None)→
DataArray

404 Chapter 15. API

xclim Documentation, Release 0.39.0

Frost season length (realm: atmos)

Duration of the freezing season, defined as the period when the daily minimum temperature is below 0°C without
a thawing window of days, with the thaw occurring after a median calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
frost_season_length().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• window (number) – Minimum number of days with temperature below threshold to mark
the beginning and end of frost season. Default : 5.

• mid_date (date (string, MM-DD)) – Date the must be included in the season. It is the earliest
the end of the season can be. If None, there is no limit. Default : 01-01.

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
frost_season_length (DataArray) – Number of days between the first occurrence of at least {win-
dow} consecutive days with minimum daily temperature below {thresh} and the first occurrence
of at least {window} consecutive days with minimum daily temperature at or above {thresh} af-
ter {mid_date} (days_with_air_temperature_below_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days between the first oc-
currence of at least {window} consecutive days with minimum daily temperature below {thresh}
and the first occurrence of at least {window} consecutive days with minimum daily temperature
at or above {thresh} after {mid_date}.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the
first occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 > 0

and the first subsequent occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 < 0

xclim.indicators.atmos.griffiths_drought_factor(pr: Union[DataArray, str] = 'pr', smd:
Union[DataArray, str] = 'smd', *, limiting_func: str =
'xlim', ds: Dataset = None)→ DataArray

Griffiths drought factor based on the soil moisture deficit. (realm: atmos)

The drought factor is a numeric indicator of the forest fire fuel availability in the deep litter bed. It is often used
in the calculation of the McArthur Forest Fire Danger Index. The method implemented here follows Finkele et
al. [2006].

This indicator will check for missing values according to the method “skip”. Based on indice
griffiths_drought_factor().

15.1. Indicators 405

xclim Documentation, Release 0.39.0

Parameters
• pr (str or DataArray) – Total rainfall over previous 24 hours [mm/day]. Default : ds.pr.

[Required units : [precipitation]]

• smd (str or DataArray) – Daily soil moisture deficit (often KBDI) [mm/day]. Default :
ds.smd. [Required units : [precipitation]]

• limiting_func ({‘xlim’, ‘discrete’}) – How to limit the values of the drought factor. If “xlim”
(default), use equation (14) in Finkele et al. [2006]. If “discrete”, use equation Eq (13) in
Finkele et al. [2006], but with the lower limit of each category bound adjusted to match the
upper limit of the previous bound. Default : xlim.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
df (DataArray) – Griffiths Drought Factor (griffiths_drought_factor), with additional attributes:
description: Numeric indicator of the forest fire fuel availability in the deep litter bed

Notes

Calculation of the Griffiths drought factor depends on the rainfall over the previous 20 days. Thus, the first
non-NaN time point in the drought factor returned by this function corresponds to the 20th day of the input data.

References

Finkele, Mills, Beard, and Jones [2006], Griffiths [1999], Holgate, Van DIjk, Cary, and Yebra [2017]

xclim.indicators.atmos.growing_degree_days(tas: Union[DataArray, str] = 'tas', *, thresh: str = '4.0
degC', freq: str = 'YS', ds: Dataset = None, **indexer)→
DataArray

Growing degree days (realm: atmos)

The cumulative degree days for days when the average temperature is above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
growing_degree_days().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 4.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
growing_degree_days (DataArray) – Cumulative sum of temperature degrees for mean daily
temperature above {thresh} (integral_of_air_temperature_excess_wrt_time) [K days], with ad-
ditional attributes: cell_methods: time: sum over days; description: {freq} growing degree
days (mean temperature above {thresh}).

406 Chapter 15. API

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then the growing degree days are:

𝐺𝐷4𝑗 =

𝐼∑︁
𝑖=1

(𝑇𝐺𝑖𝑗 − 4|𝑇𝐺𝑖𝑗 > 4)

xclim.indicators.atmos.growing_season_end(tas: Union[DataArray, str] = 'tas', *, thresh: str = '5.0 degC',
mid_date: DayOfYearStr = '07-01', window: int = 5, freq: str
= 'YS', ds: Dataset = None)→ DataArray

Growing season end (realm: atmos)

The first day when the temperature is below a certain threshold for a certain number of consecutive days after a
given calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
growing_season_end().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 5.0 degC. [Required units : [temperature]]

• mid_date (date (string, MM-DD)) – Date of the year after which to look for the end of the
season. Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
growing_season_end (DataArray) – First day of the first series of {window} days with mean
daily temperature below {thresh}, occurring after {mid_date} (day_of_year), with additional at-
tributes: description: Day of year of end of growing season, defined as the first day of consistent
inferior threshold temperature of {thresh} after a run of {window} days superior to threshold
temperature, occurring after {mid_date}.

xclim.indicators.atmos.growing_season_length(tas: Union[DataArray, str] = 'tas', *, thresh: str = '5.0
degC', window: int = 6, mid_date: DayOfYearStr =
'07-01', freq: str = 'YS', ds: Dataset = None)→
DataArray

Growing season length (realm: atmos)

Number of days between the first occurrence of a series of days with a daily average temperature above a threshold
and the first occurrence of a series of days with a daily average temperature below that same threshold, occurring
after a given calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
growing_season_length().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

15.1. Indicators 407

xclim Documentation, Release 0.39.0

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 5.0 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature above threshold to mark
the beginning and end of growing season. Default : 6.

• mid_date (date (string, MM-DD)) – Date of the year after which to look for the end of the
season. Should have the format ‘%m-%d’. Default : 07-01.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
growing_season_length (DataArray) – Number of days between the first occurrence of at least
{window} consecutive days with mean daily temperature over {thresh} and the first occurrence
of at least {window} consecutive days with mean daily temperature below {thresh}, occurring af-
ter {mid_date} (growing_season_length) [days], with additional attributes: description: {freq}
number of days between the first occurrence of at least {window} consecutive days with mean
daily temperature over {thresh} and the first occurrence of at least {window} consecutive days
with mean daily temperature below {thresh}, occurring after {mid_date}.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the first
occurrence of at least 6 consecutive days with:

𝑇𝐺𝑖𝑗 > 5

and the first occurrence after 1 July of at least 6 consecutive days with:

𝑇𝐺𝑖𝑗 < 5

References

Project team ECA&D and KNMI [2013]

xclim.indicators.atmos.growing_season_start(tas: Union[DataArray, str] = 'tas', *, thresh: str = '5.0
degC', window: int = 5, freq: str = 'YS', ds: Dataset =
None)→ DataArray

Growing season start (realm: atmos)

The first day when the temperature exceeds a certain threshold for a given number of consecutive days.

This indicator will check for missing values according to the method “from_context”. Based on indice
growing_season_start().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 5.0 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

408 Chapter 15. API

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
growing_season_start (DataArray) – First day of the first series of {window} days with mean
daily temperature above or equal to {thresh} (day_of_year), with additional attributes: descrip-
tion: Day of the year marking the beginning of the growing season, defined as the first day of the
first series of {window} days with mean daily temperature above or equal to {thresh}.

Notes

Let 𝑥𝑖 be the daily mean temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366. The start
date of the start of growing season is given by the smallest index 𝑖 for which:

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 >= 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be met or exceeded, and [𝑃] is 1 if 𝑃 is
true, and 0 if false.

xclim.indicators.atmos.heat_index(tas: Union[DataArray, str] = 'tas', hurs: Union[DataArray, str] =
'hurs', *, ds: Dataset = None)→ DataArray

Heat index (realm: atmos)

The heat index is an estimate of the temperature felt by a person in the shade when relative humidity is taken into
account.

Based on indice heat_index().

Parameters
• tas (str or DataArray) – Temperature. The equation assumes an instantaneous value. Default

: ds.tas. [Required units : [temperature]]

• hurs (str or DataArray) – Relative humidity. The equation assumes an instantaneous value.
Default : ds.hurs. [Required units : []]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
heat_index (DataArray) – Heat index (air_temperature) [C], with additional attributes: descrip-
tion: Perceived temperature after relative humidity is taken into account.

Notes

While both the humidex and the heat index are calculated using dew point the humidex uses a dew point of 7 °C
(45 °F) as a base, whereas the heat index uses a dew point base of 14 °C (57 °F). Further, the heat index uses
heat balance equations which account for many variables other than vapour pressure, which is used exclusively
in the humidex calculation.

15.1. Indicators 409

xclim Documentation, Release 0.39.0

References

Blazejczyk, Epstein, Jendritzky, Staiger, and Tinz [2012]

xclim.indicators.atmos.heat_wave_frequency(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *, thresh_tasmin: str =
'22.0 degC', thresh_tasmax: str = '30 degC', window: int =
3, freq: str = 'YS', op: str = '>', resample_before_rl: bool =
True, ds: Dataset = None)→ DataArray

Heat wave frequency (realm: atmos)

Number of heat waves. A heat wave occurs when daily minimum and maximum temperatures exceed given
thresholds for a number of days.

This indicator will check for missing values according to the method “from_context”. Based on indice
heat_wave_frequency(). Keywords : health,.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The minimum temperature threshold needed
to trigger a heatwave event. Default : 22.0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The maximum temperature threshold needed
to trigger a heatwave event. Default : 30 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperatures above thresholds to qualify
as a heatwave. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
heat_wave_frequency (DataArray) – Total number of series of at least {window} consecu-
tive days with daily minimum temperature above {thresh_tasmin} and daily maximum tempera-
ture above {thresh_tasmax} (heat_wave_events), with additional attributes: description: {freq}
number of heat wave events within a given period. A heat wave occurs when daily minimum and
maximum temperatures exceed {thresh_tasmin} and {thresh_tasmax}, respectively, over at least
{window} days.

410 Chapter 15. API

xclim Documentation, Release 0.39.0

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indicators.atmos.heat_wave_index(tasmax: Union[DataArray, str] = 'tasmax', *, thresh: str = '25.0
degC', window: int = 5, freq: str = 'YS', op: str = '>', ds: Dataset
= None)→ DataArray

Heat wave index (realm: atmos)

Number of days that constitute heatwave events. A heat wave occurs when daily minimum and maximum tem-
peratures exceed given thresholds for a number of days.

This indicator will check for missing values according to the method “from_context”. Based on indice
heat_wave_index().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to designate a heat-
wave. Default : 25.0 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature above threshold to qualify
as a heatwave. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
heat_wave_index (DataArray) – Total number of days constituting events of at least {window}
consecutive days with daily maximum temperature above {thresh} (heat_wave_index) [days],
with additional attributes: description: {freq} total number of days that are part of a heatwave
within a given period. A heat wave occurs when daily maximum temperatures exceed {thresh}
over at least {window} days.

xclim.indicators.atmos.heat_wave_max_length(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *, thresh_tasmin: str =
'22.0 degC', thresh_tasmax: str = '30 degC', window: int =
3, freq: str = 'YS', op: str = '>', resample_before_rl: bool
= True, ds: Dataset = None)→ DataArray

Heat wave maximum length (realm: atmos)

Total duration of heat waves. A heat wave occurs when daily minimum and maximum temperatures exceed given
thresholds for a number of days.

15.1. Indicators 411

xclim Documentation, Release 0.39.0

This indicator will check for missing values according to the method “from_context”. Based on indice
heat_wave_max_length(). Keywords : health,.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The minimum temperature threshold needed
to trigger a heatwave event. Default : 22.0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The maximum temperature threshold needed
to trigger a heatwave event. Default : 30 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperatures above thresholds to qualify
as a heatwave. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
heat_wave_max_length (DataArray) – Longest series of at least {window} consecutive days
with daily minimum temperature above {thresh_tasmin} and daily maximum temperature
above {thresh_tasmax} (spell_length_of_days_with_air_temperature_above_threshold) [days],
with additional attributes: description: {freq} maximum length of heat wave events occurring
within a given period. A heat wave occurs when daily minimum and maximum temperatures
exceed {thresh_tasmin} and {thresh_tasmax}, respectively, over at least {window} days.

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be: thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indicators.atmos.heat_wave_total_length(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *, thresh_tasmin: str
= '22.0 degC', thresh_tasmax: str = '30 degC', window:
int = 3, freq: str = 'YS', op: str = '>',
resample_before_rl: bool = True, ds: Dataset = None)
→ DataArray

Heat wave total length (realm: atmos)

412 Chapter 15. API

xclim Documentation, Release 0.39.0

Maximum length of heat waves. A heat wave occurs when daily minimum and maximum temperatures exceed
given thresholds for a number of days.

This indicator will check for missing values according to the method “from_context”. Based on indice
heat_wave_total_length(). Keywords : health,.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The minimum temperature threshold needed
to trigger a heatwave event. Default : 22.0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The maximum temperature threshold needed
to trigger a heatwave event. Default : 30 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperatures above thresholds to qualify
as a heatwave. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
heat_wave_total_length (DataArray) – Total length of events of at least {window} consecutive
days with daily minimum temperature above {thresh_tasmin} and daily maximum temperature
above {thresh_tasmax} (spell_length_of_days_with_air_temperature_above_threshold) [days],
with additional attributes: description: {freq} total length of heat wave events occurring within
a given period. A heat wave occurs when daily minimum and maximum temperatures exceed
{thresh_tasmin} and {thresh_tasmax}, respectively, over at least {window} days.

Notes

See notes and references of heat_wave_max_length

xclim.indicators.atmos.heating_degree_days(tas: Union[DataArray, str] = 'tas', *, thresh: str = '17.0
degC', freq: str = 'YS', ds: Dataset = None, **indexer)→
DataArray

Heating degree days (realm: atmos)

The cumulative degree days for days when the mean daily temperature is below a given threshold and buildings
must be heated.

This indicator will check for missing values according to the method “from_context”. Based on indice
heating_degree_days().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 17.0 degC. [Required units : [temperature]]

15.1. Indicators 413

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
heating_degree_days (DataArray) – Cumulative sum of temperature degrees for mean daily
temperature below {thresh} (integral_of_air_temperature_deficit_wrt_time) [K days], with ad-
ditional attributes: cell_methods: time: sum over days; description: {freq} cumulative heating
degree days (mean temperature below {thresh}).

Notes

This index intentionally differs from its ECA&D [Project team ECA&D and KNMI, 2013] equivalent: HD17.
In HD17, values below zero are not clipped before the sum. The present definition should provide a better
representation of the energy demand for heating buildings to the given threshold.

Let 𝑇𝐺𝑖𝑗 be the daily mean temperature at day 𝑖 of period 𝑗. Then the heating degree days are:

𝐻𝐷17𝑗 =

𝐼∑︁
𝑖=1

(17− 𝑇𝐺𝑖𝑗)|𝑇𝐺𝑖𝑗 < 17)

xclim.indicators.atmos.high_precip_low_temp(pr: Union[DataArray, str] = 'pr', tas: Union[DataArray,
str] = 'tas', *, pr_thresh: str = '0.4 mm/d', tas_thresh: str =
'-0.2 degC', freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Days with precipitation and cold temperature (realm: atmos)

Number of days with precipitation above a given threshold and temperature below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
high_precip_low_temp().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Daily mean, minimum or maximum temperature. Default : ds.tas.
[Required units : [temperature]]

• pr_thresh (quantity (string with units)) – Precipitation threshold to exceed. Default : 0.4
mm/d. [Required units : [precipitation]]

• tas_thresh (quantity (string with units)) – Temperature threshold not to exceed. Default :
-0.2 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

414 Chapter 15. API

xclim Documentation, Release 0.39.0

Returns
high_precip_low_temp (DataArray) – Days with precipitation at or above {pr_thresh} and tem-
perature below {tas_thresh} [days], with additional attributes: cell_methods: time: sum over
days; description: {freq} number of days with precipitation at or above {pr_thresh} and temper-
ature below {tas_thresh}.

xclim.indicators.atmos.hot_spell_frequency(tasmax: Union[DataArray, str] = 'tasmax', *,
thresh_tasmax: str = '30 degC', window: int = 3, freq: str =
'YS', op: str = '>', ds: Dataset = None)→ DataArray

Hot spell frequency (realm: atmos)

Number of hot spells events within a given period. A hot spell occurs when the daily maximum temperatureex-
ceeds a given threshold for a minimum number of days.

This indicator will check for missing values according to the method “from_context”. Based on indice
hot_spell_frequency(). Keywords : health,.

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The maximum temperature threshold needed
to trigger a heatwave event. Default : 30 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperatures above thresholds to qualify
as a heatwave. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
hot_spell_frequency (DataArray) – Total number of series of at least {window} consecutive
days with daily maximum temperature above {thresh_tasmax} (hot_spell_events), with addi-
tional attributes: description: {freq} number of hot spell events within a given period. A hot
spell event occurs when the maximum daily temperature exceeds {thresh_tasmax} over at least
{window} days.

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

15.1. Indicators 415

xclim Documentation, Release 0.39.0

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indicators.atmos.hot_spell_max_length(tasmax: Union[DataArray, str] = 'tasmax', *,
thresh_tasmax: str = '30 degC', window: int = 1, freq: str
= 'YS', op: str = '>', ds: Dataset = None)→ DataArray

Hot spell maximum length (realm: atmos)

Maximum length of hot spells events within a given period. A hot spell occurs when the daily maximum tem-
perature exceeds a given threshold for a minimum number of days.

This indicator will check for missing values according to the method “from_context”. Based on indice
hot_spell_max_length(). Keywords : health,.

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The maximum temperature threshold needed
to trigger a heatwave event. Default : 30 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperatures above thresholds to qualify
as a heatwave. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
hot_spell_max_length (DataArray) – Longest series of at least {window}
consecutive days with daily maximum temperature above {thresh_tasmax}
(spell_length_of_days_with_air_temperature_above_threshold) [days], with additional at-
tributes: description: {freq} maximum length of hot spell events occurring within a given
period. A hot spell event occurs when the maximum daily temperature exceeds {thresh_tasmax}
over at least {window} days.

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

416 Chapter 15. API

xclim Documentation, Release 0.39.0

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indicators.atmos.huglin_index(tas: Union[DataArray, str] = 'tas', tasmax: Union[DataArray, str] =
'tasmax', lat: Union[DataArray, str] = 'lat', *, thresh: str = '10 degC',
method: str = 'jones', start_date: DayOfYearStr = '04-01', end_date:
DayOfYearStr = '10-01', freq: str = 'YS', ds: Dataset = None)→
DataArray

Huglin heliothermal index (realm: atmos)

Heat-summation index for agroclimatic suitability estimation, developed specifically for viticulture. Considers
daily minimum and maximum temperature with a given base threshold, typically between 1 April and 30Septem-
ber, and integrates a day-length coefficient calculation for higher latitudes. Metric originally published in Huglin
(1978). Day-length coefficient based on Hall & Jones (2010).

This indicator will check for missing values according to the method “from_context”. Based on indice
huglin_index().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• lat (str or DataArray) – Latitude coordinate. If None, a CF-conformant “latitude” field must
be available within the passed DataArray. Default : ds.lat. [Required units : []]

• thresh (quantity (string with units)) – The temperature threshold. Default : 10 degC. [Re-
quired units : [temperature]]

• method ({‘smoothed’, ‘icclim’, ‘jones’}) – The formula to use for the latitude coefficient
calculation. Default : jones.

• start_date (date (string, MM-DD)) – The hemisphere-based start date to consider (north =
April, south = October). Default : 04-01.

• end_date (date (string, MM-DD)) – The hemisphere-based start date to consider (north =
October, south = April). This date is non-inclusive. Default : 10-01.

• freq (offset alias (string)) – Resampling frequency (default: “YS”; For Southern Hemi-
sphere, should be “AS-JUL”). Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
hi (DataArray) – Integral of mean daily temperature above {thresh} multiplied by day-length co-
efficient with {method} method for days between {start_date} and {end_date}, with additional
attributes: description: Heat-summation index for agroclimatic suitability estimation, devel-
oped specifically for viticulture, computed with {method} formula (Summation of ((Tn + Tx)/2
- {thresh}) * k), where coefficient k is a latitude-based day-length for days between {start_date}
and {end_date}.

15.1. Indicators 417

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖 and 𝑇𝐺𝑖 be the daily maximum and mean temperature at day 𝑖 and 𝑇𝑡ℎ𝑟𝑒𝑠ℎ the base threshold needed
for heat summation (typically, 10 degC). A day-length multiplication, 𝑘, based on latitude, 𝑙𝑎𝑡, is also considered.
Then the Huglin heliothermal index for dates between 1 April and 30 September is:

𝐻𝐼 =

September 30∑︁
𝑖=April 1

(︂
𝑇𝑋𝑖 + 𝑇𝐺𝑖)

2
− 𝑇𝑡ℎ𝑟𝑒𝑠ℎ

)︂
* 𝑘

For the smoothed method, the day-length multiplication factor, 𝑘, is calculated as follows:

𝑘 = 𝑓(𝑙𝑎𝑡) =

⎧⎪⎨⎪⎩
1, if |𝑙𝑎𝑡| <= 40

1 + ((𝑎𝑏𝑠(𝑙𝑎𝑡)− 40)/10) * 0.06, if 40 < |𝑙𝑎𝑡| <= 50

𝑁𝑎𝑁, if |𝑙𝑎𝑡| > 50

For compatibility with ICCLIM, end_date should be set to 11-01, method should be set to icclim. The day-length
multiplication factor, 𝑘, is calculated as follows:

𝑘 = 𝑓(𝑙𝑎𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0, if |𝑙𝑎𝑡| <= 40

1.02, if 40 < |𝑙𝑎𝑡| <= 42

1.03, if 42 < |𝑙𝑎𝑡| <= 44

1.04, if 44 < |𝑙𝑎𝑡| <= 46

1.05, if 46 < |𝑙𝑎𝑡| <= 48

1.06, if 48 < |𝑙𝑎𝑡| <= 50

𝑁𝑎𝑁, if |𝑙𝑎𝑡| > 50

A more robust day-length calculation based on latitude, calendar, day-of-year, and obliquity is available with
method=”jones”. See: xclim.indices.generic.day_lengths() or Hall and Jones [2010] for more infor-
mation.

References

Hall and Jones [2010], Huglin [1978]

xclim.indicators.atmos.humidex(tas: Union[DataArray, str] = 'tas', tdps: Optional[Union[DataArray, str]]
= None, hurs: Optional[Union[DataArray, str]] = None, *, ds: Dataset =
None)→ DataArray

Humidex (realm: atmos)

The humidex describes the temperature felt by a person when relative humidity is taken into account. It can be
interpreted as the equivalent temperature felt when the air is dry.

Based on indice humidex().

Parameters
• tas (str or DataArray) – Air temperature. Default : ds.tas. [Required units : [temperature]]

• tdps (str or DataArray, optional) – Dewpoint temperature. [Required units : [temperature]]

• hurs (str or DataArray, optional) – Relative humidity. [Required units : []]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
humidex (DataArray) – Humidex index (air_temperature) [C], with additional attributes: de-
scription: Humidex index describing the temperature felt by the average person in response to
relative humidity.

418 Chapter 15. API

xclim Documentation, Release 0.39.0

Notes

The humidex is usually computed using hourly observations of dry bulb and dewpoint temperatures. It is com-
puted using the formula based on Masterton and Richardson [1979]:

𝑇 +
5

9
[𝑒− 10]

where 𝑇 is the dry bulb air temperature (°C). The term 𝑒 can be computed from the dewpoint temperature
𝑇𝑑𝑒𝑤𝑝𝑜𝑖𝑛𝑡 in °K:

𝑒 = 6.112× exp(5417.7530

(︂
1

273.16
− 1

𝑇dewpoint

)︂
where the constant 5417.753 reflects the molecular weight of water, latent heat of vaporization, and the universal
gas constant [Mekis et al., 2015]. Alternatively, the term 𝑒 can also be computed from the relative humidity h
expressed in percent using Sirangelo et al. [2020]:

𝑒 =
ℎ

100
× 6.112 * 107.5𝑇/(𝑇+237.7).

The humidex comfort scale [Canada, 2011] can be interpreted as follows:

• 20 to 29 : no discomfort;

• 30 to 39 : some discomfort;

• 40 to 45 : great discomfort, avoid exertion;

• 46 and over : dangerous, possible heat stroke;

Please note that while both the humidex and the heat index are calculated using dew point, the humidex uses a
dew point of 7 °C (45 °F) as a base, whereas the heat index uses a dew point base of 14 °C (57 °F). Further, the
heat index uses heat balance equations which account for many variables other than vapour pressure, which is
used exclusively in the humidex calculation.

References

Canada [2011], Masterton and Richardson [1979], Mekis, Vincent, Shephard, and Zhang [2015], Sirangelo,
Caloiero, Coscarelli, Ferrari, and Fusto [2020]

xclim.indicators.atmos.ice_days(tasmax: Union[DataArray, str] = 'tasmax', *, thresh: str = '0 degC', freq:
str = 'YS', ds: Dataset = None, **indexer)→ DataArray

Ice days (realm: atmos)

Number of days where the daily maximum temperature is below 0°C

This indicator will check for missing values according to the method “from_context”. Based on indice
ice_days().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Freezing temperature. Default : 0 degC. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

15.1. Indicators 419

xclim Documentation, Release 0.39.0

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
ice_days (DataArray) – Number of days with maximum daily temperature below {thresh}
(days_with_air_temperature_below_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days where the maximum daily temperature
is below {thresh}.

Notes

Let 𝑇𝑋𝑖𝑗 be the daily maximum temperature at day 𝑖 of period 𝑗, and :math`TT` the threshold. Then counted is
the number of days where:

𝑇𝑋𝑖𝑗 < 𝑇𝑇

xclim.indicators.atmos.jetstream_metric_woollings(ua: Union[DataArray, str] = 'ua', *, ds: Dataset =
None)→ Tuple[DataArray, DataArray]

Strength and latitude of jetstream (realm: atmos)

Identify latitude and strength of maximum smoothed zonal wind speed in the region from 15 to 75°N and -60 to
0°E, using the formula outlined in [Woollings et al., 2010]. Wind is smoothened using a Lanczos filter approach.

Based on indice jetstream_metric_woollings().

Parameters
• ua (str or DataArray) – Eastward wind component (u) at between 750 and 950 hPa. Default

: ds.ua. [Required units : [speed]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
jetlat (DataArray) – Latitude of maximum smoothed zonal wind speed [degrees_North], with
additional attributes: description: Daily latitude of maximum Lanczos smoothed zonal wind
speed.jetstr : DataArray Maximum strength of smoothed zonal wind speed [m s-1], with addi-
tional attributes: description: Daily maximum strength of Lanczos smoothed zonal wind speed.

References

Woollings, Hannachi, and Hoskins [2010]

xclim.indicators.atmos.keetch_byram_drought_index(pr: Union[DataArray, str] = 'pr', tasmax:
Union[DataArray, str] = 'tasmax', pr_annual:
Union[DataArray, str] = 'pr_annual', kbdi0:
Optional[Union[DataArray, str]] = None, *, ds:
Dataset = None)→ DataArray

Keetch-Byram drought index (KBDI) for soil moisture deficit. (realm: atmos)

The KBDI indicates the amount of water necessary to bring the soil moisture content back to field capacity. It is
often used in the calculation of the McArthur Forest Fire Danger Index. The method implemented here follows
Finkele et al. [2006] but limits the maximum KBDI to 203.2 mm, rather than 200 mm, in order to align best with
the majority of the literature.

This indicator will check for missing values according to the method “skip”. Based on indice
keetch_byram_drought_index().

420 Chapter 15. API

xclim Documentation, Release 0.39.0

Parameters
• pr (str or DataArray) – Total rainfall over previous 24 hours [mm/day]. Default : ds.pr.

[Required units : [precipitation]]

• tasmax (str or DataArray) – Maximum temperature near the surface over previous 24 hours
[degC]. Default : ds.tasmax. [Required units : [temperature]]

• pr_annual (str or DataArray) – Mean (over years) annual accumulated rainfall [mm/year].
Default : ds.pr_annual. [Required units : [precipitation]]

• kbdi0 (str or DataArray, optional) – Previous KBDI values used to initialise the KBDI
calculation [mm/day]. Defaults to 0. [Required units : [precipitation]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
kbdi (DataArray) – Keetch-Byran Drought Index (keetch_byram_drought_index) [mm/day],
with additional attributes: description: Amount of water necessary to bring the soil moisture
content back to field capacity

Notes

This method implements the method described in Finkele et al. [2006] (section 2.1.1) for calculating the KBDI
with one small difference: in Finkele et al. [2006] the maximum KBDI is limited to 200 mm to represent the
maximum field capacity of the soil (8 inches according to Keetch and Byram [1968]). However, it is more
common in the literature to limit the KBDI to 203.2 mm which is a more accurate conversion from inches to
mm. In this function, the KBDI is limited to 203.2 mm.

References

Dolling, Chu, and Fujioka [2005], Finkele, Mills, Beard, and Jones [2006], Holgate, Van DIjk, Cary, and Yebra
[2017], Keetch and Byram [1968]

xclim.indicators.atmos.last_snowfall(prsn: Union[DataArray, str] = 'prsn', *, thresh: str = '0.5 mm/day',
freq: str = 'AS-JUL', ds: Dataset = None, **indexer)→ DataArray

Last day where solid precipitation flux exceeded a given threshold (realm: atmos)

The last day where the solid precipitation flux exceeded a given threshold during a time period.

This indicator will check for missing values according to the method “from_context”. Based on indice
last_snowfall().

Parameters
• prsn (str or DataArray) – Solid precipitation flux. Default : ds.prsn. [Required units :

[precipitation]]

• thresh (quantity (string with units)) – Threshold precipitation flux on which to base evalua-
tion. Default : 0.5 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

15.1. Indicators 421

xclim Documentation, Release 0.39.0

Returns
last_snowfall (DataArray) – Date of last day where the solid precipitation flux exceeded {thresh}
(day_of_year), with additional attributes: description: {freq} last day where the solid precipita-
tion flux exceeded {thresh}.

References

CBCL [2020].

xclim.indicators.atmos.last_spring_frost(tas: Union[DataArray, str] = 'tas', *, thresh: str = '0 degC',
before_date: DayOfYearStr = '07-01', window: int = 1, freq:
str = 'YS', ds: Dataset = None)→ DataArray

Last spring frost (realm: atmos)

The last day when temperature is below a given threshold for a certain number of days, limited by a final calendar
date.

This indicator will check for missing values according to the method “from_context”. Based on indice
last_spring_frost().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• before_date (date (string, MM-DD)) – Date of the year before which to look for the final
frost event. Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
last_spring_frost (DataArray) – Last day of minimum daily temperature below a threshold of
{thresh} for at least {window} days before a given date ({before_date}) (day_of_year), with
additional attributes: description: Day of year of last spring frost, defined as the last day a
minimum temperature remains below a threshold of {thresh} for at least {window} days before
a given date ({before_date}).

xclim.indicators.atmos.latitude_temperature_index(tas: Union[DataArray, str] = 'tas', lat:
Union[DataArray, str] = 'lat', *, freq: str = 'YS',
ds: Dataset = None)→ DataArray

Latitude temperature index (realm: atmos)

A climate indice based on mean temperature of the warmest month and a latitude-based coefficient to account
for longer day-length favouring growing conditions. Developed specifically for viticulture. Mean temperature
of warmest month multiplied by the difference of latitude factor coefficient minus latitude. Metric originally
published in Jackson, D. I., & Cherry, N. J. (1988).

This indicator will check for missing values according to the method “from_context”. Based on indice
latitude_temperature_index(). With injected parameters: lat_factor=60.

Parameters

422 Chapter 15. API

xclim Documentation, Release 0.39.0

• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-
perature]]

• lat (str or DataArray) – Latitude coordinate. If None, a CF-conformant “latitude” field must
be available within the passed DataArray. Default : ds.lat. [Required units : []]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
lti (DataArray) – Mean temperature of warmest month multiplied by the difference of
{lat_factor} minus latitude, with additional attributes: description: A climate indice based on
mean temperature of the warmest month and a latitude-based coefficient to account for longer
day-length favouring growing conditions. Developed specifically for viticulture. Mean tempera-
ture of warmest month multiplied by the difference of {lat_factor} minus latitude.

Notes

The latitude factor of 75 is provided for examining the poleward expansion of wine-growing climates under
scenarios of climate change (modified from Kenny and Shao [1992]). For comparing 20th century/observed
historical records, the original scale factor of 60 is more appropriate.

Let 𝑇𝑛𝑗 be the average temperature for a given month 𝑗, 𝑙𝑎𝑡𝑓 be the latitude factor, and 𝑙𝑎𝑡 be the latitude of the
area of interest. Then the Latitude-Temperature Index (𝐿𝑇𝐼) is:

𝐿𝑇𝐼 = 𝑚𝑎𝑥(𝑇𝑁𝑗 : 𝑗 = 1..12)(𝑙𝑎𝑡𝑓 − |𝑙𝑎𝑡|)

References

Jackson and Cherry [1988], Kenny and Shao [1992]

xclim.indicators.atmos.liquid_precip_accumulation(pr: Union[DataArray, str] = 'pr', tas:
Union[DataArray, str] = 'tas', *, thresh: str = '0
degC', freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Total accumulated liquid precipitation. (realm: atmos)

Total accumulated liquid precipitation. Precipitation is considered liquid when the average daily temperature is
above 0°C.

This indicator will check for missing values according to the method “from_context”. Based on indice
precip_accumulation(). With injected parameters: phase=liquid.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Mean, maximum or minimum daily temperature. Default : ds.tas.
[Required units : [temperature]]

• thresh (quantity (string with units)) – Threshold of tas over which the precipication is as-
sumed to be liquid rain. Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

15.1. Indicators 423

xclim Documentation, Release 0.39.0

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
liquidprcptot (DataArray) – Total accumulated precipitation when temperature is above
{thresh} (lwe_thickness_of_liquid_precipitation_amount) [mm], with additional attributes:
cell_methods: time: sum over days; description: {freq} total {phase} precipitation, estimated
as precipitation when temperature is above {thresh}.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

If tas and phase are given, the corresponding phase precipitation is estimated before computing the accumulation,
using one of snowfall_approximation or rain_approximation with the binary method.

xclim.indicators.atmos.liquid_precip_ratio(pr: Union[DataArray, str] = 'pr', tas: Union[DataArray,
str] = 'tas', *, thresh: str = '0 degC', freq: str = 'QS-DEC',
ds: Dataset = None, **indexer)→ DataArray

Fraction of liquid to total precipitation (realm: atmos)

The ratio of total liquid precipitation over the total precipitation. Liquid precipitation is approximated from total
precipitation on days where temperature is above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
liquid_precip_ratio(). With injected parameters: prsn=None.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-
perature]]

• thresh (quantity (string with units)) – Threshold temperature under which precipitation is
assumed to be solid. Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : QS-DEC.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
liquid_precip_ratio (DataArray) – Fraction of liquid to total precipitation (temperature above
{thresh}), with additional attributes: description: The {freq} ratio of rainfall to total precipita-
tion. Rainfall is estimated as precipitation on days where temperature is above {thresh}.

424 Chapter 15. API

xclim Documentation, Release 0.39.0

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

𝑃𝑅𝑤𝑒𝑡𝑖𝑗

xclim.indicators.atmos.max_1day_precipitation_amount(pr: Union[DataArray, str] = 'pr', *, freq: str =
'YS', ds: Dataset = None, **indexer)→
DataArray

Maximum 1-day total precipitation (realm: atmos)

Maximum total daily precipitation for a given period.

This indicator will check for missing values according to the method “from_context”. Based on indice
max_1day_precipitation_amount().

Parameters
• pr (str or DataArray) – Daily precipitation values. Default : ds.pr. [Required units : [pre-

cipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
rx1day (DataArray) – Maximum 1-day total precipitation
(lwe_thickness_of_precipitation_amount) [mm/day], with additional attributes: cell_methods:
time: maximum over days; description: {freq} maximum 1-day total precipitation

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day i, then for a period j:

𝑃𝑅𝑥𝑖𝑗 = 𝑚𝑎𝑥(𝑃𝑅𝑖𝑗)

xclim.indicators.atmos.max_daily_temperature_range(tasmin: Union[DataArray, str] = 'tasmin',
tasmax: Union[DataArray, str] = 'tasmax', *,
freq: str = 'YS', ds: Dataset = None, **indexer)
→ DataArray

Maximum of daily temperature range (realm: atmos)

The maximum difference between the daily maximum and minimum temperatures.

This indicator will check for missing values according to the method “from_context”. Based on indice
daily_temperature_range(). With injected parameters: op=max.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

15.1. Indicators 425

xclim Documentation, Release 0.39.0

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
dtrmax (DataArray) – Maximum diurnal temperature range (air_temperature) [K], with addi-
tional attributes: cell_methods: time range within days time: max over days; description: {freq}
maximum diurnal temperature range.

Notes

For a default calculation using op=’mean’ :

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the mean diurnal
temperature range in period 𝑗 is:

𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=1(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)

𝐼

xclim.indicators.atmos.max_n_day_precipitation_amount(pr: Union[DataArray, str] = 'pr', *, window:
int = 1, freq: str = 'YS', ds: Dataset = None)
→ DataArray

maximum n-day total precipitation (realm: atmos)

Maximum of the moving sum of daily precipitation for a given period.

This indicator will check for missing values according to the method “from_context”. Based on indice
max_n_day_precipitation_amount().

Parameters
• pr (str or DataArray) – Daily precipitation values. Default : ds.pr. [Required units : [pre-

cipitation]]

• window (number) – Window size in days. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
rx{window}day (DataArray) – maximum {window}-day total precipitation amount
(lwe_thickness_of_precipitation_amount) [mm], with additional attributes: cell_methods:
time: maximum over days; description: {freq} maximum {window}-day total precipitation
amount.

xclim.indicators.atmos.max_pr_intensity(pr: Union[DataArray, str] = 'pr', *, window: int = 1, freq: str =
'YS', ds: Dataset = None)→ DataArray

Maximum precipitation intensity over time window (realm: atmos)

Maximum precipitation intensity over a given rolling time window.

This indicator will check for missing values according to the method “from_context”. Based on indice
max_pr_intensity(). Keywords : IDF curves.

426 Chapter 15. API

xclim Documentation, Release 0.39.0

Parameters
• pr (str or DataArray) – Hourly precipitation values. Default : ds.pr. [Required units :

[precipitation]]

• window (number) – Window size in hours. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
max_pr_intensity (DataArray) – Maximum precipitation intensity over rolling {window}h time
window (precipitation) [mm h-1], with additional attributes: cell_methods: time: max; descrip-
tion: {freq} maximum precipitation intensity over rolling {window}h time window.

xclim.indicators.atmos.maximum_consecutive_dry_days(pr: Union[DataArray, str] = 'pr', *, thresh: str =
'1 mm/day', freq: str = 'YS', ds: Dataset = None)
→ DataArray

Maximum consecutive dry days (realm: atmos)

The longest number of consecutive days where daily precipitation below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_dry_days().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• thresh (quantity (string with units)) – Threshold precipitation on which to base evaluation.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
cdd (DataArray) – Maximum consecutive days with daily precipitation below {thresh} (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_below_threshold) [days], with addi-
tional attributes: cell_methods: time: sum over days; description: {freq} maximum number of
consecutive days with daily precipitation below {thresh}.

Notes

Let p = 𝑝0, 𝑝1, . . . , 𝑝𝑛 be a daily precipitation series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold under which a day is considered
dry. Then let s be the sorted vector of indices 𝑖 where [𝑝𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑝𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where
the precipitation crosses the threshold. Then the maximum number of consecutive dry days is given by

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑝𝑠𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indicators.atmos.maximum_consecutive_frost_free_days(tasmin: Union[DataArray, str] =
'tasmin', *, thresh: str = '0 degC', freq:
str = 'YS', ds: Dataset = None)→
DataArray

15.1. Indicators 427

xclim Documentation, Release 0.39.0

Maximum consecutive frost free days (realm: atmos)

Maximum number of consecutive frost-free days: where the daily minimum temperature is above or equal to
0°C

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_frost_free_days().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature. Default : 0 degC. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
consecutive_frost_free_days (DataArray) – Maximum number of con-
secutive days with minimum temperature at or above {thresh}
(spell_length_of_days_with_air_temperature_above_threshold) [days], with additional at-
tributes: cell_methods: time: maximum over days; description: {freq} maximum number of
consecutive days with minimum daily temperature at or above {thresh}.

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a daily minimum temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold above or equal to which
a day is considered a frost free day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 <= 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 <=
𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where the temperature crosses the threshold. Then the maximum number of consecutive
frost free days is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 >= 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indicators.atmos.maximum_consecutive_warm_days(tasmax: Union[DataArray, str] = 'tasmax', *,
thresh: str = '25 degC', freq: str = 'YS', ds:
Dataset = None)→ DataArray

Maximum consecutive warm days (realm: atmos)

Maximum number of consecutive days where the maximum daily temperature exceeds a certain threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_tx_days().

Parameters
• tasmax (str or DataArray) – Max daily temperature. Default : ds.tasmax. [Required units :

[temperature]]

• thresh (quantity (string with units)) – Threshold temperature. Default : 25 degC. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

428 Chapter 15. API

xclim Documentation, Release 0.39.0

Returns
maximum_consecutive_warm_days (DataArray) – Maximum number
of consecutive days with maximum daily temperature above {thresh}
(spell_length_of_days_with_air_temperature_above_threshold) [days], with additional at-
tributes: cell_methods: time: maximum over days; description: {freq} longest spell of
consecutive days with maximum daily temperature above {thresh}.

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a daily maximum temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold above which a day is
considered a summer day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that
is, the days where the temperature crosses the threshold. Then the maximum number of consecutive tx_days
(summer days) is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indicators.atmos.maximum_consecutive_wet_days(pr: Union[DataArray, str] = 'pr', *, thresh: str =
'1 mm/day', freq: str = 'YS', resample_before_rl:
bool = True, ds: Dataset = None)→ DataArray

Maximum consecutive wet days (realm: atmos)

The longest number of consecutive days where daily precipitation is at or above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_wet_days().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• thresh (quantity (string with units)) – Threshold precipitation on which to base evaluation.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
cwd (DataArray) – Maximum consecutive days with daily precipitation at or above {thresh}
(number_of_days_with_lwe_thickness_of_precipitation_amount_at_or_above_threshold)
[days], with additional attributes: cell_methods: time: sum over days; description: {freq}
maximum number of consecutive days with daily precipitation at or above {thresh}.

15.1. Indicators 429

xclim Documentation, Release 0.39.0

Notes

Let x = 𝑥0, 𝑥1, . . . , 𝑥𝑛 be a daily precipitation series and s be the sorted vector of indices 𝑖 where [𝑝𝑖 >
𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑝𝑖+1 > 𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where the precipitation crosses the wet day threshold. Then the
maximum number of consecutive wet days is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑥𝑠𝑗 > 0∘𝐶]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indicators.atmos.mcarthur_forest_fire_danger_index(drought_factor: Union[DataArray, str] =
'drought_factor', tasmax:
Union[DataArray, str] = 'tasmax', hurs:
Union[DataArray, str] = 'hurs', sfcWind:
Union[DataArray, str] = 'sfcWind', *, ds:
Dataset = None)→ DataArray

McArthur forest fire danger index (FFDI) Mark 5. (realm: atmos)

The FFDI is a numeric indicator of the potential danger of a forest fire.

This indicator will check for missing values according to the method “skip”. Based on indice
mcarthur_forest_fire_danger_index().

Parameters
• drought_factor (str or DataArray) – The drought factor, often the daily Griffiths drought

factor (see griffiths_drought_factor()). Default : ds.drought_factor. [Required units
: []]

• tasmax (str or DataArray) – The daily maximum temperature near the surface, or similar.
Different applications have used different inputs here, including the previous/current day’s
maximum daily temperature at a height of 2m, and the daily mean temperature at a height of
2m. Default : ds.tasmax. [Required units : [temperature]]

• hurs (str or DataArray) – The relative humidity near the surface and near the time of the
maximum daily temperature, or similar. Different applications have used different inputs
here, including the mid-afternoon relative humidity at a height of 2m, and the daily mean
relative humidity at a height of 2m. Default : ds.hurs. [Required units : []]

• sfcWind (str or DataArray) – The wind speed near the surface and near the time of the
maximum daily temperature, or similar. Different applications have used different inputs
here, including the mid-afternoon wind speed at a height of 10m, and the daily mean wind
speed at a height of 10m. Default : ds.sfcWind. [Required units : [speed]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ffdi (DataArray) – McArthur Forest Fire Danger Index (mcarthur_forest_fire_danger_index),
with additional attributes: description: Numeric rating of the potential danger of a forest fire

430 Chapter 15. API

xclim Documentation, Release 0.39.0

References

Dowdy [2018], Holgate, Van DIjk, Cary, and Yebra [2017], Noble, Gill, and Bary [1980]

xclim.indicators.atmos.mean_radiant_temperature(rsds: Union[DataArray, str] = 'rsds', rsus:
Union[DataArray, str] = 'rsus', rlds:
Union[DataArray, str] = 'rlds', rlus:
Union[DataArray, str] = 'rlus', *, stat: str = 'average',
ds: Dataset = None)→ DataArray

Mean radiant temperature (realm: atmos)

The average temperature of solar and thermal radiation incident on the body’s exterior.

Based on indice mean_radiant_temperature().

Parameters
• rsds (str or DataArray) – Surface Downwelling Shortwave Radiation Default : ds.rsds. [Re-

quired units : [radiation]]

• rsus (str or DataArray) – Surface Upwelling Shortwave Radiation Default : ds.rsus. [Re-
quired units : [radiation]]

• rlds (str or DataArray) – Surface Downwelling Longwave Radiation Default : ds.rlds. [Re-
quired units : [radiation]]

• rlus (str or DataArray) – Surface Upwelling Longwave Radiation Default : ds.rlus. [Re-
quired units : [radiation]]

• stat ({‘sunlit’, ‘average’, ‘instant’}) – Which statistic to apply. If “average”, the average of
the cosine of the solar zenith angle is calculated. If “instant”, the instantaneous cosine of the
solar zenith angle is calculated. If “sunlit”, the cosine of the solar zenith angle is calculated
during the sunlit period of each interval. If “instant”, the instantaneous cosine of the solar
zenith angle is calculated. This is necessary if mrt is not None. Default : average.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
mrt (DataArray) – Mean radiant temperature [K], with additional attributes: description: The
incidence of radiation on the body from all directions.

Notes

This code was inspired by the thermofeel package [Brimicombe et al., 2021].

References

Di Napoli, Hogan, and Pappenberger [2020]

15.1. Indicators 431

xclim Documentation, Release 0.39.0

xclim.indicators.atmos.potential_evapotranspiration(tasmin: Optional[Union[DataArray, str]] =
None, tasmax: Optional[Union[DataArray, str]]
= None, tas: Optional[Union[DataArray, str]] =
None, lat: Optional[Union[DataArray, str]] =
None, hurs: Optional[Union[DataArray, str]] =
None, rsds: Optional[Union[DataArray, str]] =
None, rsus: Optional[Union[DataArray, str]] =
None, rlds: Optional[Union[DataArray, str]] =
None, rlus: Optional[Union[DataArray, str]] =
None, sfcwind: Optional[Union[DataArray,
str]] = None, *, method: str = 'BR65', peta: float
= 0.00516409319477, petb: float =
0.0874972822289, ds: Dataset = None)→
DataArray

Potential evapotranspiration (realm: atmos)

The potential for water evaporation from soil and transpiration by plants if the water supply is sufficient, calculated
with a given method.

Based on indice potential_evapotranspiration().

Parameters
• tasmin (str or DataArray, optional) – Minimum daily temperature. [Required units : [tem-

perature]]

• tasmax (str or DataArray, optional) – Maximum daily temperature. [Required units : [tem-
perature]]

• tas (str or DataArray, optional) – Mean daily temperature. [Required units : [temperature]]

• lat (str or DataArray, optional) – Latitude. If not given, it is sought on tasmin or tas using
cf-xarray accessors. [Required units : []]

• hurs (str or DataArray, optional) – Relative humidity. [Required units : []]

• rsds (str or DataArray, optional) – Surface Downwelling Shortwave Radiation [Required
units : [radiation]]

• rsus (str or DataArray, optional) – Surface Upwelling Shortwave Radiation [Required units
: [radiation]]

• rlds (str or DataArray, optional) – Surface Downwelling Longwave Radiation [Required
units : [radiation]]

• rlus (str or DataArray, optional) – Surface Upwelling Longwave Radiation [Required units
: [radiation]]

• sfcwind (str or DataArray, optional) – Surface wind velocity (at 10 m) [Required units :
[speed]]

• method ({‘FAO_PM98’, ‘mcguinnessbordne05’, ‘baierrobertson65’, ‘hargreaves85’,
‘BR65’, ‘HG85’, ‘TW48’, ‘thornthwaite48’, ‘MB05’, ‘allen98’}) – Which method to use,
see notes. Default : BR65.

• peta (number) – Used only with method MB05 as 𝑎 for calculation of PET, see Notes section.
Default value resulted from calibration of PET over the UK. Default : 0.00516409319477.

• petb (number) – Used only with method MB05 as 𝑏 for calculation of PET, see Notes section.
Default value resulted from calibration of PET over the UK. Default : 0.0874972822289.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

432 Chapter 15. API

xclim Documentation, Release 0.39.0

Returns
evspsblpot (DataArray) – Potential evapotranspiration (“{method}” method) (wa-
ter_potential_evapotranspiration_flux) [kg m-2 s-1], with additional attributes: description:
The potential for water evaporation from soil and transpiration by plants if the water supply is
sufficient, calculated with the {method} method.

Notes

Available methods are:

• “baierrobertson65” or “BR65”, based on Baier and Robertson [1965]. Requires tasmin and tasmax, daily
[D] freq.

• “hargreaves85” or “HG85”, based on George H. Hargreaves and Zohrab A. Samani [1985]. Requires tasmin
and tasmax, daily [D] freq. (optional: tas can be given in addition of tasmin and tasmax).

• “mcguinnessbordne05” or “MB05”, based on Tanguy et al. [2018]. Requires tas, daily [D] freq, with
latitudes ‘lat’.

• “thornthwaite48” or “TW48”, based on Thornthwaite [1948]. Requires tasmin and tasmax, monthly [MS]
or daily [D] freq. (optional: tas can be given instead of tasmin and tasmax).

• “allen98” or “FAO_PM98”, based on Allen et al. [1998]. Modification of Penman-Monteith method.
Requires tasmin and tasmax, relative humidity, radiation flux and wind speed (10 m wind will be converted
to 2 m).

The McGuinness-Bordne [McGuinness and Borone, 1972] equation is:

𝑃𝐸𝑇 [𝑚𝑚𝑑𝑎𝑦−1] = 𝑎 * 𝑆0

𝜆
𝑇𝑎 + 𝑏 * 𝑆0𝜆

where 𝑎 and 𝑏 are empirical parameters; 𝑆0 is the extraterrestrial radiation [MJ m-2 day-1], assuming a solar
constant of 1367 W m-2;
𝑙𝑎𝑚𝑏𝑑𝑎 is the latent heat of vaporisation [MJ kg-1] and 𝑇𝑎 is the air temperature [°C]. The equation was originally
derived for the USA, with 𝑎 = 0.0147 and 𝑏 = 0.07353. The default parameters used here are calibrated for the
UK, using the method described in Tanguy et al. [2018].

Methods “BR65”, “HG85” and “MB05” use an approximation of the extraterrestrial radiation. See
extraterrestrial_solar_radiation().

References

Allen, Pereira, Raes, and Smith [1998], Baier and Robertson [1965], McGuinness and Borone [1972], Tanguy,
Prudhomme, Smith, and Hannaford [2018], Thornthwaite [1948], George H. Hargreaves and Zohrab A. Samani
[1985]

xclim.indicators.atmos.precip_accumulation(pr: Union[DataArray, str] = 'pr', *, thresh: str = '0 degC',
freq: str = 'YS', ds: Dataset = None, **indexer)→
DataArray

Total accumulated precipitation (solid and liquid) (realm: atmos)

Total accumulated precipitation. If the average daily temperature is given, the phase parameter can be used to
restrict the calculation to precipitation of only one phase (liquid or solid). Precipitation is considered solid if the
average daily temperature is below 0°C (and vice versa).

This indicator will check for missing values according to the method “from_context”. Based on indice
precip_accumulation(). With injected parameters: tas=None, phase=None.

Parameters

15.1. Indicators 433

xclim Documentation, Release 0.39.0

• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :
[precipitation]]

• thresh (quantity (string with units)) – Threshold of tas over which the precipication is as-
sumed to be liquid rain. Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
prcptot (DataArray) – Total accumulated precipitation (lwe_thickness_of_precipitation_amount)
[mm], with additional attributes: cell_methods: time: sum over days; description: {freq} total
precipitation.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

If tas and phase are given, the corresponding phase precipitation is estimated before computing the accumulation,
using one of snowfall_approximation or rain_approximation with the binary method.

xclim.indicators.atmos.rain_approximation(pr: Union[DataArray, str] = 'pr', tas: Union[DataArray, str]
= 'tas', *, thresh: str = '0 degC', method: str = 'binary', ds:
Dataset = None)→ DataArray

Rainfall approximation (realm: atmos)

Liquid precipitation estimated from total precipitation and temperature with a given method and temperature
threshold.

Based on indice rain_approximation().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Mean, maximum, or minimum daily temperature. Default : ds.tas.
[Required units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature, used by method “binary”.
Default : 0 degC. [Required units : [temperature]]

• method ({‘auer’, ‘binary’, ‘brown’}) – Which method to use when approximating snowfall
from total precipitation. See notes. Default : binary.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
prlp (DataArray) – Liquid precipitation (“{method}” method with temperature at or above
{thresh}) (precipitation_flux) [kg m-2 s-1], with additional attributes: description: Liquid pre-
cipitation estimated from total precipitation and temperature with method {method} and thresh-
old temperature {thresh}.

434 Chapter 15. API

xclim Documentation, Release 0.39.0

Notes

This method computes the snowfall approximation and subtracts it from the total precipitation to estimate the
liquid rain precipitation.

xclim.indicators.atmos.rain_on_frozen_ground_days(pr: Union[DataArray, str] = 'pr', tas:
Union[DataArray, str] = 'tas', *, thresh: str = '1
mm/d', freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Number of rain on frozen ground days (realm: atmos)

The number of days with rain above a given threshold after a series of seven days with average daily temperature
below 0°C. Precipitation is assumed to be rain when the daily average temperature is above 0°C.

This indicator will check for missing values according to the method “from_context”. Based on indice
rain_on_frozen_ground_days().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-
perature]]

• thresh (quantity (string with units)) – Precipitation threshold to consider a day as a rain
event. Default : 1 mm/d. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
rain_frzgr (DataArray) – Number of rain on frozen ground days
(mean daily temperature > 0℃ and precipitation > {thresh}) (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_above_threshold) [days], with
additional attributes: description: {freq} number of days with rain above {thresh} after a series
of seven days with average daily temperature below 0℃. Precipitation is assumed to be rain
when the daily average temperature is above 0℃.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation and 𝑇𝐺𝑖 be the mean daily temperature of day 𝑖. Then for a period 𝑗,
rain on frozen grounds days are counted where:

𝑃𝑅𝑖 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑚]

and where

𝑇𝐺𝑖0

is true for continuous periods where 𝑖7

15.1. Indicators 435

xclim Documentation, Release 0.39.0

xclim.indicators.atmos.relative_humidity(tas: Union[DataArray, str] = 'tas', huss: Union[DataArray,
str] = 'huss', ps: Union[DataArray, str] = 'ps', *, ice_thresh:
str = None, method: str = 'sonntag90', ds: Dataset = None)→
DataArray

Relative humidity from temperature, specific humidity, and pressure (realm: atmos)

Calculation of relative humidity from temperature, specific humidity, and pressure using the saturation vapour
pressure.

Based on indice relative_humidity(). With injected parameters: tdps=None, invalid_values=mask.

Parameters
• tas (str or DataArray) – Temperature array Default : ds.tas. [Required units : [temperature]]

• huss (str or DataArray) – Specific humidity. Default : ds.huss. [Required units : []]

• ps (str or DataArray) – Air Pressure. Default : ds.ps. [Required units : [pressure]]

• ice_thresh (quantity (string with units)) – Threshold temperature under which to switch to
equations in reference to ice instead of water. If None (default) everything is computed with
reference to water. Does nothing if ‘method’ is “bohren98”. Default : None. [Required units
: [temperature]]

• method ({‘goffgratch46’, ‘sonntag90’, ‘wmo08’, ‘tetens30’, ‘bohren98’}) – Which method
to use, see notes of this function and of saturation_vapor_pressure(). Default : son-
ntag90.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
hurs (DataArray) – Relative Humidity (“{method}” method) (relative_humidity) [%], with ad-
ditional attributes: description: <Dynamically generated string>

Notes

In the following, let 𝑇 , 𝑇𝑑, 𝑞 and 𝑝 be the temperature, the dew point temperature, the specific humidity and the
air pressure.

For the “bohren98” method : This method does not use the saturation vapour pressure directly, but rather uses
an approximation of the ratio of 𝑒𝑠𝑎𝑡(𝑇𝑑)

𝑒𝑠𝑎𝑡(𝑇) . With 𝐿 the enthalpy of vaporization of water and 𝑅𝑤 the gas constant
for water vapour, the relative humidity is computed as:

𝑅𝐻 = 𝑒
−𝐿(𝑇−𝑇𝑑)

𝑅𝑤𝑇𝑇𝑑

From Bohren and Albrecht [1998], formula taken from Lawrence [2005]. 𝐿 = 2.5 × 10−6 J kg-1, exact for
𝑇 = 273.15 K, is used.

Other methods: With 𝑤, 𝑤𝑠𝑎𝑡, 𝑒𝑠𝑎𝑡 the mixing ratio, the saturation mixing ratio and the saturation vapour
pressure. If the dewpoint temperature is given, relative humidity is computed as:

𝑅𝐻 = 100
𝑒𝑠𝑎𝑡(𝑇𝑑)

𝑒𝑠𝑎𝑡(𝑇)

Otherwise, the specific humidity and the air pressure must be given so relative humidity can be computed as:

𝑅𝐻 = 100
𝑤

𝑤𝑠𝑎𝑡
𝑤 =

𝑞

1− 𝑞
𝑤𝑠𝑎𝑡 = 0.622

𝑒𝑠𝑎𝑡
𝑃 − 𝑒𝑠𝑎𝑡

The methods differ by how 𝑒𝑠𝑎𝑡 is computed. See the doc of xclim.core.utils.
saturation_vapor_pressure().

436 Chapter 15. API

xclim Documentation, Release 0.39.0

References

Bohren and Albrecht [1998], Lawrence [2005]

xclim.indicators.atmos.relative_humidity_from_dewpoint(tas: Union[DataArray, str] = 'tas', tdps:
Union[DataArray, str] = 'tdps', *,
ice_thresh: str = None, method: str =
'sonntag90', ds: Dataset = None)→
DataArray

Relative humidity from temperature and dewpoint temperature (realm: atmos)

Calculation of relative humidity from temperature and dew point using the saturation vapour pressure.

Based on indice relative_humidity(). With injected parameters: huss=None, ps=None, in-
valid_values=mask.

Parameters
• tas (str or DataArray) – Temperature array Default : ds.tas. [Required units : [temperature]]

• tdps (str or DataArray) – Dewpoint temperature, if specified, overrides huss and ps. Default
: ds.tdps. [Required units : [temperature]]

• ice_thresh (quantity (string with units)) – Threshold temperature under which to switch to
equations in reference to ice instead of water. If None (default) everything is computed with
reference to water. Does nothing if ‘method’ is “bohren98”. Default : None. [Required units
: [temperature]]

• method ({‘goffgratch46’, ‘sonntag90’, ‘wmo08’, ‘tetens30’, ‘bohren98’}) – Which method
to use, see notes of this function and of saturation_vapor_pressure(). Default : son-
ntag90.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
hurs (DataArray) – Relative humidity (“{method}” method) (relative_humidity) [%], with ad-
ditional attributes: description: <Dynamically generated string>

Notes

In the following, let 𝑇 , 𝑇𝑑, 𝑞 and 𝑝 be the temperature, the dew point temperature, the specific humidity and the
air pressure.

For the “bohren98” method : This method does not use the saturation vapour pressure directly, but rather uses
an approximation of the ratio of 𝑒𝑠𝑎𝑡(𝑇𝑑)

𝑒𝑠𝑎𝑡(𝑇) . With 𝐿 the enthalpy of vaporization of water and 𝑅𝑤 the gas constant
for water vapour, the relative humidity is computed as:

𝑅𝐻 = 𝑒
−𝐿(𝑇−𝑇𝑑)

𝑅𝑤𝑇𝑇𝑑

From Bohren and Albrecht [1998], formula taken from Lawrence [2005]. 𝐿 = 2.5 × 10−6 J kg-1, exact for
𝑇 = 273.15 K, is used.

Other methods: With 𝑤, 𝑤𝑠𝑎𝑡, 𝑒𝑠𝑎𝑡 the mixing ratio, the saturation mixing ratio and the saturation vapour
pressure. If the dewpoint temperature is given, relative humidity is computed as:

𝑅𝐻 = 100
𝑒𝑠𝑎𝑡(𝑇𝑑)

𝑒𝑠𝑎𝑡(𝑇)

15.1. Indicators 437

xclim Documentation, Release 0.39.0

Otherwise, the specific humidity and the air pressure must be given so relative humidity can be computed as:

𝑅𝐻 = 100
𝑤

𝑤𝑠𝑎𝑡
𝑤 =

𝑞

1− 𝑞
𝑤𝑠𝑎𝑡 = 0.622

𝑒𝑠𝑎𝑡
𝑃 − 𝑒𝑠𝑎𝑡

The methods differ by how 𝑒𝑠𝑎𝑡 is computed. See the doc of xclim.core.utils.
saturation_vapor_pressure().

References

Bohren and Albrecht [1998], Lawrence [2005]

xclim.indicators.atmos.rprctot(pr: Union[DataArray, str] = 'pr', prc: Union[DataArray, str] = 'prc', *,
thresh: str = '1.0 mm/day', freq: str = 'YS', ds: Dataset = None, **indexer)
→ DataArray

Proportion of accumulated precipitation arising from convective processes (realm: atmos)

The proportion of total precipitation due to convective processes. Only days with surpassing a minimum precip-
itation flux are considered.

This indicator will check for missing values according to the method “from_context”. Based on indice
rprctot().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• prc (str or DataArray) – Daily convective precipitation. Default : ds.prc. [Required units :
[precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1.0 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
rprctot (DataArray) – Proportion of accumulated precipitation arising from convective process-
eswith precipitation of at least {thresh}, with additional attributes: cell_methods: time: sum;
description: {freq} proportion of accumulated precipitation arising from convective processes
with precipitation of at least {thresh}.

xclim.indicators.atmos.saturation_vapor_pressure(tas: Union[DataArray, str] = 'tas', *, ice_thresh: str
= None, method: str = 'sonntag90', ds: Dataset =
None)→ DataArray

Saturation vapour pressure (e_sat) (realm: atmos)

Calculation of the saturation vapour pressure from the temperature, according to a given method. If ice_thresh
is given, the calculation is done with reference to ice for temperatures below this threshold.

Based on indice saturation_vapor_pressure().

Parameters
• tas (str or DataArray) – Temperature array. Default : ds.tas. [Required units : [temperature]]

438 Chapter 15. API

xclim Documentation, Release 0.39.0

• ice_thresh (quantity (string with units)) – Threshold temperature under which to switch to
equations in reference to ice instead of water. If None (default) everything is computed with
reference to water. Default : None. [Required units : [temperature]]

• method ({‘goffgratch46’, ‘sonntag90’, ‘wmo08’, ‘tetens30’, ‘its90’}) – Which method to use,
see notes. Default : sonntag90.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
e_sat (DataArray) – Saturation vapour pressure (“{method}” method) [Pa], with additional at-
tributes: description: <Dynamically generated string>

Notes

In all cases implemented here 𝑙𝑜𝑔(𝑒𝑠𝑎𝑡) is an empirically fitted function (usually a polynomial) where coefficients
can be different when ice is taken as reference instead of water. Available methods are:

• “goffgratch46” or “GG46”, based on Goff and Gratch [1946], values and equation taken from Vömel [2016].

• “sonntag90” or “SO90”, taken from SONNTAG [1990].

• “tetens30” or “TE30”, based on Tetens [1930], values and equation taken from Vömel [2016].

• “wmo08” or “WMO08”, taken from World Meteorological Organization [2008].

• “its90” or “ITS90”, taken from Hardy [1998].

References

Goff and Gratch [1946], Hardy [1998], SONNTAG [1990], Tetens [1930], Vömel [2016], World Meteorological
Organization [2008]

xclim.indicators.atmos.snowfall_approximation(pr: Union[DataArray, str] = 'pr', tas: Union[DataArray,
str] = 'tas', *, thresh: str = '0 degC', method: str =
'binary', ds: Dataset = None)→ DataArray

Snowfall approximation (realm: atmos)

Solid precipitation estimated from total precipitation and temperature with a given method and temperature
threshold.

Based on indice snowfall_approximation().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Mean, maximum, or minimum daily temperature. Default : ds.tas.
[Required units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature, used by method “binary”.
Default : 0 degC. [Required units : [temperature]]

• method ({‘auer’, ‘binary’, ‘brown’}) – Which method to use when approximating snowfall
from total precipitation. See notes. Default : binary.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

15.1. Indicators 439

xclim Documentation, Release 0.39.0

Returns
prsn (DataArray) – Solid precipitation (“{method}” method with temperature at or below
{thresh}) (solid_precipitation_flux) [kg m-2 s-1], with additional attributes: description: Solid
precipitation estimated from total precipitation and temperature with method {method} and
threshold temperature {thresh}.

Notes

The following methods are available to approximate snowfall and are drawn from the Canadian Land Surface
Scheme [Melton, 2019, Verseghy, 2009].

• 'binary' : When the temperature is under the freezing threshold, precipitation is assumed to be solid.
The method is agnostic to the type of temperature used (mean, maximum or minimum).

• 'brown' : The phase between the freezing threshold goes from solid to liquid linearly over a range of 2°C
over the freezing point.

• 'auer' : The phase between the freezing threshold goes from solid to liquid as a degree six polynomial
over a range of 6°C over the freezing point.

References

Melton [2019], Verseghy [2009]

xclim.indicators.atmos.solid_precip_accumulation(pr: Union[DataArray, str] = 'pr', tas:
Union[DataArray, str] = 'tas', *, thresh: str = '0
degC', freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Total accumulated solid precipitation. (realm: atmos)

Total accumulated solid precipitation. Precipitation is considered solid when the average daily temperature is at
or below 0°C.

This indicator will check for missing values according to the method “from_context”. Based on indice
precip_accumulation(). With injected parameters: phase=solid.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Mean, maximum or minimum daily temperature. Default : ds.tas.
[Required units : [temperature]]

• thresh (quantity (string with units)) – Threshold of tas over which the precipication is as-
sumed to be liquid rain. Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
solidprcptot (DataArray) – Total accumulated solid precipitation
(lwe_thickness_of_snowfall_amount) [mm], with additional attributes: cell_methods: time:

440 Chapter 15. API

xclim Documentation, Release 0.39.0

sum over days; description: {freq} total solid precipitation, estimated as precipitation when
temperature at or below {thresh}.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

If tas and phase are given, the corresponding phase precipitation is estimated before computing the accumulation,
using one of snowfall_approximation or rain_approximation with the binary method.

xclim.indicators.atmos.specific_humidity(tas: Union[DataArray, str] = 'tas', hurs: Union[DataArray,
str] = 'hurs', ps: Union[DataArray, str] = 'ps', *, ice_thresh:
str = None, method: str = 'sonntag90', ds: Dataset = None)→
DataArray

Specific humidity from temperature, relative humidity, and pressure (realm: atmos)

Calculation of specific humidity from temperature, relative humidity, and pressure using the saturation vapour
pressure.

Based on indice specific_humidity(). With injected parameters: invalid_values=mask.

Parameters
• tas (str or DataArray) – Temperature array Default : ds.tas. [Required units : [temperature]]

• hurs (str or DataArray) – Relative Humidity. Default : ds.hurs. [Required units : []]

• ps (str or DataArray) – Air Pressure. Default : ds.ps. [Required units : [pressure]]

• ice_thresh (quantity (string with units)) – Threshold temperature under which to switch to
equations in reference to ice instead of water. If None (default) everything is computed with
reference to water. Default : None. [Required units : [temperature]]

• method ({‘wmo08’, ‘goffgratch46’, ‘tetens30’, ‘sonntag90’}) – Which method to use, see
notes of this function and of saturation_vapor_pressure(). Default : sonntag90.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
huss (DataArray) – Specific Humidity (“{method}” method) (specific_humidity), with addi-
tional attributes: description: <Dynamically generated string>

Notes

In the following, let 𝑇 , ℎ𝑢𝑟𝑠 (in %) and 𝑝 be the temperature, the relative humidity and the air pressure. With
𝑤, 𝑤𝑠𝑎𝑡, 𝑒𝑠𝑎𝑡 the mixing ratio, the saturation mixing ratio and the saturation vapour pressure, specific humidity
𝑞 is computed as:

𝑤𝑠𝑎𝑡 = 0.622
𝑒𝑠𝑎𝑡

𝑃 − 𝑒𝑠𝑎𝑡
𝑤 = 𝑤𝑠𝑎𝑡 * ℎ𝑢𝑟𝑠/100𝑞 = 𝑤/(1 + 𝑤)

The methods differ by how 𝑒𝑠𝑎𝑡 is computed. See xclim.core.utils.saturation_vapor_pressure().

If invalid_values is not None, the saturation specific humidity 𝑞𝑠𝑎𝑡 is computed as:

𝑞𝑠𝑎𝑡 = 𝑤𝑠𝑎𝑡/(1 + 𝑤𝑠𝑎𝑡)

15.1. Indicators 441

xclim Documentation, Release 0.39.0

References

World Meteorological Organization [2008]

xclim.indicators.atmos.specific_humidity_from_dewpoint(tdps: Union[DataArray, str] = 'tdps', ps:
Union[DataArray, str] = 'ps', *, method: str
= 'sonntag90', ds: Dataset = None)→
DataArray

Specific humidity from dew point temperature and pressure (realm: atmos)

Calculation of the specific humidity from dew point temperature and pressure using the saturation vapour pres-
sure.

Based on indice specific_humidity_from_dewpoint().

Parameters
• tdps (str or DataArray) – Dewpoint temperature array. Default : ds.tdps. [Required units :

[temperature]]

• ps (str or DataArray) – Air pressure array. Default : ds.ps. [Required units : [pressure]]

• method ({‘wmo08’, ‘goffgratch46’, ‘tetens30’, ‘sonntag90’}) – Method to compute the sat-
uration vapour pressure. Default : sonntag90.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
huss_fromdewpoint (DataArray) – Specific humidity (“{method}” method) (spe-
cific_humidity), with additional attributes: description: Computed from dewpoint temperature
and pressure through the saturation vapor pressure, which was calculated according to the
{method} method.

Notes

If 𝑒 is the water vapour pressure, and 𝑝 the total air pressure, then specific humidity is given by

𝑞 = 𝑚𝑤𝑒/(𝑚𝑎(𝑝− 𝑒) +𝑚𝑤𝑒)

where 𝑚𝑤 and 𝑚𝑎 are the molecular weights of water and dry air respectively. This formula is often written with
= 𝑚𝑤/𝑚𝑎, which simplifies to 𝑞 = 𝑒/(𝑝− 𝑒(1−)).

References

World Meteorological Organization [2008]

xclim.indicators.atmos.standardized_precipitation_evapotranspiration_index(wb:
Union[DataArray,
str] = 'wb',
wb_cal:
Union[DataArray,
str] = 'wb_cal', *,
freq: str = 'MS',
window: int = 1,
dist: str =
'gamma', method:
str = 'APP', ds:
Dataset = None)
→ DataArray

442 Chapter 15. API

xclim Documentation, Release 0.39.0

Standardized Precipitation Evapotranspiration Index (SPEI) (realm: atmos)

Water budget (precipitation - evapotranspiration) over a moving window, normalized such that the SPEI averages
to 0 for the calibration data. The window unit X is the minimal time period defined by the resampling frequency.

This indicator will check for missing values according to the method “from_context”. Based on indice
standardized_precipitation_evapotranspiration_index().

Parameters
• wb (str or DataArray) – Daily water budget (pr - pet). Default : ds.wb. [Required units :

[precipitation]]

• wb_cal (str or DataArray) – Daily water budget used for calibration. Default : ds.wb_cal.
[Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. A monthly or daily frequency is expected.
Default : MS.

• window (number) – Averaging window length relative to the resampling frequency. For
example, if freq=”MS”, i.e. a monthly resampling, the window is an integer number of
months. Default : 1.

• dist ({‘gamma’, ‘fisk’}) – Name of the univariate distribution. (see scipy.stats). Default
: gamma.

• method ({‘APP’, ‘ML’}) – Name of the fitting method, such as ML (maximum likelihood),
APP (approximate). The approximate method uses a deterministic function that doesn’t
involve any optimization. Available methods vary with the distribution: ‘gamma’:{‘APP’,
‘ML’}, ‘fisk’:{‘ML’} Default : APP.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
spei (DataArray) – Standardized precipitation evapotranspiration index (SPEI) (spei), with ad-
ditional attributes: description: Water budget (precipitation minus evapotranspiration) over a
moving {window}-X window, normalized such that SPEI averages to 0 for calibration data. The
window unit X is the minimal time period defined by the resampling frequency {freq}.

Notes

See Standardized Precipitation Index (SPI) for more details on usage.

xclim.indicators.atmos.standardized_precipitation_index(pr: Union[DataArray, str] = 'pr', pr_cal:
Union[DataArray, str] = 'pr_cal', *, freq:
str = 'MS', window: int = 1, dist: str =
'gamma', method: str = 'APP', ds: Dataset
= None)→ DataArray

Standardized Precipitation Index (SPI) (realm: atmos)

Precipitation over a moving window, normalized such that SPI averages to 0 for the calibration data. The window
unit X is the minimal time period defined by the resampling frequency.

This indicator will check for missing values according to the method “from_context”. Based on indice
standardized_precipitation_index().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

15.1. Indicators 443

https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

xclim Documentation, Release 0.39.0

• pr_cal (str or DataArray) – Daily precipitation used for calibration. Usually this is a tem-
poral subset of pr over some reference period. Default : ds.pr_cal. [Required units : [pre-
cipitation]]

• freq (offset alias (string)) – Resampling frequency. A monthly or daily frequency is expected.
Default : MS.

• window (number) – Averaging window length relative to the resampling frequency. For
example, if freq=”MS”, i.e. a monthly resampling, the window is an integer number of
months. Default : 1.

• dist ({‘gamma’, ‘fisk’}) – Name of the univariate distribution. (see scipy.stats). Default
: gamma.

• method ({‘APP’, ‘ML’}) – Name of the fitting method, such as ML (maximum likelihood),
APP (approximate). The approximate method uses a deterministic function that doesn’t in-
volve any optimization. Default : APP.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
spi (DataArray) – Standardized Precipitation Index (SPI) (spi), with additional attributes: de-
scription: Precipitations over a moving {window}-X window, normalized such that SPI averages
to 0 for calibration data. The window unit X is the minimal time period defined by resampling
frequency {freq}.

Notes

The length N of the N-month SPI is determined by choosing the window = N. Supported statistical distributions
are: [“gamma”]

References

McKee, Doesken, and Kleist [1993]

xclim.indicators.atmos.tg(tasmin: Union[DataArray, str] = 'tasmin', tasmax: Union[DataArray, str] =
'tasmax', *, ds: Dataset = None)→ DataArray

Mean temperature (realm: atmos)

The average daily temperature assuming a symmetrical temperature distribution (Tg = (Tx + Tn) / 2).

Based on indice tas().

Parameters
• tasmin (str or DataArray) – Minimum (daily) temperature Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum (daily) temperature Default : ds.tasmax. [Required
units : [temperature]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tg (DataArray) – Daily mean temperature (air_temperature) [K], with additional attributes:
cell_methods: time: mean within days; description: Estimated mean temperature from maxi-
mum and minimum temperatures.

444 Chapter 15. API

https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

xclim Documentation, Release 0.39.0

xclim.indicators.atmos.tg10p(tas: Union[DataArray, str] = 'tas', tas_per: Union[DataArray, str] = 'tas_per',
*, freq: str = 'YS', bootstrap: bool = False, op: str = '<', ds: Dataset = None,
**indexer)→ DataArray

Days with mean temperature below the 10th percentile (realm: atmos)

Number of days with mean temperature below the 10th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tg10p().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• tas_per (str or DataArray) – 10th percentile of daily mean temperature. Default : ds.tas_per.
[Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg10p (DataArray) – Number of days with mean temperature below the 10th percentile
(days_with_air_temperature_below_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with mean temperature below the
10th percentile. A {tas_per_window} day(s) window, centered on each calendar day in the
{tas_per_period} period, is used to compute the 10th percentile.

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

xclim.indicators.atmos.tg90p(tas: Union[DataArray, str] = 'tas', tas_per: Union[DataArray, str] = 'tas_per',
*, freq: str = 'YS', bootstrap: bool = False, op: str = '>', ds: Dataset = None,
**indexer)→ DataArray

Days with mean temperature above the 90th percentile (realm: atmos)

Number of days with mean temperature above the 90th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tg90p().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• tas_per (str or DataArray) – 90th percentile of daily mean temperature. Default : ds.tas_per.
[Required units : [temperature]]

15.1. Indicators 445

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg90p (DataArray) – Number of days with mean temperature above the 90th percentile
(days_with_air_temperature_above_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with mean temperature above the
90th percentile. A {tas_per_window} day(s) window, centered on each calendar day in the
{tas_per_period} period, is used to compute the 90th percentile.

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

xclim.indicators.atmos.tg_days_above(tas: Union[DataArray, str] = 'tas', *, thresh: str = '10.0 degC', freq:
str = 'YS', op: str = '>', ds: Dataset = None, **indexer)→
DataArray

Number of days with mean temperature above a given threshold (realm: atmos)

The number of days with mean temperature above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tg_days_above().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 10.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg_days_above (DataArray) – The number of days with mean temperature above {thresh}
(number_of_days_with_air_temperature_above_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where daily mean
temperature exceeds {thresh}.

446 Chapter 15. API

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝐺𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos.tg_days_below(tas: Union[DataArray, str] = 'tas', *, thresh: str = '10.0 degC', freq:
str = 'YS', op: str = '<', ds: Dataset = None, **indexer)→
DataArray

Number of days with mean temperature below a given threshold (realm: atmos)

The number of days with mean temperature below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tg_days_below().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 10.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg_days_below (DataArray) – The number of days with mean temperature below {thresh}
(number_of_days_with_air_temperature_below_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where daily mean
temperature is below {thresh}.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝐺𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos.tg_max(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Maximum of mean temperature (realm: atmos)

Maximum of daily mean temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tg_max().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

15.1. Indicators 447

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg_max (DataArray) – Maximum daily mean temperature (air_temperature) [K], with additional
attributes: cell_methods: time: maximum over days; description: {freq} maximum of daily
mean temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then the maximum daily mean temperature for period
𝑗 is:

𝑇𝑁𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑁𝑖𝑗)

xclim.indicators.atmos.tg_mean(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Mean temperature (realm: atmos)

Mean of daily mean temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
tg_mean().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg_mean (DataArray) – Mean daily mean temperature (air_temperature) [K], with additional
attributes: cell_methods: time: mean over days; description: {freq} mean of daily mean tem-
perature.

Notes

Let 𝑇𝑁𝑖 be the mean daily temperature of day 𝑖, then for a period 𝑝 starting at day 𝑎 and finishing on day 𝑏:

𝑇𝐺𝑝 =

∑︀𝑏
𝑖=𝑎 𝑇𝑁𝑖

𝑏− 𝑎+ 1

xclim.indicators.atmos.tg_min(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Minimum of mean temperature (realm: atmos)

Minimum of daily mean temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tg_min().

448 Chapter 15. API

xclim Documentation, Release 0.39.0

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg_min (DataArray) – Minimum daily mean temperature (air_temperature) [K], with additional
attributes: cell_methods: time: minimum over days; description: {freq} minimum of daily
mean temperature.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then the minimum daily mean temperature for period 𝑗
is:

𝑇𝐺𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝐺𝑖𝑗)

xclim.indicators.atmos.thawing_degree_days(tas: Union[DataArray, str] = 'tas', *, thresh: str = '0 degC',
freq: str = 'YS', ds: Dataset = None, **indexer)→
DataArray

Thawing degree days (realm: atmos)

The cumulative degree days for days when the average temperature is above a given threshold, typically 0°C.

This indicator will check for missing values according to the method “from_context”. Based on indice
growing_degree_days().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
thawing_degree_days (DataArray) – Cumulative sum of temperature degrees for mean daily
temperature above {thresh} (integral_of_air_temperature_excess_wrt_time) [K days], with ad-
ditional attributes: cell_methods: time: sum over days; description: {freq} thawing degree days
(mean temperature above {thresh}).

15.1. Indicators 449

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then the growing degree days are:

𝐺𝐷4𝑗 =

𝐼∑︁
𝑖=1

(𝑇𝐺𝑖𝑗 − 4|𝑇𝐺𝑖𝑗 > 4)

xclim.indicators.atmos.tn10p(tasmin: Union[DataArray, str] = 'tasmin', tasmin_per: Union[DataArray, str]
= 'tasmin_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '<', ds:
Dataset = None, **indexer)→ DataArray

Days with minimum temperature below the 10th percentile (realm: atmos)

Number of days with minimum temperature below the 10th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tn10p().

Parameters
• tasmin (str or DataArray) – Mean daily temperature. Default : ds.tasmin. [Required units :

[temperature]]

• tasmin_per (str or DataArray) – 10th percentile of daily minimum temperature. Default :
ds.tasmin_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn10p (DataArray) – Number of days with minimum temperature below the 10th percentile
(days_with_air_temperature_below_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with minimum temperature below the
10th percentile. A {tasmin_per_window} day(s) window, centered on each calendar day in the
{tasmin_per_period} period, is used to compute the 10th percentile.

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

xclim.indicators.atmos.tn90p(tasmin: Union[DataArray, str] = 'tasmin', tasmin_per: Union[DataArray, str]
= 'tasmin_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '>', ds:
Dataset = None, **indexer)→ DataArray

Days with minimum temperature above the 90th percentile (realm: atmos)

Number of days with minimum temperature above the 90th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tn90p().

450 Chapter 15. API

xclim Documentation, Release 0.39.0

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmin_per (str or DataArray) – 90th percentile of daily minimum temperature. Default :
ds.tasmin_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn90p (DataArray) – Number of days with minimum temperature above the 90th percentile
(days_with_air_temperature_above_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with minimum temperature above the
90th percentile. A {tasmin_per_window} day(s) window, centered on each calendar day in the
{tasmin_per_period} period, is used to compute the 90th percentile.

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

xclim.indicators.atmos.tn_days_above(tasmin: Union[DataArray, str] = 'tasmin', *, thresh: str = '20.0
degC', freq: str = 'YS', op: str = '>', ds: Dataset = None,
**indexer)→ DataArray

Number of days with minimum temperature above a given threshold (realm: atmos)

The number of days with minimum temperature above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tn_days_above().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 20.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

15.1. Indicators 451

xclim Documentation, Release 0.39.0

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn_days_above (DataArray) – The number of days with minimum temperature above {thresh}
(number_of_days_with_air_temperature_above_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where daily minimum
temperature exceeds {thresh}.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos.tn_days_below(tasmin: Union[DataArray, str] = 'tasmin', *, thresh: str = '-10.0
degC', freq: str = 'YS', op: str = '<', ds: Dataset = None,
**indexer)→ DataArray

Number of days with minimum temperature below a given threshold (realm: atmos)

The number of days with minimum temperature below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tn_days_below().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : -10.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn_days_below (DataArray) – The number of days with minimum temperature below {thresh}
(number_of_days_with_air_temperature_below_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where daily minimum
temperature is below {thresh}.

452 Chapter 15. API

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos.tn_max(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Maximum of minimum temperature (realm: atmos)

Maximum of daily minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tn_max().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn_max (DataArray) – Maximum daily minimum temperature (air_temperature) [K], with ad-
ditional attributes: cell_methods: time: maximum over days; description: {freq} maximum of
daily minimum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then the maximum daily minimum temperature for
period 𝑗 is:

𝑇𝑁𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑁𝑖𝑗)

xclim.indicators.atmos.tn_mean(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Mean of minimum temperature (realm: atmos)

Mean of daily minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
tn_mean().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

15.1. Indicators 453

xclim Documentation, Release 0.39.0

Returns
tn_mean (DataArray) – Mean daily minimum temperature (air_temperature) [K], with addi-
tional attributes: cell_methods: time: mean over days; description: {freq} mean of daily mini-
mum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then mean values in period 𝑗 are given by:

𝑇𝑁𝑖𝑗 =

∑︀𝐼
𝑖=1 𝑇𝑁𝑖𝑗

𝐼

xclim.indicators.atmos.tn_min(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Minimum temperature (realm: atmos)

Minimum of daily minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tn_min().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn_min (DataArray) – Minimum daily minimum temperature (air_temperature) [K], with addi-
tional attributes: cell_methods: time: minimum over days; description: {freq} minimum of
daily minimum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then the minimum daily minimum temperature for
period 𝑗 is:

𝑇𝑁𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝑁𝑖𝑗)

xclim.indicators.atmos.tropical_nights(tasmin: Union[DataArray, str] = 'tasmin', *, thresh: str = '20.0
degC', freq: str = 'YS', op: str = '>', ds: Dataset = None,
**indexer)→ DataArray

Tropical nights (realm: atmos)

Number of days where minimum temperature is above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tn_days_above().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

454 Chapter 15. API

xclim Documentation, Release 0.39.0

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 20.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tropical_nights (DataArray) – Number of days with minimum daily temperature above {thresh}
(number_of_days_with_air_temperature_above_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of Tropical Nights, defined
as days with minimum daily temperature above {thresh}.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos.tx10p(tasmax: Union[DataArray, str] = 'tasmax', tasmax_per: Union[DataArray,
str] = 'tasmax_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '<',
ds: Dataset = None, **indexer)→ DataArray

Days with maximum temperature below the 10th percentile (realm: atmos)

Number of days with maximum temperature below the 10th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tx10p().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• tasmax_per (str or DataArray) – 10th percentile of daily maximum temperature. Default :
ds.tasmax_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

15.1. Indicators 455

xclim Documentation, Release 0.39.0

Returns
tx10p (DataArray) – Number of days with maximum temperature below the 10th percentile
(days_with_air_temperature_below_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with maximum temperature below the
10th percentile. A {tasmax_per_window} day(s) window, centered on each calendar day in the
{tasmax_per_period} period, is used to compute the 10th percentile.

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

xclim.indicators.atmos.tx90p(tasmax: Union[DataArray, str] = 'tasmax', tasmax_per: Union[DataArray,
str] = 'tasmax_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '>',
ds: Dataset = None, **indexer)→ DataArray

Days with maximum temperature above the 90th percentile (realm: atmos)

Number of days with maximum temperature above the 90th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tx90p().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• tasmax_per (str or DataArray) – 90th percentile of daily maximum temperature. Default :
ds.tasmax_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx90p (DataArray) – Number of days with maximum temperature above the 90th percentile
(days_with_air_temperature_above_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with maximum temperature above the
90th percentile. A {tasmax_per_window} day(s) window, centered on each calendar day in the
{tasmax_per_period} period, is used to compute the 90th percentile.

456 Chapter 15. API

xclim Documentation, Release 0.39.0

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

xclim.indicators.atmos.tx_days_above(tasmax: Union[DataArray, str] = 'tasmax', *, thresh: str = '25.0
degC', freq: str = 'YS', op: str = '>', ds: Dataset = None,
**indexer)→ DataArray

Number of days with maximum temperature above a given threshold (realm: atmos)

The number of days with maximum temperature above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tx_days_above().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 25.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx_days_above (DataArray) – The number of days with maximum temperature above {thresh}
(number_of_days_with_air_temperature_above_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where daily maximum
temperature exceeds {thresh}.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos.tx_days_below(tasmax: Union[DataArray, str] = 'tasmax', *, thresh: str = '25.0
degC', freq: str = 'YS', op: str = '<', ds: Dataset = None,
**indexer)→ DataArray

Number of days with maximum temperature below a given threshold (realm: atmos)

The number of days with maximum temperature below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tx_days_below().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 25.0 degC. [Required units : [temperature]]

15.1. Indicators 457

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx_days_below (DataArray) – The number of days with maximum temperature below {thresh}
(number_of_days_with_air_temperature_below_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where daily max tem-
perature is below {thresh}.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos.tx_max(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Maximum temperature (realm: atmos)

Maximum of daily maximum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tx_max().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx_max (DataArray) – Maximum daily maximum temperature (air_temperature) [K], with ad-
ditional attributes: cell_methods: time: maximum over days; description: {freq} maximum of
daily maximum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then the maximum daily maximum temperature
for period 𝑗 is:

𝑇𝑋𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑋𝑖𝑗)

458 Chapter 15. API

xclim Documentation, Release 0.39.0

xclim.indicators.atmos.tx_mean(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Mean of maximum temperature (realm: atmos)

Mean of daily maximum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
tx_mean().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx_mean (DataArray) – Mean daily maximum temperature (air_temperature) [K], with addi-
tional attributes: cell_methods: time: mean over days; description: {freq} mean of daily max-
imum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then mean values in period 𝑗 are given by:

𝑇𝑋𝑖𝑗 =

∑︀𝐼
𝑖=1 𝑇𝑋𝑖𝑗

𝐼

xclim.indicators.atmos.tx_min(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Minimum of maximum temperature (realm: atmos)

Minimum of daily maximum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tx_min().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx_min (DataArray) – Minimum daily maximum temperature (air_temperature) [K], with ad-
ditional attributes: cell_methods: time: minimum over days; description: {freq} minimum of
daily maximum temperature.

15.1. Indicators 459

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then the minimum daily maximum temperature for
period 𝑗 is:

𝑇𝑋𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝑋𝑖𝑗)

xclim.indicators.atmos.tx_tn_days_above(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *, thresh_tasmin: str = '22
degC', thresh_tasmax: str = '30 degC', freq: str = 'YS', op: str =
'>', ds: Dataset = None, **indexer)→ DataArray

Number of days with daily minimum and maximum temperatures exceeding thresholds (realm: atmos)

Number of days with daily maximum and minimum temperatures above given thresholds.

This indicator will check for missing values according to the method “from_context”. Based on indice
tx_tn_days_above().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – Threshold temperature for tasmin on which
to base evaluation. Default : 22 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – Threshold temperature for tasmax on which
to base evaluation. Default : 30 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx_tn_days_above (DataArray) – Number of days with daily minimum above
{thresh_tasmin} and daily maximum temperatures above {thresh_tasmax} (num-
ber_of_days_with_air_temperature_above_threshold) [days], with additional attributes: de-
scription: {freq} number of days where daily maximum temperature exceeds {thresh_tasmax}
and minimum temperature exceeds {thresh_tasmin}.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗, 𝑇𝑁𝑖𝑗 the daily minimum temperature at day 𝑖 of
period 𝑗, 𝑇𝑋𝑡ℎ𝑟𝑒𝑠ℎ the threshold for maximum daily temperature, and 𝑇𝑁𝑡ℎ𝑟𝑒𝑠ℎ the threshold for minimum
daily temperature. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 > 𝑇𝑋𝑡ℎ𝑟𝑒𝑠ℎ[]

and where:

𝑇𝑁𝑖𝑗 > 𝑇𝑁𝑡ℎ𝑟𝑒𝑠ℎ[]

460 Chapter 15. API

xclim Documentation, Release 0.39.0

xclim.indicators.atmos.universal_thermal_climate_index(tas: Union[DataArray, str] = 'tas', hurs:
Union[DataArray, str] = 'hurs', sfcWind:
Union[DataArray, str] = 'sfcWind', mrt:
Optional[Union[DataArray, str]] = None,
rsds: Optional[Union[DataArray, str]] =
None, rsus: Optional[Union[DataArray,
str]] = None, rlds:
Optional[Union[DataArray, str]] = None,
rlus: Optional[Union[DataArray, str]] =
None, *, stat: str = 'average', mask_invalid:
bool = True, ds: Dataset = None)→
DataArray

Universal Thermal Climate Index (UTCI) (realm: atmos)

UTCI is the equivalent temperature for the environment derived from a reference environment and is used to
evaluate heat stress in outdoor spaces.

Based on indice universal_thermal_climate_index().

Parameters
• tas (str or DataArray) – Mean temperature Default : ds.tas. [Required units : [temperature]]

• hurs (str or DataArray) – Relative Humidity Default : ds.hurs. [Required units : []]

• sfcWind (str or DataArray) – Wind velocity Default : ds.sfcWind. [Required units : [speed]]

• mrt (str or DataArray, optional) – Mean radiant temperature [Required units : [tempera-
ture]]

• rsds (str or DataArray, optional) – Surface Downwelling Shortwave Radiation This is nec-
essary if mrt is not None. [Required units : [radiation]]

• rsus (str or DataArray, optional) – Surface Upwelling Shortwave Radiation This is necessary
if mrt is not None. [Required units : [radiation]]

• rlds (str or DataArray, optional) – Surface Downwelling Longwave Radiation This is nec-
essary if mrt is not None. [Required units : [radiation]]

• rlus (str or DataArray, optional) – Surface Upwelling Longwave Radiation This is necessary
if mrt is not None. [Required units : [radiation]]

• stat ({‘sunlit’, ‘average’, ‘instant’}) – Which statistic to apply. If “average”, the average of
the cosine of the solar zenith angle is calculated. If “instant”, the instantaneous cosine of the
solar zenith angle is calculated. If “sunlit”, the cosine of the solar zenith angle is calculated
during the sunlit period of each interval. If “instant”, the instantaneous cosine of the solar
zenith angle is calculated. This is necessary if mrt is not None. Default : average.

• mask_invalid (boolean) – If True (default), UTCI values are NaN where any of the inputs
are outside their validity ranges : -50°C < tas < 50°C, -30°C < tas - mrt < 30°C and 0.5 m/s
< sfcWind < 17.0 m/s. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
utci (DataArray) – Universal Thermal Climate Index (UTCI) [K], with additional attributes:
description: UTCI is the equivalent temperature for the environment derived from a reference
environment and is used to evaluate heat stress in outdoor spaces.

15.1. Indicators 461

xclim Documentation, Release 0.39.0

Notes

See: http://www.utci.org/utcineu/utcineu.php

References

Bröde [2009], Błażejczyk, Jendritzky, Bröde, Fiala, Havenith, Epstein, Psikuta, and Kampmann [2013]

xclim.indicators.atmos.warm_and_dry_days(tas: Union[DataArray, str] = 'tas', pr: Union[DataArray, str]
= 'pr', tas_per: Union[DataArray, str] = 'tas_per', pr_per:
Union[DataArray, str] = 'pr_per', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Warm and dry days (realm: atmos)

Number of days with temperature above a given percentile and precipitation below a given percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice
warm_and_dry_days().

Parameters
• tas (str or DataArray) – Mean daily temperature values Default : ds.tas. [Required units :

[temperature]]

• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• tas_per (str or DataArray) – Third quartile of daily mean temperature computed by month.
Default : ds.tas_per. [Required units : [temperature]]

• pr_per (str or DataArray) – First quartile of daily total precipitation computed by month. ..
warning:: Before computing the percentiles, all the precipitation below 1mm must be filtered
out! Otherwise, the percentiles will include non-wet days. Default : ds.pr_per. [Required
units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
warm_and_dry_days (DataArray) – Number of days where temperature is above
{tas_per_thresh}th percentile and precipitation is below {pr_per_thresh}th percentile [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number
of days where temperature is above {tas_per_thresh}th percentile and precipitation is below
{pr_per_thresh}th percentile.

462 Chapter 15. API

http://www.utci.org/utcineu/utcineu.php

xclim Documentation, Release 0.39.0

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indicators.atmos.warm_and_wet_days(tas: Union[DataArray, str] = 'tas', pr: Union[DataArray, str]
= 'pr', tas_per: Union[DataArray, str] = 'tas_per', pr_per:
Union[DataArray, str] = 'pr_per', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Warm and wet days (realm: atmos)

Number of days with temperature above a given percentile and precipitation above a given percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice
warm_and_wet_days().

Parameters
• tas (str or DataArray) – Mean daily temperature values Default : ds.tas. [Required units :

[temperature]]

• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• tas_per (str or DataArray) – Third quartile of daily mean temperature computed by month.
Default : ds.tas_per. [Required units : [temperature]]

• pr_per (str or DataArray) – Third quartile of daily total precipitation computed by month. ..
warning:: Before computing the percentiles, all the precipitation below 1mm must be filtered
out! Otherwise, the percentiles will include non-wet days. Default : ds.pr_per. [Required
units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
warm_and_wet_days (DataArray) – Number of days where temperature above
{tas_per_thresh}th percentile and precipitation above {pr_per_thresh}th percentile [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number
of days where temperature is above {tas_per_thresh}th percentile and precipitation is above
{pr_per_thresh}th percentile.

15.1. Indicators 463

xclim Documentation, Release 0.39.0

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indicators.atmos.warm_spell_duration_index(tasmax: Union[DataArray, str] = 'tasmax',
tasmax_per: Union[DataArray, str] = 'tasmax_per',
*, window: int = 6, freq: str = 'YS',
resample_before_rl: bool = True, bootstrap: bool =
False, op: str = '>', ds: Dataset = None)→
DataArray

Warm spell duration index (realm: atmos)

Number of days part of a percentile-defined warm spell. A warm spell occurs when the maximum daily temper-
ature is above a given percentile for a given number of consecutive days.

This indicator will check for missing values according to the method “from_context”. Based on indice
warm_spell_duration_index().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• tasmax_per (str or DataArray) – percentile(s) of daily maximum temperature. Default :
ds.tasmax_per. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature above threshold to qualify
as a warm spell. Default : 6.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
warm_spell_duration_index (DataArray) – Number of days with at least {window} consec-
utive days where the maximum daily temperature is above the {tasmax_per_thresh}th per-
centile(s) (number_of_days_with_air_temperature_above_threshold) [days], with additional at-
tributes: cell_methods: time: sum over days; description: {freq} number of days with at

464 Chapter 15. API

xclim Documentation, Release 0.39.0

least {window} consecutive days where the maximum daily temperature is above the {tas-
max_per_thresh}th percentile(s). A {tasmax_per_window} day(s) window, centred on each cal-
endar day in the {tasmax_per_period} period, is used to compute the {tasmax_per_thresh}th
percentile(s).

References

From the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI; [Zhang et al., 2011]).
Used in Alexander, Zhang, Peterson, Caesar, Gleason, Klein Tank, Haylock, Collins, Trewin, Rahimzadeh,
Tagipour, Rupa Kumar, Revadekar, Griffiths, Vincent, Stephenson, Burn, Aguilar, Brunet, Taylor, New, Zhai,
Rusticucci, and Vazquez-Aguirre [2006]

xclim.indicators.atmos.water_budget(pr: Union[DataArray, str] = 'pr', evspsblpot:
Optional[Union[DataArray, str]] = None, tasmin:
Optional[Union[DataArray, str]] = None, tasmax:
Optional[Union[DataArray, str]] = None, tas:
Optional[Union[DataArray, str]] = None, lat:
Optional[Union[DataArray, str]] = None, hurs:
Optional[Union[DataArray, str]] = None, rsds:
Optional[Union[DataArray, str]] = None, rsus:
Optional[Union[DataArray, str]] = None, rlds:
Optional[Union[DataArray, str]] = None, rlus:
Optional[Union[DataArray, str]] = None, sfcwind:
Optional[Union[DataArray, str]] = None, *, ds: Dataset = None)→
DataArray

Water budget (realm: atmos)

Precipitation minus potential evapotranspiration as a measure of an approximated surface water budget.

Based on indice water_budget(). With injected parameters: method=dummy.

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• evspsblpot (str or DataArray, optional) – Potential evapotranspiration [Required units : [pre-
cipitation]]

• tasmin (str or DataArray, optional) – Minimum daily temperature. [Required units : [tem-
perature]]

• tasmax (str or DataArray, optional) – Maximum daily temperature. [Required units : [tem-
perature]]

• tas (str or DataArray, optional) – Mean daily temperature. [Required units : [temperature]]

• lat (str or DataArray, optional) – Latitude coordinate, needed if evspsblpot is not given. If
None, a CF-conformant “latitude” field must be available within the pr DataArray. [Required
units : []]

• hurs (str or DataArray, optional) – Relative humidity. [Required units : []]

• rsds (str or DataArray, optional) – Surface Downwelling Shortwave Radiation [Required
units : [radiation]]

• rsus (str or DataArray, optional) – Surface Upwelling Shortwave Radiation [Required units
: [radiation]]

• rlds (str or DataArray, optional) – Surface Downwelling Longwave Radiation [Required
units : [radiation]]

15.1. Indicators 465

xclim Documentation, Release 0.39.0

• rlus (str or DataArray, optional) – Surface Upwelling Longwave Radiation [Required units
: [radiation]]

• sfcwind (str or DataArray, optional) – Surface wind velocity (at 10 m) [Required units :
[speed]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
water_budget (DataArray) – Water budget [kg m-2 s-1], with additional attributes: description:
Precipitation minus potential evapotranspiration as a measure of an approximated surface water
budget.

xclim.indicators.atmos.water_budget_from_tas(pr: Union[DataArray, str] = 'pr', evspsblpot:
Optional[Union[DataArray, str]] = None, tasmin:
Optional[Union[DataArray, str]] = None, tasmax:
Optional[Union[DataArray, str]] = None, tas:
Optional[Union[DataArray, str]] = None, lat:
Optional[Union[DataArray, str]] = None, hurs:
Optional[Union[DataArray, str]] = None, rsds:
Optional[Union[DataArray, str]] = None, rsus:
Optional[Union[DataArray, str]] = None, rlds:
Optional[Union[DataArray, str]] = None, rlus:
Optional[Union[DataArray, str]] = None, sfcwind:
Optional[Union[DataArray, str]] = None, *, method: str
= 'BR65', ds: Dataset = None)→ DataArray

Water budget (realm: atmos)

Precipitation minus potential evapotranspiration as a measure of an approximated surface water budget, where
the potential evapotranspiration is calculated with a given method.

Based on indice water_budget().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• evspsblpot (str or DataArray, optional) – Potential evapotranspiration [Required units : [pre-
cipitation]]

• tasmin (str or DataArray, optional) – Minimum daily temperature. [Required units : [tem-
perature]]

• tasmax (str or DataArray, optional) – Maximum daily temperature. [Required units : [tem-
perature]]

• tas (str or DataArray, optional) – Mean daily temperature. [Required units : [temperature]]

• lat (str or DataArray, optional) – Latitude coordinate, needed if evspsblpot is not given. If
None, a CF-conformant “latitude” field must be available within the pr DataArray. [Required
units : []]

• hurs (str or DataArray, optional) – Relative humidity. [Required units : []]

• rsds (str or DataArray, optional) – Surface Downwelling Shortwave Radiation [Required
units : [radiation]]

• rsus (str or DataArray, optional) – Surface Upwelling Shortwave Radiation [Required units
: [radiation]]

• rlds (str or DataArray, optional) – Surface Downwelling Longwave Radiation [Required
units : [radiation]]

466 Chapter 15. API

xclim Documentation, Release 0.39.0

• rlus (str or DataArray, optional) – Surface Upwelling Longwave Radiation [Required units
: [radiation]]

• sfcwind (str or DataArray, optional) – Surface wind velocity (at 10 m) [Required units :
[speed]]

• method (str) – Method to use to calculate the potential evapotranspiration. Default : BR65.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
water_budget_from_tas (DataArray) – Water budget (“{method}” method) [kg m-2 s-1], with
additional attributes: description: Precipitation minus potential evapotranspiration as a measure
of an approximated surface water budget, where the potential evapotranspiration is calculated
with the {method} method.

xclim.indicators.atmos.wet_precip_accumulation(pr: Union[DataArray, str] = 'pr', *, thresh: str = '1
mm/day', freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Total accumulated precipitation (solid and liquid) during wet days (realm: atmos)

Total accumulated precipitation on days with precipitation. A day is considered to have precipitation if the
precipitation is greater than or equal to a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
prcptot().

Parameters
• pr (str or DataArray) – Total precipitation flux [mm d-1], [mm week-1], [mm month-1] or

similar. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Threshold over which precipitation starts being cumu-
lated. Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
wet_prcptot (DataArray) – Total accumulated precipitation over days where precipitation
exceeds {thresh} (lwe_thickness_of_precipitation_amount) [mm], with additional attributes:
cell_methods: time: sum over days; description: {freq} total precipitation over wet days, de-
fined as days where precipitation exceeds {thresh}.

xclim.indicators.atmos.wetdays(pr: Union[DataArray, str] = 'pr', *, thresh: str = '1.0 mm/day', freq: str =
'YS', op: str = '>=', ds: Dataset = None, **indexer)→ DataArray

Number of wet days (realm: atmos)

The number of days with daily precipitation at or above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
wetdays().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

15.1. Indicators 467

xclim Documentation, Release 0.39.0

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1.0 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>=”. Default : >=.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
wetdays (DataArray) – Number of days with daily precipitation at or above {thresh} (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_at_or_above_threshold) [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number of
days with daily precipitation at or above {thresh}.

xclim.indicators.atmos.wetdays_prop(pr: Union[DataArray, str] = 'pr', *, thresh: str = '1.0 mm/day', freq:
str = 'YS', op: str = '>=', ds: Dataset = None, **indexer)→
DataArray

Proportion of wet days (realm: atmos)

The proportion of days with daily precipitation at or above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
wetdays_prop().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1.0 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>=”. Default : >=.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
wetdays_prop (DataArray) – Proportion of days with precipitation at or above {thresh} [1],
with additional attributes: cell_methods: time: sum over days; description: {freq} proportion
of days with precipitation at or above {thresh}.

xclim.indicators.atmos.wind_chill_index(tas: Union[DataArray, str] = 'tas', sfcWind: Union[DataArray,
str] = 'sfcWind', *, method: str = 'CAN', ds: Dataset = None)→
DataArray

Wind chill (realm: atmos)

Wind chill factor is an index that equates to how cold an average person feels. It is calculated from the temperature
and the wind speed at 10 m. As defined by Environment and Climate Change Canada, a second formula is used
for light winds. The standard formula is otherwise the same as used in the United States.

Based on indice wind_chill_index(). With injected parameters: mask_invalid=True.

Parameters

468 Chapter 15. API

xclim Documentation, Release 0.39.0

• tas (str or DataArray) – Surface air temperature. Default : ds.tas. [Required units : [tem-
perature]]

• sfcWind (str or DataArray) – Surface wind speed (10 m). Default : ds.sfcWind. [Required
units : [speed]]

• method ({‘US’, ‘CAN’}) – If “CAN” (default), a “slow wind” equation is used where winds
are slower than 5 km/h, see Notes. Default : CAN.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
wind_chill (DataArray) – Wind chill factor [degC], with additional attributes: description:
<Dynamically generated string>

Notes

Following the calculations of Environment and Climate Change Canada, this function switches from the stan-
dardized index to another one for slow winds. The standard index is the same as used by the National Weather
Service of the USA [US Department of Commerce, n.d.]. Given a temperature at surface 𝑇 (in °C) and 10-m
wind speed 𝑉 (in km/h), the Wind Chill Index 𝑊 (dimensionless) is computed as:

𝑊 = 13.12 + 0.6125 * 𝑇 − 11.37 * 𝑉 0.16 + 0.3965 * 𝑇 * 𝑉 0.16

Under slow winds (𝑉 < 5 km/h), and using the canadian method, it becomes:

𝑊 = 𝑇 +
−1.59 + 0.1345 * 𝑇

5
* 𝑉

Both equations are invalid for temperature over 0°C in the canadian method.

The american Wind Chill Temperature index (WCT), as defined by USA’s National Weather Service, is computed
when method=’US’. In that case, the maximal valid temperature is 50°F (10 °C) and minimal wind speed is 3
mph (4.8 km/h).

For more information, see:

• National Weather Service FAQ: [US Department of Commerce, n.d.].

• The New Wind Chill Equivalent Temperature Chart: [Osczevski and Bluestein, 2005].

References

Mekis, Vincent, Shephard, and Zhang [2015], US Department of Commerce [n.d.]

xclim.indicators.atmos.wind_speed_from_vector(uas: Union[DataArray, str] = 'uas', vas:
Union[DataArray, str] = 'vas', *, calm_wind_thresh: str
= '0.5 m/s', ds: Dataset = None)→ Tuple[DataArray,
DataArray]

Wind speed and direction from vector (realm: atmos)

Calculation of the magnitude and direction of the wind speed from the two components west-east and south-north.

Based on indice uas_vas_2_sfcwind().

Parameters
• uas (str or DataArray) – Eastward wind velocity Default : ds.uas. [Required units : [speed]]

• vas (str or DataArray) – Northward wind velocity Default : ds.vas. [Required units : [speed]]

15.1. Indicators 469

xclim Documentation, Release 0.39.0

• calm_wind_thresh (quantity (string with units)) – The threshold under which winds are
considered “calm” and for which the direction is set to 0. On the Beaufort scale, calm winds
are defined as < 0.5 m/s. Default : 0.5 m/s. [Required units : [speed]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
sfcWind (DataArray) – Near-surface wind speed (wind_speed) [m s-1], with additional at-
tributes: description: Wind speed computed as the magnitude of the (uas, vas) vec-
tor.sfcWindfromdir : DataArray Near-surface wind from direction (wind_from_direction) [de-
gree], with additional attributes: description: Wind direction computed as the angle of the (uas,
vas) vector. A direction of 0° is attributed to winds with a speed under {calm_wind_thresh}.

Notes

Winds with a velocity less than calm_wind_thresh are given a wind direction of 0°, while stronger northerly
winds are set to 360°.

xclim.indicators.atmos.wind_vector_from_speed(sfcWind: Union[DataArray, str] = 'sfcWind',
sfcWindfromdir: Union[DataArray, str] =
'sfcWindfromdir', *, ds: Dataset = None)→
Tuple[DataArray, DataArray]

Wind vector from speed and direction (realm: atmos)

Calculation of the two components (west-east and north-south) of the wind from the magnitude of its speed and
direction of origin.

Based on indice sfcwind_2_uas_vas().

Parameters
• sfcWind (str or DataArray) – Wind velocity Default : ds.sfcWind. [Required units : [speed]]

• sfcWindfromdir (str or DataArray) – Direction from which the wind blows, following the
meteorological convention where 360 stands for North. Default : ds.sfcWindfromdir. [Re-
quired units : []]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
uas (DataArray) – Near-surface eastward wind (eastward_wind) [m s-1], with additional at-
tributes: description: Eastward wind speed computed from the magnitude of its speed and di-
rection of origin.vas : DataArray Near-surface northward wind (northward_wind) [m s-1], with
additional attributes: description: Northward wind speed computed from magnitude of its speed
and direction of origin.

xclim.indicators.atmos.windy_days(sfcWind: Union[DataArray, str] = 'sfcWind', *, thresh: str = '10.8 m
s-1', freq: str = 'MS', ds: Dataset = None, **indexer)→ DataArray

Windy days (realm: atmos)

Number of days with surface wind speed at or above threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
windy_days().

Parameters
• sfcWind (str or DataArray) – Daily average near-surface wind speed. Default : ds.sfcWind.

[Required units : [speed]]

470 Chapter 15. API

xclim Documentation, Release 0.39.0

• thresh (quantity (string with units)) – Threshold average near-surface wind speed on which
to base evaluation. Default : 10.8 m s-1. [Required units : [speed]]

• freq (offset alias (string)) – Resampling frequency. Default : MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
windy_days (DataArray) – Number of days with surface wind speed at or above {thresh} (num-
ber_of_days_with_sfcWind_above_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with surface wind speed at or above
{thresh}.

Notes

Let 𝑊𝑆𝑖𝑗 be the windspeed at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑊𝑆𝑖𝑗 >= 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑠− 1]

15.1.2 Land indicators

xclim.indicators.land.base_flow_index(q: Union[DataArray, str] = 'q', *, freq: str = 'YS', ds: Dataset =
None)→ DataArray

Base flow index (realm: land)

Return the base flow index, defined as the minimum 7-day average flow divided by the mean flow.

This indicator will check for missing values according to the method “from_context”. Based on indice
base_flow_index().

Parameters
• q (str or DataArray) – Rate of river discharge. Default : ds.q. [Required units : [discharge]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
base_flow_index (DataArray) – Base flow index, with additional attributes: description: Min-
imum of the 7-day moving average flow divided by the mean flow.

Notes

Let q = 𝑞0, 𝑞1, . . . , 𝑞𝑛 be the sequence of daily discharge and q the mean flow over the period. The base flow
index is given by:

min(CMA7(q))

q

where CMA7 is the seven days moving average of the daily flow:

CMA7(𝑞𝑖) =

∑︀𝑖+3
𝑗=𝑖−3 𝑞𝑗

7

15.1. Indicators 471

xclim Documentation, Release 0.39.0

xclim.indicators.land.blowing_snow(snd: Union[DataArray, str] = 'snd', sfcWind: Union[DataArray, str] =
'sfcWind', *, snd_thresh: str = '5 cm', sfcWind_thresh: str = '15 km/h',
window: int = 3, freq: str = 'AS-JUL', ds: Dataset = None)→
DataArray

Blowing snow days (realm: land)

The number of days with snowfall, snow depth, and windspeed over given thresholds for a period of days.

This indicator will check for missing values according to the method “from_context”. Based on indice
blowing_snow().

Parameters
• snd (str or DataArray) – Surface snow depth. Default : ds.snd. [Required units : [length]]

• sfcWind (str or DataArray) – Wind velocity Default : ds.sfcWind. [Required units : [speed]]

• snd_thresh (quantity (string with units)) – Threshold on net snowfall accumulation over the
last window days. Default : 5 cm. [Required units : [length]]

• sfcWind_thresh (quantity (string with units)) – Wind speed threshold. Default : 15 km/h.
[Required units : [speed]]

• window (number) – Period over which snow is accumulated before comparing against
threshold. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
{freq}_blowing_snow (DataArray) – Days with snowfall and wind speed at or above given
thresholds [days], with additional attributes: description: The {freq} number of days with snow-
fall over last {window} days above {snd_thresh} and wind speed above {sfcWind_thresh}.

xclim.indicators.land.continuous_snow_cover_end(snd: Union[DataArray, str] = 'snd', *, thresh: str = '2
cm', window: int = 14, freq: str = 'AS-JUL', ds:
Dataset = None)→ DataArray

End date of continuous snow cover (realm: land)

The first date on which snow depth is below a given threshold for a given number of consecutive days.

This indicator will check for missing values according to the method “from_context”. Based on indice
continuous_snow_cover_end().

Parameters
• snd (str or DataArray) – Surface snow thickness. Default : ds.snd. [Required units :

[length]]

• thresh (quantity (string with units)) – Threshold snow thickness. Default : 2 cm. [Required
units : [length]]

• window (number) – Minimum number of days with snow depth below threshold. Default :
14.

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
continuous_snow_cover_end (DataArray) – End date of continuous snow cover (day_of_year),
with additional attributes: description: Day of year when snow depth is below {thresh} for
{window} consecutive days.

472 Chapter 15. API

xclim Documentation, Release 0.39.0

References

Chaumont, Mailhot, Diaconescu, Fournier, and Logan [2017]

xclim.indicators.land.continuous_snow_cover_start(snd: Union[DataArray, str] = 'snd', *, thresh: str =
'2 cm', window: int = 14, freq: str = 'AS-JUL', ds:
Dataset = None)→ DataArray

Start date of continuous snow cover (realm: land)

The first date on which snow depth is greater than or equal to a given threshold for a given number of consecutive
days.

This indicator will check for missing values according to the method “from_context”. Based on indice
continuous_snow_cover_start().

Parameters
• snd (str or DataArray) – Surface snow thickness. Default : ds.snd. [Required units :

[length]]

• thresh (quantity (string with units)) – Threshold snow thickness. Default : 2 cm. [Required
units : [length]]

• window (number) – Minimum number of days with snow depth above or equal to threshold.
Default : 14.

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
continuous_snow_cover_start (DataArray) – Start date of continuous snow cover
(day_of_year), with additional attributes: description: Day of year when snow depth is
above or equal to {thresh} for {window} consecutive days.

References

Chaumont, Mailhot, Diaconescu, Fournier, and Logan [2017]

xclim.indicators.land.doy_qmax(da: Union[DataArray, str] = 'da', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Day of year of the maximum streamflow (realm: land)

This indicator will check for missing values according to the method “from_context”. Based on indice
select_resample_op(). With injected parameters: op=<function doymax at 0x7fc835069120>.

Parameters
• da (str or DataArray) – Input data. Default : ds.da.

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Time attribute and values over which to subset the array. For example, use sea-
son=’DJF’ to select winter values, month=1 to select January, or month=[6,7,8] to select
summer months. If not indexer is given, all values are considered. Default : None.

15.1. Indicators 473

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

Returns
q{indexer}_doy_qmax (DataArray) – Day of the year of the maximum streamflow over {in-
dexer}, with additional attributes: description: Day of the year of the maximum streamflow
over {indexer}.

xclim.indicators.land.doy_qmin(da: Union[DataArray, str] = 'da', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Day of year of the minimum streamflow (realm: land)

This indicator will check for missing values according to the method “from_context”. Based on indice
select_resample_op(). With injected parameters: op=<function doymin at 0x7fc8350691b0>.

Parameters
• da (str or DataArray) – Input data. Default : ds.da.

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Time attribute and values over which to subset the array. For example, use sea-
son=’DJF’ to select winter values, month=1 to select January, or month=[6,7,8] to select
summer months. If not indexer is given, all values are considered. Default : None.

Returns
q{indexer}_doy_qmin (DataArray) – Day of the year of the minimum streamflow over {in-
dexer}, with additional attributes: description: Day of the year of the minimum streamflow over
{indexer}.

xclim.indicators.land.fit(da: Union[DataArray, str] = 'da', *, dist: str = 'norm', method: str = 'ML', dim:
str = 'time', ds: Dataset = None, **fitkwargs)→ DataArray

Distribution parameters fitted over the time dimension. (realm: land)

Based on indice fit().

Parameters
• da (str or DataArray) – Time series to be fitted along the time dimension. Default : ds.da.

• dist (str) – Name of the univariate distribution, such as beta, expon, genextreme, gamma,
gumbel_r, lognorm, norm (see :py:mod:scipy.stats for full list). If the PWM method is used,
only the following distributions are currently supported: ‘expon’, ‘gamma’, ‘genextreme’,
‘genpareto’, ‘gumbel_r’, ‘pearson3’, ‘weibull_min’. Default : norm.

• method ({‘APP’, ‘ML’, ‘PWM’}) – Fitting method, either maximum likelihood (ML), prob-
ability weighted moments (PWM), also called L-Moments, or approximate method (APP)
The PWM method is usually more robust to outliers. Default : ML.

• dim (str) – The dimension upon which to perform the indexing (default: “time”). Other
arguments passed directly to _fitstart() and to the distribution’s fit. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• fitkwargs – Default : None.

Returns
params (DataArray) – {dist} distribution parameters ({dist} parameters), with additional at-
tributes: cell_methods: time: fit; description: Parameters of the {dist} distribution.

474 Chapter 15. API

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

Notes

Coordinates for which all values are NaNs will be dropped before fitting the distribution. If the array still contains
NaNs, the distribution parameters will be returned as NaNs.

xclim.indicators.land.freq_analysis(da: Union[DataArray, str] = 'da', *, mode: str, t: int | Sequence[int],
dist: str, window: int = 1, freq: str | None = None, ds: Dataset =
None, **indexer)→ DataArray

Return period flow amount (realm: land)

Streamflow frequency analysis on the basis of a given mode and distribution.

This indicator will check for missing values according to the method “skip”. Based on indice
frequency_analysis().

Parameters
• da (str or DataArray) – Input data. Default : ds.da.

• mode ({‘max’, ‘min’}) – Whether we are looking for a probability of exceedance (high) or a
probability of non-exceedance (low). Default : ds.da.

• t (number or sequence of numbers) – Return period. The period depends on the resolution
of the input data. If the input array’s resolution is yearly, then the return period is in years.
Default : ds.da.

• dist (str) – Name of the univariate distribution, e.g. beta, expon, genextreme, gamma, gum-
bel_r, lognorm, norm. Default : ds.da.

• window (number) – Averaging window length (days). Default : 1.

• freq (offset alias (string)) – Resampling frequency. If None, the frequency is assumed to be
‘YS’ unless the indexer is season=’DJF’, in which case freq would be set to AS-DEC. Default
: None.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Time attribute and values over which to subset the array. For example, use sea-
son=’DJF’ to select winter values, month=1 to select January, or month=[6,7,8] to select
summer months. If not indexer is given, all values are considered. Default : None.

Returns
q{window}{mode (r}{indexer} : DataArray) – N-year return period flow amount [m^3 s-1],
with additional attributes: description: Streamflow frequency analysis for the {mode} {indexer}
{window}-day flow estimated using the {dist} distribution.

xclim.indicators.land.rb_flashiness_index(q: Union[DataArray, str] = 'q', *, freq: str = 'YS', ds: Dataset
= None)→ DataArray

Richards-Baker Flashiness Index (realm: land)

Measurement of flow oscillations relative to average flow, quantifying the frequency and speed of flow changes.

This indicator will check for missing values according to the method “from_context”. Based on indice
rb_flashiness_index().

Parameters
• q (str or DataArray) – Rate of river discharge. Default : ds.q. [Required units : [discharge]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

15.1. Indicators 475

xclim Documentation, Release 0.39.0

Returns
rbi (DataArray) – Richards-Baker Flashiness Index, with additional attributes: description:
{freq} of Richards-Baker Index, an index measuring the flashiness of flow.

Notes

Let q = 𝑞0, 𝑞1, . . . , 𝑞𝑛 be the sequence of daily discharge, the R-B Index is given by:∑︀𝑛
𝑖=1 |𝑞𝑖 − 𝑞𝑖−1|∑︀𝑛

𝑖=1 𝑞𝑖

References

Baker, Richards, Loftus, and Kramer [2004]

xclim.indicators.land.snd_max_doy(snd: Union[DataArray, str] = 'snd', *, freq: str = 'AS-JUL', ds: Dataset
= None, **indexer)→ DataArray

Day of year of maximum snow depth (realm: land)

Day of the year when snow depth reaches its maximum value.

This indicator will check for missing values according to the method “from_context”. Based on indice
snd_max_doy().

Parameters
• snd (str or DataArray) – Surface snow depth. Default : ds.snd. [Required units : [length]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
{freq}_snd_max_doy (DataArray) – Day of the year when snow depth reaches its maximum
value (day_of_year), with additional attributes: description: The {freq} day of the year when
snow depth reaches its maximum value.

xclim.indicators.land.snow_cover_duration(snd: Union[DataArray, str] = 'snd', *, thresh: str = '2 cm',
freq: str = 'AS-JUL', ds: Dataset = None, **indexer)→
DataArray

Snow cover duration (realm: land)

Number of days when the snow depth is greater than or equal to a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
snow_cover_duration().

Parameters
• snd (str or DataArray) – Surface snow thickness. Default : ds.snd. [Required units :

[length]]

• thresh (quantity (string with units)) – Threshold snow thickness. Default : 2 cm. [Required
units : [length]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

476 Chapter 15. API

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
snow_cover_duration (DataArray) – Number of days with snow depth at or above threshold
[days], with additional attributes: description: The {freq} number of days with snow depth
greater than or equal to {thresh}.

xclim.indicators.land.snow_depth(snd: Union[DataArray, str] = 'snd', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Mean snow depth (realm: land)

Mean of daily snow depth.

This indicator will check for missing values according to the method “from_context”. Based on indice
snow_depth().

Parameters
• snd (str or DataArray) – Mean daily snow depth. Default : ds.snd. [Required units : [length]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
snow_depth (DataArray) – Mean of daily snow depth (surface_snow_thickness) [cm], with ad-
ditional attributes: cell_methods: time: mean over days; description: The {freq} mean of daily
mean snow depth.

xclim.indicators.land.snow_melt_we_max(snw: Union[DataArray, str] = 'snw', *, window: int = 3, freq: str
= 'AS-JUL', ds: Dataset = None)→ DataArray

Maximum snow melt (realm: land)

The water equivalent of the maximum snow melt.

This indicator will check for missing values according to the method “from_context”. Based on indice
snow_melt_we_max().

Parameters
• snw (str or DataArray) – Snow amount (mass per area). Default : ds.snw. [Required units :

[mass]/[area]]

• window (number) – Number of days during which the melt is accumulated. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
{freq}_snow_melt_we_max (DataArray) – Maximum snow melt
(change_over_time_in_surface_snow_amount) [kg m-2], with additional attributes: de-
scription: The {freq} maximum negative change in melt amount over {window} days.

15.1. Indicators 477

xclim Documentation, Release 0.39.0

xclim.indicators.land.snw_max(snw: Union[DataArray, str] = 'snw', *, freq: str = 'AS-JUL', ds: Dataset =
None, **indexer)→ DataArray

Maximum snow amount (realm: land)

The maximum snow water equivalent amount on the surface.

This indicator will check for missing values according to the method “from_context”. Based on indice
snw_max().

Parameters
• snw (str or DataArray) – Snow amount (mass per area). Default : ds.snw. [Required units :

[mass]/[area]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
{freq}_snw_max (DataArray) – Maximum snow water equivalent amount (sur-
face_snow_amount) [kg m-2], with additional attributes: description: The {freq} maximum
snow water equivalent amount on the surface.

xclim.indicators.land.snw_max_doy(snw: Union[DataArray, str] = 'snw', *, freq: str = 'AS-JUL', ds: Dataset
= None, **indexer)→ DataArray

Day of year of maximum snow amount (realm: land)

The day of year when snow water equivalent amount on the surface reaches its maximum.

This indicator will check for missing values according to the method “from_context”. Based on indice
snw_max_doy().

Parameters
• snw (str or DataArray) – Surface snow amount. Default : ds.snw. [Required units :

[mass]/[area]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
{freq}_snw_max_doy (DataArray) – Day of year of maximum daily snow water equivalent
amount (day_of_year), with additional attributes: description: The {freq} day of year when
snow water equivalent amount on the surface reaches its maximum.

xclim.indicators.land.stats(da: Union[DataArray, str] = 'da', *, op: str, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Statistic of the daily flow for a given period. (realm: land)

This indicator will check for missing values according to the method “any”. Based on indice
select_resample_op().

Parameters

478 Chapter 15. API

xclim Documentation, Release 0.39.0

• da (str or DataArray) – Input data. Default : ds.da.

• op ({‘var’, ‘mean’, ‘min’, ‘sum’, ‘argmin’, ‘max’, ‘argmax’, ‘std’, ‘count’}) – Reduce oper-
ation. Can either be a DataArray method or a function that can be applied to a DataArray.
Default : ds.da.

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Time attribute and values over which to subset the array. For example, use sea-
son=’DJF’ to select winter values, month=1 to select January, or month=[6,7,8] to select
summer months. If not indexer is given, all values are considered. Default : None.

Returns
q{indexer}{op (r} : DataArray) – Daily flow statistics [m^3 s-1], with additional attributes:
description: {freq} {op} of daily flow ({indexer}).

xclim.indicators.land.winter_storm(snd: Union[DataArray, str] = 'snd', *, thresh: str = '25 cm', freq: str =
'AS-JUL', ds: Dataset = None, **indexer)→ DataArray

Winter storm days (realm: land)

Number of days with snowfall accumulation greater or equal to threshold (default: 25 cm).

This indicator will check for missing values according to the method “from_context”. Based on indice
winter_storm().

Parameters
• snd (str or DataArray) – Surface snow depth. Default : ds.snd. [Required units : [length]]

• thresh (quantity (string with units)) – Threshold on snowfall accumulation require to label
an event a winter storm. Default : 25 cm. [Required units : [length]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
{freq}_winter_storm (DataArray) – Days with snowfall at or above a given threshold [days],
with additional attributes: description: The {freq} number of days with snowfall accumulation
above {thresh}.

Notes

Snowfall accumulation is estimated by the change in snow depth.

15.1. Indicators 479

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

15.1.3 Ice-related indicators

xclim.indicators.seaIce.sea_ice_area(siconc: Union[DataArray, str] = 'siconc', areacello:
Union[DataArray, str] = 'areacello', *, thresh: str = '15 pct', ds:
Dataset = None)→ DataArray

Sea ice area (realm: seaIce)

A measure of total ocean surface covered by sea ice.

This indicator will check for missing values according to the method “skip”. Based on indice sea_ice_area().

Parameters
• siconc (str or DataArray) – Sea ice concentration (area fraction). Default : ds.siconc. [Re-

quired units : []]

• areacello (str or DataArray) – Grid cell area (usually over the ocean). Default : ds.areacello.
[Required units : [area]]

• thresh (quantity (string with units)) – Minimum sea ice concentration for a grid cell to con-
tribute to the sea ice extent. Default : 15 pct. [Required units : []]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
sea_ice_area (DataArray) – Sum of ice-covered areas where sea ice concentration exceeds
{thresh} (sea_ice_area) [m2], with additional attributes: cell_methods: lon: sum lat: sum; de-
scription: The sum of ice-covered areas where sea ice concentration exceeds {thresh}.

Notes

To compute sea ice area over a subregion, first mask or subset the input sea ice concentration data.

References

“What is the difference between sea ice area and extent?” - NSIDC [2008]

xclim.indicators.seaIce.sea_ice_extent(siconc: Union[DataArray, str] = 'siconc', areacello:
Union[DataArray, str] = 'areacello', *, thresh: str = '15 pct', ds:
Dataset = None)→ DataArray

Sea ice extent (realm: seaIce)

A measure of the extent of all areas where sea ice concentration exceeds a threshold.

This indicator will check for missing values according to the method “skip”. Based on indice
sea_ice_extent().

Parameters
• siconc (str or DataArray) – Sea ice concentration (area fraction). Default : ds.siconc. [Re-

quired units : []]

• areacello (str or DataArray) – Grid cell area. Default : ds.areacello. [Required units :
[area]]

• thresh (quantity (string with units)) – Minimum sea ice concentration for a grid cell to con-
tribute to the sea ice extent. Default : 15 pct. [Required units : []]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

480 Chapter 15. API

xclim Documentation, Release 0.39.0

Returns
sea_ice_extent (DataArray) – Sum of ocean areas where sea ice concentration exceeds {thresh}
(sea_ice_extent) [m2], with additional attributes: cell_methods: lon: sum lat: sum; description:
The sum of ocean areas where sea ice concentration exceeds {thresh}.

Notes

To compute sea ice area over a subregion, first mask or subset the input sea ice concentration data.

References

“What is the difference between sea ice area and extent?” - NSIDC [2008]

15.1.4 Virtual indicator submodules

CF Standard indices

Indicators found here are defined by the team at clix-meta. Adapted documentation from that repository follows:

The repository aims to provide a platform for thinking about, and developing, a unified view of metadata elements
required to describe climate indices (aka climate indicators).

To facilitate data exchange and dissemination the metadata should, as far as possible, follow the Climate and Forecasting
(CF) Conventions. Considering the very rich and diverse flora of climate indices, this is however not always possible. By
collecting a wide range of different indices it is easier to discover any common patterns and features that are currently not
well covered by the CF Conventions. Currently identified issues frequently relate to standard_name and/or cell_methods
which both are controlled vocabularies of the CF Conventions.

xclim.indicators.cf.cdd(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: threshold=1 mm day-1, reducer=max, op=<.

Parameters
• pr (str or DataArray) – Surface precipitation flux (all phases). Default : ds.pr. [Required

units : kg m-2 s-1]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
cdd (DataArray) – Maximum consecutive dry days (Precip < 1mm)
(spell_length_of_days_with_lwe_thickness_of_precipitation_amount_below_threshold) [day],
with additional attributes: cell_methods: time: sum over days; proposed_standard_name:
spell_length_with_lwe_thickness_of_precipitation_amount_below_threshold

15.1. Indicators 481

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

ETCCDI clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.cddcoldTT(tas: Union[DataArray, str] = 'tas', *, threshold: str, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Calculate the temperature sum above/below a threshold. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, the sum is calculated
for those data values that fulfill the condition after subtraction of the threshold value. If the sum is for values
below the threshold the result is multiplied by -1.

This indicator will check for missing values according to the method “from_context”. Based on indice
temperature_sum(). With injected parameters: op=>.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tas. [Required units :
degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
cddcold{threshold} (DataArray) – Cooling Degree Days (Tmean > {threshold}C) (inte-
gral_wrt_time_of_air_temperature_excess) [degree_Celsius day], with additional attributes:
cell_methods: time: sum over days

References

ET-SCI clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.cfd(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', constrain:
Sequence[str] | None = None, ds: Dataset = None)→ DataArray

Calculate the number of times some condition is met. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, then this counts the number of times data <
threshold. Finally, count the number of occurrences when condition is met.

This indicator will check for missing values according to the method “from_context”. Based on indice
count_occurrences(). With injected parameters: threshold=0 degree_Celsius, op=<.

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• constrain (Any) – Optionally allowed conditions. Default : None.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

482 Chapter 15. API

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

Returns
cfd (DataArray) – Maximum number of consecutive frost days (Tmin < 0 C)
(spell_length_of_days_with_air_temperature_below_threshold) [day], with additional
attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_below_threshold

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.csu(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', constrain:
Sequence[str] | None = None, ds: Dataset = None)→ DataArray

Calculate the number of times some condition is met. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, then this counts the number of times data <
threshold. Finally, count the number of occurrences when condition is met.

This indicator will check for missing values according to the method “from_context”. Based on indice
count_occurrences(). With injected parameters: threshold=25 degree_Celsius, op=>.

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• constrain (Any) – Optionally allowed conditions. Default : None.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
csu (DataArray) – Maximum number of consecutive summer days (Tmax >25 C)
(spell_length_of_days_with_air_temperature_above_threshold) [day], with additional
attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_above_threshold

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ctmgeTT(tas: Union[DataArray, str] = 'tas', *, threshold: str, freq: str = 'YS', ds: Dataset
= None)→ DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: reducer=max, op=>.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

15.1. Indicators 483

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta

xclim Documentation, Release 0.39.0

• threshold (quantity (string with units)) – air temperature Default : ds.tas. [Required units :
degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ctmge{threshold} (DataArray) – Maximum number of consecutive days with Tmean >=
{threshold}C (spell_length_of_days_with_air_temperature_above_threshold) [day], with addi-
tional attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_at_or_above_threshold

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ctmgtTT(tas: Union[DataArray, str] = 'tas', *, threshold: str, freq: str = 'YS', ds: Dataset
= None)→ DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: reducer=max, op=>.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tas. [Required units :
degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ctmgt{threshold} (DataArray) – Maximum number of consecutive days with Tmean >
{threshold}C (spell_length_of_days_with_air_temperature_above_threshold) [day], with addi-
tional attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_above_threshold

484 Chapter 15. API

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ctmleTT(tas: Union[DataArray, str] = 'tas', *, threshold: str, freq: str = 'YS', ds: Dataset
= None)→ DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: reducer=max, op=<.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tas. [Required units :
degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ctmle{threshold} (DataArray) – Maximum number of consecutive days with Tmean <=
{threshold}C (spell_length_of_days_with_air_temperature_below_threshold) [day], with ad-
ditional attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_at_or_below_threshold

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ctmltTT(tas: Union[DataArray, str] = 'tas', *, threshold: str, freq: str = 'YS', ds: Dataset
= None)→ DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: reducer=max, op=<.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tas. [Required units :
degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

15.1. Indicators 485

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

Returns
ctmlt{threshold} (DataArray) – Maximum number of consecutive days with Tmean <
{threshold}C (spell_length_of_days_with_air_temperature_below_threshold) [day], with ad-
ditional attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_below_threshold

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ctngeTT(tasmin: Union[DataArray, str] = 'tasmin', *, threshold: str, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: reducer=max, op=>.

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tasmin. [Required
units : degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ctnge{threshold} (DataArray) – Maximum number of consecutive days with Tmin >=
{threshold}C (spell_length_of_days_with_air_temperature_above_threshold) [day], with addi-
tional attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_at_or_above_threshold

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ctngtTT(tasmin: Union[DataArray, str] = 'tasmin', *, threshold: str, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: reducer=max, op=>.

Parameters

486 Chapter 15. API

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta

xclim Documentation, Release 0.39.0

• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required
units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tasmin. [Required
units : degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ctngt{threshold} (DataArray) – Maximum number of consecutive days with Tmin >
{threshold}C (spell_length_of_days_with_air_temperature_above_threshold) [day], with addi-
tional attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_above_threshold

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ctnleTT(tasmin: Union[DataArray, str] = 'tasmin', *, threshold: str, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: reducer=max, op=<.

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tasmin. [Required
units : degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ctnle{threshold} (DataArray) – Maximum number of consecutive days with Tmin <=
{threshold}C (spell_length_of_days_with_air_temperature_below_threshold) [day], with ad-
ditional attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_at_or_below_threshold

15.1. Indicators 487

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ctnltTT(tasmin: Union[DataArray, str] = 'tasmin', *, threshold: str, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: reducer=max, op=<.

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tasmin. [Required
units : degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ctnlt{threshold} (DataArray) – Maximum number of consecutive days with Tmin <
{threshold}C (spell_length_of_days_with_air_temperature_below_threshold) [day], with ad-
ditional attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_below_threshold

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ctxgeTT(tasmax: Union[DataArray, str] = 'tasmax', *, threshold: str, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: reducer=max, op=>.

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tasmax. [Required
units : degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

488 Chapter 15. API

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ctxge{threshold} (DataArray) – Maximum number of consecutive days with Tmax >=
{threshold}C (spell_length_of_days_with_air_temperature_above_threshold) [day], with addi-
tional attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_at_or_above_threshold

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ctxgtTT(tasmax: Union[DataArray, str] = 'tasmax', *, threshold: str, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: reducer=max, op=>.

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tasmax. [Required
units : degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ctxgt{threshold} (DataArray) – Maximum number of consecutive days with Tmax >
{threshold}C (spell_length_of_days_with_air_temperature_above_threshold) [day], with addi-
tional attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_above_threshold

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ctxleTT(tasmax: Union[DataArray, str] = 'tasmax', *, threshold: str, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: reducer=max, op=<.

Parameters

15.1. Indicators 489

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta

xclim Documentation, Release 0.39.0

• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required
units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tasmax. [Required
units : degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ctxle{threshold} (DataArray) – Maximum number of consecutive days with Tmax <=
{threshold}C (spell_length_of_days_with_air_temperature_below_threshold) [day], with ad-
ditional attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_at_or_below_threshold

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ctxltTT(tasmax: Union[DataArray, str] = 'tasmax', *, threshold: str, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: reducer=max, op=<.

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tasmax. [Required
units : degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ctxlt{threshold} (DataArray) – Maximum number of consecutive days with Tmax <
{threshold}C (spell_length_of_days_with_air_temperature_below_threshold) [day], with ad-
ditional attributes: cell_methods: time: maximum over days; proposed_standard_name:
spell_length_with_air_temperature_below_threshold

490 Chapter 15. API

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.cwd(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate statistics on lengths of spells. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
spell_length(). With injected parameters: threshold=1 mm day-1, reducer=max, op=>.

Parameters
• pr (str or DataArray) – Surface precipitation flux (all phases). Default : ds.pr. [Required

units : kg m-2 s-1]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
cwd (DataArray) – Maximum consecutive wet days (Precip >= 1mm)
(spell_length_of_days_with_lwe_thickness_of_precipitation_amount_above_threshold) [day],
with additional attributes: cell_methods: time: sum over days; proposed_standard_name:
spell_length_with_lwe_thickness_of_precipitation_amount_at_or_above_threshold

References

ETCCDI clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ddgtTT(tas: Union[DataArray, str] = 'tas', *, threshold: str, freq: str = 'YS', ds: Dataset
= None)→ DataArray

Calculate the temperature sum above/below a threshold. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, the sum is calculated
for those data values that fulfill the condition after subtraction of the threshold value. If the sum is for values
below the threshold the result is multiplied by -1.

This indicator will check for missing values according to the method “from_context”. Based on indice
temperature_sum(). With injected parameters: op=>.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tas. [Required units :
degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

15.1. Indicators 491

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

Returns
ddgt{threshold} (DataArray) – Degree Days (Tmean > {threshold}C) (inte-
gral_wrt_time_of_air_temperature_excess) [degree_Celsius day], with additional attributes:
cell_methods: time: sum over days

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ddltTT(tas: Union[DataArray, str] = 'tas', *, threshold: str, freq: str = 'YS', ds: Dataset
= None)→ DataArray

Calculate the temperature sum above/below a threshold. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, the sum is calculated
for those data values that fulfill the condition after subtraction of the threshold value. If the sum is for values
below the threshold the result is multiplied by -1.

This indicator will check for missing values according to the method “from_context”. Based on indice
temperature_sum(). With injected parameters: op=<.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tas. [Required units :
degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ddlt{threshold} (DataArray) – Degree Days (Tmean < {threshold}C) (inte-
gral_wrt_time_of_air_temperature_deficit) [degree_Celsius day], with additional attributes:
cell_methods: time: sum over days

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.dtr(tasmax: Union[DataArray, str] = 'tasmax', tasmin: Union[DataArray, str] = 'tasmin',
*, freq: str = 'MS', ds: Dataset = None)→ DataArray

Calculate the diurnal temperature range and reduce according to a statistic. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
diurnal_temperature_range(). With injected parameters: reducer=mean.

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required
units : K]

492 Chapter 15. API

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
dtr (DataArray) – Mean Diurnal Temperature Range [degree_Celsius], with additional
attributes: cell_methods: time: range within days time: mean over days; pro-
posed_standard_name: air_temperature_range

References

ETCCDI clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.etr(tasmax: Union[DataArray, str] = 'tasmax', tasmin: Union[DataArray, str] = 'tasmin',
*, freq: str = 'MS', ds: Dataset = None)→ DataArray

Calculate the extreme temperature range as the maximum of daily maximum temperature minus the minimum
of daily minimum temperature. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
extreme_temperature_range().

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required
units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
etr (DataArray) – Intra-period extreme temperature range [degree_Celsius], with additional at-
tributes: cell_methods: time: range; proposed_standard_name: air_temperature_range

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.fg(sfcWind: Union[DataArray, str] = 'sfcWind', *, freq: str = 'MS', ds: Dataset = None)
→ DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• sfcWind (str or DataArray) – Surface wind speed. Default : ds.sfcWind. [Required units :

m s-1]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

15.1. Indicators 493

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
fg (DataArray) – Mean of daily mean wind strength (wind_speed) [meter second-1], with addi-
tional attributes: cell_methods: time: mean

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.fxx(wsgsmax: Union[DataArray, str] = 'wsgsmax', *, freq: str = 'MS', ds: Dataset =
None)→ DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=max.

Parameters
• wsgsmax (str or DataArray) – Maximum surface wind speed. Default : ds.wsgsmax. [Re-

quired units : m s-1]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
fxx (DataArray) – Maximum value of daily maximum wind gust strength (wind_speed_of_gust)
[meter second-1], with additional attributes: cell_methods: time: maximum

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.gd4(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate the temperature sum above/below a threshold. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, the sum is calculated
for those data values that fulfill the condition after subtraction of the threshold value. If the sum is for values
below the threshold the result is multiplied by -1.

This indicator will check for missing values according to the method “from_context”. Based on indice
temperature_sum(). With injected parameters: op=>, threshold=4 degree_Celsius.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

494 Chapter 15. API

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

Returns
gd4 (DataArray) – Growing degree days (sum of Tmean > 4 C) (inte-
gral_wrt_time_of_air_temperature_excess) [degree_Celsius day], with additional attributes:
cell_methods: time: sum over days

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.gddgrowTT(tas: Union[DataArray, str] = 'tas', *, threshold: str, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Calculate the temperature sum above/below a threshold. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, the sum is calculated
for those data values that fulfill the condition after subtraction of the threshold value. If the sum is for values
below the threshold the result is multiplied by -1.

This indicator will check for missing values according to the method “from_context”. Based on indice
temperature_sum(). With injected parameters: op=>.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tas. [Required units :
degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
gddgrow{threshold} (DataArray) – Annual Growing Degree Days (Tmean > {threshold}C)
(integral_wrt_time_of_air_temperature_excess) [degree_Celsius day], with additional attributes:
cell_methods: time: sum over days

References

ET-SCI clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.hd17(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate the temperature sum above/below a threshold. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, the sum is calculated
for those data values that fulfill the condition after subtraction of the threshold value. If the sum is for values
below the threshold the result is multiplied by -1.

This indicator will check for missing values according to the method “from_context”. Based on indice
temperature_sum(). With injected parameters: op=<, threshold=17 degree_Celsius.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

15.1. Indicators 495

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
hd17 (DataArray) – Heating degree days (sum of Tmean < 17 C) (inte-
gral_wrt_time_of_air_temperature_excess) [degree_Celsius day], with additional attributes:
cell_methods: time: sum over days

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.hddheatTT(tas: Union[DataArray, str] = 'tas', *, threshold: str, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Calculate the temperature sum above/below a threshold. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, the sum is calculated
for those data values that fulfill the condition after subtraction of the threshold value. If the sum is for values
below the threshold the result is multiplied by -1.

This indicator will check for missing values according to the method “from_context”. Based on indice
temperature_sum(). With injected parameters: op=<.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• threshold (quantity (string with units)) – air temperature Default : ds.tas. [Required units :
degree_Celsius]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
hddheat{threshold} (DataArray) – Heating Degree Days (Tmean < {threshold}C) (inte-
gral_wrt_time_of_air_temperature_deficit) [degree_Celsius day], with additional attributes:
cell_methods: time: sum over days

References

ET-SCI clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.iter_indicators()

Iterate over the (name, indicator) pairs in the cf indicator module.

xclim.indicators.cf.maxdtr(tasmax: Union[DataArray, str] = 'tasmax', tasmin: Union[DataArray, str] =
'tasmin', *, freq: str = 'MS', ds: Dataset = None)→ DataArray

Calculate the diurnal temperature range and reduce according to a statistic. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
diurnal_temperature_range(). With injected parameters: reducer=max.

496 Chapter 15. API

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta

xclim Documentation, Release 0.39.0

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required
units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
maxdtr (DataArray) – Maximum Diurnal Temperature Range [degree_Celsius], with addi-
tional attributes: cell_methods: time: range within days time: maximum over days; pro-
posed_standard_name: air_temperature_range

References

SMHI clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.pp(psl: Union[DataArray, str] = 'psl', *, freq: str = 'MS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• psl (str or DataArray) – Air pressure at sea level. Default : ds.psl. [Required units : Pa]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
pp (DataArray) – Mean of daily sea level pressure (air_pressure_at_sea_level) [hPa], with addi-
tional attributes: cell_methods: time: mean

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.rh(hurs: Union[DataArray, str] = 'hurs', *, freq: str = 'MS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• hurs (str or DataArray) – Relative humidity. Default : ds.hurs. [Required units : %]

15.1. Indicators 497

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
rh (DataArray) – Mean of daily relative humidity (relative_humidity) [%], with additional at-
tributes: cell_methods: time: mean

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.sd(snd: Union[DataArray, str] = 'snd', *, freq: str = 'MS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• snd (str or DataArray) – Surface snow thickness. Default : ds.snd. [Required units : m]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
sd (DataArray) – Mean of daily snow depth (surface_snow_thickness) [cm], with additional
attributes: cell_methods: time: mean

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.sdii(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', constrain: Sequence[str] | None
= None, ds: Dataset = None)→ DataArray

Calculate a simple statistic of the data for which some condition is met. (realm: atmos)

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding is
performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, the statistic is calculated
for those data values that fulfill the condition.

This indicator will check for missing values according to the method “from_context”. Based on indice
thresholded_statistics(). With injected parameters: op=>, threshold=1 mm day-1, reducer=mean.

Parameters
• pr (str or DataArray) – Surface precipitation flux (all phases). Default : ds.pr. [Required

units : kg m-2 s-1]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• constrain (Any) – Optionally allowed conditions. Default: None. Default : None.

498 Chapter 15. API

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
sdii (DataArray) – Average precipitation during Wet Days (SDII) (lwe_precipitation_rate) [mm
day-1], with additional attributes: cell_methods: time: mean over days

References

ETCCDI clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.ss(sund: Union[DataArray, str] = 'sund', *, freq: str = 'MS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=sum.

Parameters
• sund (str or DataArray) – Duration of sunshine. Default : ds.sund. [Required units : s]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ss (DataArray) – Sunshine duration, sum (duration_of_sunshine) [hour]

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tg(tas: Union[DataArray, str] = 'tas', *, freq: str = 'MS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tg (DataArray) – Mean of daily mean temperature (air_temperature) [degree_Celsius], with ad-
ditional attributes: cell_methods: time: mean

15.1. Indicators 499

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tmm(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tmm (DataArray) – Mean daily mean temperature (air_temperature) [degree_Celsius], with ad-
ditional attributes: cell_methods: time: mean over days

References

clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tmmax(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=max.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tmmax (DataArray) – Maximum daily mean temperature (air_temperature) [degree_Celsius],
with additional attributes: cell_methods: time: maximum over days

500 Chapter 15. API

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tmmean(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tmmean (DataArray) – Mean daily mean temperature (air_temperature) [degree_Celsius], with
additional attributes: cell_methods: time: mean over days

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tmmin(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=min.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tmmin (DataArray) – Minimum daily mean temperature (air_temperature) [degree_Celsius],
with additional attributes: cell_methods: time: maximum over days

15.1. Indicators 501

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tmn(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=min.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tmn (DataArray) – Minimum daily mean temperature (air_temperature) [degree_Celsius], with
additional attributes: cell_methods: time: minimum over days

References

clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tmx(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=max.

Parameters
• tas (str or DataArray) – Mean surface temperature. Default : ds.tas. [Required units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tmx (DataArray) – Maximum daily mean temperature (air_temperature) [degree_Celsius], with
additional attributes: cell_methods: time: maximum over days

502 Chapter 15. API

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tn(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'MS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tn (DataArray) – Mean of daily minimum temperature (air_temperature) [degree_Celsius], with
additional attributes: cell_methods: time: mean

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tnm(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tnm (DataArray) – Mean daily minimum temperature (air_temperature) [degree_Celsius], with
additional attributes: cell_methods: time: mean over days

15.1. Indicators 503

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tnmax(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset = None)
→ DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=max.

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tnmax (DataArray) – Maximum daily minimum temperature (air_temperature) [de-
gree_Celsius], with additional attributes: cell_methods: time: maximum over days

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tnmean(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset =
None)→ DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tnmean (DataArray) – Mean daily minimum temperature (air_temperature) [degree_Celsius],
with additional attributes: cell_methods: time: mean over days

504 Chapter 15. API

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tnmin(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset = None)
→ DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=min.

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tnmin (DataArray) – Minimum daily minimum temperature (air_temperature) [degree_Celsius],
with additional attributes: cell_methods: time: minimum over days

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tnn(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=min.

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tnn (DataArray) – Minimum daily minimum temperature (air_temperature) [degree_Celsius],
with additional attributes: cell_methods: time: minimum over days

15.1. Indicators 505

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

ETCCDI clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tnx(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=max.

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tnx (DataArray) – Maximum daily minimum temperature (air_temperature) [degree_Celsius],
with additional attributes: cell_methods: time: maximum over days

References

ETCCDI clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.tx(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'MS', ds: Dataset = None)→
DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tx (DataArray) – Mean of daily maximum temperature (air_temperature) [degree_Celsius], with
additional attributes: cell_methods: time: mean

506 Chapter 15. API

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.txm(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset = None)
→ DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
txm (DataArray) – Mean daily maximum temperature (air_temperature) [degree_Celsius], with
additional attributes: cell_methods: time: mean over days

References

clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.txmax(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset = None)
→ DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=max.

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
txmax (DataArray) – Maximum daily maximum temperature (air_temperature) [de-
gree_Celsius], with additional attributes: cell_methods: time: maximum over days

15.1. Indicators 507

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.txmean(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset =
None)→ DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=mean.

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
txmean (DataArray) – Mean daily maximum temperature (air_temperature) [degree_Celsius],
with additional attributes: cell_methods: time: mean over days

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.txmin(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset = None)
→ DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=min.

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
txmin (DataArray) – Minimum daily maximum temperature (air_temperature) [degree_Celsius],
with additional attributes: cell_methods: time: minimum over days

508 Chapter 15. API

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

CLIPC clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.txn(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset = None)
→ DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=min.

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
txn (DataArray) – Minimum daily maximum temperature (air_temperature) [degree_Celsius],
with additional attributes: cell_methods: time: minimum over days

References

ETCCDI clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.txx(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset = None)
→ DataArray

Calculate a simple statistic of the data. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
statistics(). With injected parameters: reducer=max.

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
txx (DataArray) – Maximum daily maximum temperature (air_temperature) [degree_Celsius],
with additional attributes: cell_methods: time: maximum over days

15.1. Indicators 509

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

References

ETCCDI clix-meta https://github.com/clix-meta/clix-meta

xclim.indicators.cf.vdtr(tasmax: Union[DataArray, str] = 'tasmax', tasmin: Union[DataArray, str] =
'tasmin', *, freq: str = 'MS', ds: Dataset = None)→ DataArray

Calculate the average absolute day-to-day difference in diurnal temperature range. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
interday_diurnal_temperature_range().

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required
units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
vdtr (DataArray) – Mean day-to-day variation in Diurnal Temperature Range [degree_Celsius],
with additional attributes: proposed_standard_name: air_temperature_difference

References

ECA&D clix-meta https://github.com/clix-meta/clix-meta

ICCLIM indices

The European Climate Assessment & Dataset project (ECAD) defines a set of 26 core climate indices. Those have been
made accessible directly in xclim through their ECAD name for compatibility. However, the methods in this module
are only wrappers around the corresponding methods of xclim.indices. Note that none of the checks performed by the
xclim.utils.Indicator class (like with xclim.atmos indicators)are performed in this module.

xclim.indicators.icclim.BEDD(tasmin: Union[DataArray, str] = 'tasmin', tasmax: Union[DataArray, str] =
'tasmax', *, freq: str = 'YS', ds: Dataset = None)→ DataArray

Biologically effective growing degree days. (realm: atmos)

Growing-degree days with a base of 10°C and an upper limit of 19°C and adjusted for latitudes between 40°N
and 50°N for April to October (Northern Hemisphere; October to April in Southern Hemisphere). A temperature
range adjustment also promotes small and large swings in daily temperature range. Used as a heat-summation
metric in viticulture agroclimatology.

This indicator will check for missing values according to the method “from_context”. Based on in-
dice biologically_effective_degree_days(). With injected parameters: lat=None, thresh_tasmin=10
degC, method=icclim, low_dtr=None, high_dtr=None, max_daily_degree_days=9 degC, start_date=04-01,
end_date=10-01.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

510 Chapter 15. API

https://github.com/clix-meta/clix-meta
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://github.com/clix-meta/clix-meta
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency (default: “YS”; For Southern Hemi-
sphere, should be “AS-JUL”). Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
BEDD (DataArray) – Biologically effective growing degree days (Summation of
min(max((Tmin + Tmax)/2 - 10°C, 0), 9°C), for days between 1 April and 30 September)
[K days], with additional attributes: description: Heat-summation index for agroclimatic
suitability estimation, developed specifically for viticulture. Computed with {method} formula
(Summation of min((max((Tn + Tx)/2 - {thresh_tasmin}, 0) * k) + TR_adj, Dmax), where
coefficient k is a latitude-based day-length for days between {start_date} and {end_date}), coef-
ficient TR_adj is a modifier accounting for large temperature swings, and Dmax is the maximum
possibleamount of degree days that can be gained within a day ({max_daily_degree_days}).

Notes

The tasmax ceiling of 19°C is assumed to be the max temperature beyond which no further gains from daily
temperature occur. Indice originally published in Gladstones [1992].

Let 𝑇𝑋𝑖 and 𝑇𝑁𝑖 be the daily maximum and minimum temperature at day 𝑖, 𝑙𝑎𝑡 the latitude of the point of
interest, 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥 the maximum amount of degrees that can be summed per day (typically, 9). Then the sum
of daily biologically effective growing degree day (BEDD) units between 1 April and 31 October is:

𝐵𝐸𝐷𝐷𝑖 =

October 31∑︁
𝑖=April 1

𝑚𝑖𝑛

(︂(︂
𝑚𝑎𝑥

(︂
𝑇𝑋𝑖 + 𝑇𝑁𝑖)

2
− 10, 0

)︂
* 𝑘

)︂
+ 𝑇𝑅𝑎𝑑𝑗 , 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥

)︂

𝑇𝑅𝑎𝑑𝑗 = 𝑓(𝑇𝑋𝑖, 𝑇𝑁𝑖) =

⎧⎪⎨⎪⎩
0.25(𝑇𝑋𝑖 − 𝑇𝑁𝑖 − 13), if (𝑇𝑋𝑖 − 𝑇𝑁𝑖) > 13

0, if 10 < (𝑇𝑋𝑖 − 𝑇𝑁𝑖) < 13

0.25(𝑇𝑋𝑖 − 𝑇𝑁𝑖 − 10), if (𝑇𝑋𝑖 − 𝑇𝑁𝑖) < 10

𝑘 = 𝑓(𝑙𝑎𝑡) = 1 +

(︂
|𝑙𝑎𝑡|
50

* 0.06, if 40 < |𝑙𝑎𝑡| < 50, else 0
)︂

A second version of the BEDD (method=”icclim”) does not consider 𝑇𝑅𝑎𝑑𝑗 and 𝑘 and employs a different end
date (30 September) [Project team ECA&D and KNMI, 2013]. The simplified formula is as follows:

𝐵𝐸𝐷𝐷𝑖 =

September 30∑︁
𝑖=April 1

𝑚𝑖𝑛

(︂
𝑚𝑎𝑥

(︂
𝑇𝑋𝑖 + 𝑇𝑁𝑖)

2
− 10, 0

)︂
, 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥

)︂

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.CD(tas: Union[DataArray, str] = 'tas', pr: Union[DataArray, str] = 'pr', tas_per:
Union[DataArray, str] = 'tas_per', pr_per: Union[DataArray, str] = 'pr_per', *,
freq: str = 'YS', ds: Dataset = None, **indexer)→ DataArray

Cold and dry days (realm: atmos)

Number of days with temperature below a given percentile and precipitation below a given percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_and_dry_days().

15.1. Indicators 511

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Parameters
• tas (str or DataArray) – Mean daily temperature values Default : ds.tas. [Required units :

[temperature]]

• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• tas_per (str or DataArray) – Daily 25th percentile of temperature. Default : ds.tas_per.
[Required units : [temperature]]

• pr_per (str or DataArray) – Daily 25th percentile of wet day precipitation flux. Default :
ds.pr_per. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
CD (DataArray) – Cold and dry days [days], with additional attributes: cell_methods: time: sum
over days; description: {freq} number of days where temperature is below {tas_per_thresh}th
percentile and precipitation is below {pr_per_thresh}th percentile.

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.CDD(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

Maximum consecutive dry days (realm: atmos)

The longest number of consecutive days where daily precipitation below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_dry_days(). With injected parameters: thresh=1 mm/day.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
CDD (DataArray) – Maximum number of consecutive dry days (RR<1 mm) (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_below_threshold) [days], with addi-
tional attributes: cell_methods: time: sum over days; description: {freq} maximum number of
consecutive days with daily precipitation below {thresh}.

512 Chapter 15. API

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Notes

Let p = 𝑝0, 𝑝1, . . . , 𝑝𝑛 be a daily precipitation series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold under which a day is considered
dry. Then let s be the sorted vector of indices 𝑖 where [𝑝𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑝𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where
the precipitation crosses the threshold. Then the maximum number of consecutive dry days is given by

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑝𝑠𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.CFD(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'AS-JUL', ds: Dataset =
None)→ DataArray

Consecutive frost days (realm: atmos)

Maximum number of consecutive days where the daily minimum temperature is below 0°C

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_frost_days(). With injected parameters: thresh=0 degC.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
CFD (DataArray) – Maximum number of consecutive frost days (TN<0°C)
(spell_length_of_days_with_air_temperature_below_threshold) [days], with additional at-
tributes: cell_methods: time: maximum over days; description: {freq} maximum number of
consecutive days where minimum daily temperature is below {thresh}.

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a minimum daily temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold below which a day is
considered a frost day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that is,
the days where the temperature crosses the threshold. Then the maximum number of consecutive frost days is
given by

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

15.1. Indicators 513

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.CSDI(tasmin: Union[DataArray, str] = 'tasmin', tasmin_per: Union[DataArray, str]
= 'tasmin_per', *, freq: str = 'YS', resample_before_rl: bool = True, bootstrap:
bool = False, op: str = '<', ds: Dataset = None)→ DataArray

Cold Spell Duration Index (CSDI) (realm: atmos)

Number of days part of a percentile-defined cold spell. A cold spell occurs when the daily minimum temperature
is below a given percentile for a given number of consecutive days.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_spell_duration_index(). With injected parameters: window=6.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmin_per (str or DataArray) – nth percentile of daily minimum temperature with day-
ofyear coordinate. Default : ds.tasmin_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
CSDI (DataArray) – Cold-spell duration index (cold_spell_duration_index) [days], with addi-
tional attributes: description: {freq} number of days with at least {window} consecutive days
where the daily minimum temperature is below the {tasmin_per_thresh}th percentile. A {tas-
min_per_window} day(s) window, centred on each calendar day in the {tasmin_per_period} pe-
riod, is used to compute the {tasmin_per_thresh}th percentile(s).

Notes

Let 𝑇𝑁𝑖 be the minimum daily temperature for the day of the year 𝑖 and 𝑇𝑁10𝑖 the 10th percentile of the
minimum daily temperature over the 1961-1990 period for day of the year 𝑖, the cold spell duration index over
period 𝜑 is defined as:

∑︁
𝑖∈𝜑

𝑖+6∏︁
𝑗=𝑖

[𝑇𝑁𝑗 < 𝑇𝑁10𝑗]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

514 Chapter 15. API

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.CSU(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset =
None)→ DataArray

Maximum consecutive warm days (realm: atmos)

Maximum number of consecutive days where the maximum daily temperature exceeds a certain threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_tx_days(). With injected parameters: thresh=25 degC.

Parameters
• tasmax (str or DataArray) – Max daily temperature. Default : ds.tasmax. [Required units :

[temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
CSU (DataArray) – Maximum number of consecutive summer day
(spell_length_of_days_with_air_temperature_above_threshold) [days], with additional at-
tributes: cell_methods: time: maximum over days; description: {freq} longest spell of
consecutive days with maximum daily temperature above {thresh}.

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a daily maximum temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold above which a day is
considered a summer day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that
is, the days where the temperature crosses the threshold. Then the maximum number of consecutive tx_days
(summer days) is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.CW(tas: Union[DataArray, str] = 'tas', pr: Union[DataArray, str] = 'pr', tas_per:
Union[DataArray, str] = 'tas_per', pr_per: Union[DataArray, str] = 'pr_per', *,
freq: str = 'YS', ds: Dataset = None, **indexer)→ DataArray

Cold and wet days (realm: atmos)

Number of days with temperature below a given percentile and precipitation above a given percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_and_wet_days().

Parameters
• tas (str or DataArray) – Mean daily temperature values Default : ds.tas. [Required units :

[temperature]]

15.1. Indicators 515

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• tas_per (str or DataArray) – Daily 25th percentile of temperature. Default : ds.tas_per.
[Required units : [temperature]]

• pr_per (str or DataArray) – Daily 75th percentile of wet day precipitation flux. Default :
ds.pr_per. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
CW (DataArray) – cold and wet days [days], with additional attributes: cell_methods: time: sum
over days; description: {freq} number of days where temperature is below {tas_per_thresh}th
percentile and precipitation is above {pr_per_thresh}th percentile.

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.CWD(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', resample_before_rl: bool =
True, ds: Dataset = None)→ DataArray

Maximum consecutive wet days (realm: atmos)

The longest number of consecutive days where daily precipitation is at or above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_wet_days(). With injected parameters: thresh=1 mm/day.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
CWD (DataArray) – Maximum number of consecutive wet days (RR1 mm) (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_at_or_above_threshold) [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} maximum
number of consecutive days with daily precipitation at or above {thresh}.

516 Chapter 15. API

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Notes

Let x = 𝑥0, 𝑥1, . . . , 𝑥𝑛 be a daily precipitation series and s be the sorted vector of indices 𝑖 where [𝑝𝑖 >
𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑝𝑖+1 > 𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where the precipitation crosses the wet day threshold. Then the
maximum number of consecutive wet days is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑥𝑠𝑗 > 0∘𝐶]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.DTR(tasmin: Union[DataArray, str] = 'tasmin', tasmax: Union[DataArray, str] =
'tasmax', *, freq: str = 'YS', ds: Dataset = None, **indexer)→ DataArray

Mean of daily temperature range (realm: atmos)

The average difference between the daily maximum and minimum temperatures.

This indicator will check for missing values according to the method “from_context”. Based on indice
daily_temperature_range(). With injected parameters: op=mean.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
DTR (DataArray) – Mean of diurnal temperature range (air_temperature) [K], with additional
attributes: cell_methods: time range within days time: mean over days; description: {freq}
mean diurnal temperature range.

Notes

For a default calculation using op=’mean’ :

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the mean diurnal
temperature range in period 𝑗 is:

𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=1(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)

𝐼

15.1. Indicators 517

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.ETR(tasmin: Union[DataArray, str] = 'tasmin', tasmax: Union[DataArray, str] =
'tasmax', *, freq: str = 'YS', ds: Dataset = None, **indexer)→ DataArray

Extreme temperature range (realm: atmos)

The maximum of the maximum temperature minus the minimum of the minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
extreme_temperature_range().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
ETR (DataArray) – Intra-period extreme temperature range (air_temperature) [K], with addi-
tional attributes: description: {freq} range between the maximum of daily maximum tempera-
ture and the minimum of dailyminimum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the extreme
temperature range in period 𝑗 is:

𝐸𝑇𝑅𝑗 = 𝑚𝑎𝑥(𝑇𝑋𝑖𝑗)−𝑚𝑖𝑛(𝑇𝑁𝑖𝑗)

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.FD(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Frost days (realm: atmos)

Number of days where the daily minimum temperature is below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
frost_days(). With injected parameters: thresh=0 degC.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

518 Chapter 15. API

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
FD (DataArray) – Frost days (TN<0°C) (days_with_air_temperature_below_threshold) [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number of
days where the daily minimum temperature is below {thresh}.

Notes

Let 𝑇𝑁𝑖𝑗 be the daily minimum temperature at day 𝑖 of period 𝑗 and :math`TT` the threshold. Then counted is
the number of days where:

𝑇𝑁𝑖𝑗 < 𝑇𝑇

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.GD4(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Growing degree days (realm: atmos)

The cumulative degree days for days when the average temperature is above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
growing_degree_days(). With injected parameters: thresh=4 degC.

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
GD4 (DataArray) – Growing degree days (sum of TG>4°C) (inte-
gral_of_air_temperature_excess_wrt_time) [K days], with additional attributes: cell_methods:
time: sum over days; description: {freq} growing degree days (mean temperature above
{thresh}).

15.1. Indicators 519

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then the growing degree days are:

𝐺𝐷4𝑗 =

𝐼∑︁
𝑖=1

(𝑇𝐺𝑖𝑗 − 4|𝑇𝐺𝑖𝑗 > 4)

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.GSL(tas: Union[DataArray, str] = 'tas', *, mid_date: DayOfYearStr = '07-01', freq:
str = 'YS', ds: Dataset = None)→ DataArray

Growing season length (realm: atmos)

Number of days between the first occurrence of a series of days with a daily average temperature above a threshold
and the first occurrence of a series of days with a daily average temperature below that same threshold, occurring
after a given calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
growing_season_length(). With injected parameters: thresh=5 degC, window=6.

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• mid_date (date (string, MM-DD)) – Date of the year after which to look for the end of the
season. Should have the format ‘%m-%d’. Default : 07-01.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
GSL (DataArray) – Growing season length (growing_season_length) [days], with additional
attributes: description: {freq} number of days between the first occurrence of at least {win-
dow} consecutive days with mean daily temperature over {thresh} and the first occurrence of at
least {window} consecutive days with mean daily temperature below {thresh}, occurring after
{mid_date}.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the first
occurrence of at least 6 consecutive days with:

𝑇𝐺𝑖𝑗 > 5

and the first occurrence after 1 July of at least 6 consecutive days with:

𝑇𝐺𝑖𝑗 < 5

520 Chapter 15. API

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.HD17(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Heating degree days (realm: atmos)

The cumulative degree days for days when the mean daily temperature is below a given threshold and buildings
must be heated.

This indicator will check for missing values according to the method “from_context”. Based on indice
heating_degree_days(). With injected parameters: thresh=17 degC.

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
HD17 (DataArray) – Heating degree days (sum of17°C - TG) (inte-
gral_of_air_temperature_deficit_wrt_time) [K days], with additional attributes: cell_methods:
time: sum over days; description: {freq} cumulative heating degree days (mean temperature
below {thresh}).

Notes

This index intentionally differs from its ECA&D [Project team ECA&D and KNMI, 2013] equivalent: HD17.
In HD17, values below zero are not clipped before the sum. The present definition should provide a better
representation of the energy demand for heating buildings to the given threshold.

Let 𝑇𝐺𝑖𝑗 be the daily mean temperature at day 𝑖 of period 𝑗. Then the heating degree days are:

𝐻𝐷17𝑗 =

𝐼∑︁
𝑖=1

(17− 𝑇𝐺𝑖𝑗)|𝑇𝐺𝑖𝑗 < 17)

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.HI(tas: Union[DataArray, str] = 'tas', tasmax: Union[DataArray, str] = 'tasmax',
lat: Optional[Union[DataArray, str]] = None, *, freq: str = 'YS', ds: Dataset =
None)→ DataArray

Huglin Heliothermal Index. (realm: atmos)

Growing-degree days with a base of 10°C and adjusted for latitudes between 40°N and 50°N for April-September
(Northern Hemisphere; October-March in Southern Hemisphere). Originally proposed in Huglin [1978]. Used
as a heat-summation metric in viticulture agroclimatology.

15.1. Indicators 521

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

This indicator will check for missing values according to the method “from_context”. Based on indice
huglin_index(). With injected parameters: thresh=10 degC, method=icclim, start_date=04-01, end_date=11-
01.

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• lat (str or DataArray, optional) – Latitude coordinate. If None, a CF-conformant “latitude”
field must be available within the passed DataArray. [Required units : []]

• freq (offset alias (string)) – Resampling frequency (default: “YS”; For Southern Hemi-
sphere, should be “AS-JUL”). Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
• HI (DataArray) – Huglin heliothermal index (Summation of ((Tmean + Tmax)/2 - 10°C) *

Latitude-based day-length coefficient (k), for days between 1 April and 31 October)

• , with additional attributes (description: Heat-summation index for agroclimatic suit-
ability estimation, developed specifically for viticulture, computed with {method} formula
(Summation of ((Tn + Tx)/2 - {thresh}) * k), where coefficient k is a latitude-based day-
length for days between {start_date} and {end_date}.)

Notes

Let 𝑇𝑋𝑖 and 𝑇𝐺𝑖 be the daily maximum and mean temperature at day 𝑖 and 𝑇𝑡ℎ𝑟𝑒𝑠ℎ the base threshold needed
for heat summation (typically, 10 degC). A day-length multiplication, 𝑘, based on latitude, 𝑙𝑎𝑡, is also considered.
Then the Huglin heliothermal index for dates between 1 April and 30 September is:

𝐻𝐼 =

September 30∑︁
𝑖=April 1

(︂
𝑇𝑋𝑖 + 𝑇𝐺𝑖)

2
− 𝑇𝑡ℎ𝑟𝑒𝑠ℎ

)︂
* 𝑘

For the smoothed method, the day-length multiplication factor, 𝑘, is calculated as follows:

𝑘 = 𝑓(𝑙𝑎𝑡) =

⎧⎪⎨⎪⎩
1, if |𝑙𝑎𝑡| <= 40

1 + ((𝑎𝑏𝑠(𝑙𝑎𝑡)− 40)/10) * 0.06, if 40 < |𝑙𝑎𝑡| <= 50

𝑁𝑎𝑁, if |𝑙𝑎𝑡| > 50

For compatibility with ICCLIM, end_date should be set to 11-01, method should be set to icclim. The day-length
multiplication factor, 𝑘, is calculated as follows:

𝑘 = 𝑓(𝑙𝑎𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0, if |𝑙𝑎𝑡| <= 40

1.02, if 40 < |𝑙𝑎𝑡| <= 42

1.03, if 42 < |𝑙𝑎𝑡| <= 44

1.04, if 44 < |𝑙𝑎𝑡| <= 46

1.05, if 46 < |𝑙𝑎𝑡| <= 48

1.06, if 48 < |𝑙𝑎𝑡| <= 50

𝑁𝑎𝑁, if |𝑙𝑎𝑡| > 50

A more robust day-length calculation based on latitude, calendar, day-of-year, and obliquity is available with
method=”jones”. See: xclim.indices.generic.day_lengths() or Hall and Jones [2010] for more infor-
mation.

522 Chapter 15. API

xclim Documentation, Release 0.39.0

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.ID(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Ice days (realm: atmos)

Number of days where the daily maximum temperature is below 0°C

This indicator will check for missing values according to the method “from_context”. Based on indice
ice_days(). With injected parameters: thresh=0 degC.

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
ID (DataArray) – Ice days (TX<0°C) (days_with_air_temperature_below_threshold) [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number
of days where the maximum daily temperature is below {thresh}.

Notes

Let 𝑇𝑋𝑖𝑗 be the daily maximum temperature at day 𝑖 of period 𝑗, and :math`TT` the threshold. Then counted is
the number of days where:

𝑇𝑋𝑖𝑗 < 𝑇𝑇

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.PRCPTOT(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Total accumulated precipitation (solid and liquid) during wet days (realm: atmos)

Total accumulated precipitation on days with precipitation. A day is considered to have precipitation if the
precipitation is greater than or equal to a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
prcptot(). With injected parameters: thresh=1 mm/day.

Parameters
• pr (str or DataArray) – Total precipitation flux [mm d-1], [mm week-1], [mm month-1] or

similar. Default : ds.pr. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

15.1. Indicators 523

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
PRCPTOT (DataArray) – Precipitation sum over wet days
(lwe_thickness_of_precipitation_amount) [mm], with additional attributes: cell_methods:
time: sum over days; description: {freq} total precipitation over wet days, defined as days
where precipitation exceeds {thresh}.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.R10mm(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', op: str = '>=', ds:
Dataset = None, **indexer)→ DataArray

Number of wet days (realm: atmos)

The number of days with daily precipitation at or above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
wetdays(). With injected parameters: thresh=10 mm/day.

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>=”. Default : >=.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
R10mm (DataArray) – Heavy precipitation days (precipitation10 mm) (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_at_or_above_threshold) [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number of
days with daily precipitation at or above {thresh}.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.R20mm(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', op: str = '>=', ds:
Dataset = None, **indexer)→ DataArray

Number of wet days (realm: atmos)

The number of days with daily precipitation at or above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
wetdays(). With injected parameters: thresh=20 mm/day.

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

524 Chapter 15. API

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>=”. Default : >=.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
R20mm (DataArray) – Very heavy precipitation days (precipitation20 mm) (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_at_or_above_threshold) [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number of
days with daily precipitation at or above {thresh}.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.R75p(pr: Union[DataArray, str] = 'pr', pr_per: Union[DataArray, str] = 'pr_per', *,
freq: str = 'YS', bootstrap: bool = False, op: str = '>', ds: Dataset = None,
**indexer)→ DataArray

Number of days with precipitation above a given percentile (realm: atmos)

Number of days in a period where precipitation is above a given percentile, calculated over a given period and a
fixed threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
days_over_precip_thresh(). With injected parameters: thresh=1 mm/day.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – 75th percentile of wet day precipitation flux. Default :
ds.pr_per. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
R75p (DataArray) – Number of days with precipitation flux
above the {pr_per_thresh}th percentile of {pr_per_period} (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_above_threshold) [days], with
additional attributes: cell_methods: time: sum over days; description: {freq} number of days

15.1. Indicators 525

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

with precipitation above the {pr_per_thresh}th percentile of {pr_per_period} period. Only days
with at least {thresh} are counted.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.R75pTOT(pr: Union[DataArray, str] = 'pr', pr_per: Union[DataArray, str] =
'pr_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '>', ds:
Dataset = None, **indexer)→ DataArray

Fraction of precipitation due to wet days with daily precipitation over a given percentile. (realm: atmos)

Percentage of the total precipitation over period occurring in days when the precipitation is above a threshold
defining wet days and above a given percentile for that day.

This indicator will check for missing values according to the method “from_context”. Based on indice
fraction_over_precip_thresh(). With injected parameters: thresh=1 mm/day.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – 75th percentile of wet day precipitation flux. Default :
ds.pr_per. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
R75pTOT (DataArray) – Precipitation fraction due to moderate wet days (>75th percentile),
with additional attributes: description: {freq} fraction of total precipitation due to days with
precipitation above {pr_per_thresh}th percentile of {pr_per_period} period. Only days with at
least {thresh} are included in the total.

526 Chapter 15. API

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.R95p(pr: Union[DataArray, str] = 'pr', pr_per: Union[DataArray, str] = 'pr_per', *,
freq: str = 'YS', bootstrap: bool = False, op: str = '>', ds: Dataset = None,
**indexer)→ DataArray

Number of days with precipitation above a given percentile (realm: atmos)

Number of days in a period where precipitation is above a given percentile, calculated over a given period and a
fixed threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
days_over_precip_thresh(). With injected parameters: thresh=1 mm/day.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – 95th percentile of wet day precipitation flux. Default :
ds.pr_per. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
R95p (DataArray) – Number of days with precipitation flux
above the {pr_per_thresh}th percentile of {pr_per_period} (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_above_threshold) [days], with
additional attributes: cell_methods: time: sum over days; description: {freq} number of days
with precipitation above the {pr_per_thresh}th percentile of {pr_per_period} period. Only days
with at least {thresh} are counted.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.R95pTOT(pr: Union[DataArray, str] = 'pr', pr_per: Union[DataArray, str] =
'pr_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '>', ds:
Dataset = None, **indexer)→ DataArray

Fraction of precipitation due to wet days with daily precipitation over a given percentile. (realm: atmos)

Percentage of the total precipitation over period occurring in days when the precipitation is above a threshold
defining wet days and above a given percentile for that day.

15.1. Indicators 527

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

This indicator will check for missing values according to the method “from_context”. Based on indice
fraction_over_precip_thresh(). With injected parameters: thresh=1 mm/day.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – 95th percentile of wet day precipitation flux. Default :
ds.pr_per. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
R95pTOT (DataArray) – Precipitation fraction due to very wet days (>95th percentile), with
additional attributes: description: {freq} fraction of total precipitation due to days with precip-
itation above {pr_per_thresh}th percentile of {pr_per_period} period. Only days with at least
{thresh} are included in the total.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.R99p(pr: Union[DataArray, str] = 'pr', pr_per: Union[DataArray, str] = 'pr_per', *,
freq: str = 'YS', bootstrap: bool = False, op: str = '>', ds: Dataset = None,
**indexer)→ DataArray

Number of days with precipitation above a given percentile (realm: atmos)

Number of days in a period where precipitation is above a given percentile, calculated over a given period and a
fixed threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
days_over_precip_thresh(). With injected parameters: thresh=1 mm/day.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – 99th percentile of wet day precipitation flux. Default :
ds.pr_per. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the

528 Chapter 15. API

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
R99p (DataArray) – Number of days with precipitation flux
above the {pr_per_thresh}th percentile of {pr_per_period} (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_above_threshold) [days], with
additional attributes: cell_methods: time: sum over days; description: {freq} number of days
with precipitation above the {pr_per_thresh}th percentile of {pr_per_period} period. Only days
with at least {thresh} are counted.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.R99pTOT(pr: Union[DataArray, str] = 'pr', pr_per: Union[DataArray, str] =
'pr_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '>', ds:
Dataset = None, **indexer)→ DataArray

Fraction of precipitation due to wet days with daily precipitation over a given percentile. (realm: atmos)

Percentage of the total precipitation over period occurring in days when the precipitation is above a threshold
defining wet days and above a given percentile for that day.

This indicator will check for missing values according to the method “from_context”. Based on indice
fraction_over_precip_thresh(). With injected parameters: thresh=1 mm/day.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – 99th percentile of wet day precipitation flux. Default :
ds.pr_per. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

15.1. Indicators 529

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Returns
R99pTOT (DataArray) – Precipitation fraction due to extremely wet days (>99th percentile),
with additional attributes: description: {freq} fraction of total precipitation due to days with
precipitation above {pr_per_thresh}th percentile of {pr_per_period} period. Only days with at
least {thresh} are included in the total.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.RR(pr: Union[DataArray, str] = 'pr', *, thresh: str = '0 degC', freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Total accumulated precipitation (solid and liquid) (realm: atmos)

Total accumulated precipitation. If the average daily temperature is given, the phase parameter can be used to
restrict the calculation to precipitation of only one phase (liquid or solid). Precipitation is considered solid if the
average daily temperature is below 0°C (and vice versa).

This indicator will check for missing values according to the method “from_context”. Based on indice
precip_accumulation(). With injected parameters: tas=None, phase=None.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• thresh (quantity (string with units)) – Threshold of tas over which the precipication is as-
sumed to be liquid rain. Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
RR (DataArray) – Precipitation sum (lwe_thickness_of_precipitation_amount) [mm], with ad-
ditional attributes: cell_methods: time: sum over days; description: {freq} total precipitation.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

If tas and phase are given, the corresponding phase precipitation is estimated before computing the accumulation,
using one of snowfall_approximation or rain_approximation with the binary method.

530 Chapter 15. API

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.RR1(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', op: str = '>=', ds: Dataset
= None, **indexer)→ DataArray

Number of wet days (realm: atmos)

The number of days with daily precipitation at or above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
wetdays(). With injected parameters: thresh=1 mm/day.

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>=”. Default : >=.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
RR1 (DataArray) – Wet days (RR1 mm) (number_of_days_with_lwe_thickness_of_precipitation_amount_at_or_above_threshold)
[days], with additional attributes: cell_methods: time: sum over days; description: {freq}
number of days with daily precipitation at or above {thresh}.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.RX1day(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Maximum 1-day total precipitation (realm: atmos)

Maximum total daily precipitation for a given period.

This indicator will check for missing values according to the method “from_context”. Based on indice
max_1day_precipitation_amount().

Parameters
• pr (str or DataArray) – Daily precipitation values. Default : ds.pr. [Required units : [pre-

cipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
RX1day (DataArray) – Highest 1-day precipitation amount
(lwe_thickness_of_precipitation_amount) [mm/day], with additional attributes: cell_methods:
time: maximum over days; description: {freq} maximum 1-day total precipitation

15.1. Indicators 531

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day i, then for a period j:

𝑃𝑅𝑥𝑖𝑗 = 𝑚𝑎𝑥(𝑃𝑅𝑖𝑗)

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.RX5day(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', ds: Dataset = None)→
DataArray

maximum n-day total precipitation (realm: atmos)

Maximum of the moving sum of daily precipitation for a given period.

This indicator will check for missing values according to the method “from_context”. Based on indice
max_n_day_precipitation_amount(). With injected parameters: window=5.

Parameters
• pr (str or DataArray) – Daily precipitation values. Default : ds.pr. [Required units : [pre-

cipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
RX5day (DataArray) – Highest 5-day precipitation amount
(lwe_thickness_of_precipitation_amount) [mm], with additional attributes: cell_methods:
time: maximum over days; description: {freq} maximum {window}-day total precipitation
amount.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.SD(snd: Union[DataArray, str] = 'snd', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Mean snow depth (realm: atmos)

Mean of daily snow depth.

This indicator will check for missing values according to the method “from_context”. Based on indice
snow_depth().

Parameters
• snd (str or DataArray) – Mean daily snow depth. Default : ds.snd. [Required units : [length]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

532 Chapter 15. API

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Returns
SD (DataArray) – Mean of daily snow depth (surface_snow_thickness) [cm], with additional
attributes: cell_methods: time: mean over days; description: The {freq} mean of daily mean
snow depth.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.SD1(snd: Union[DataArray, str] = 'snd', *, freq: str = 'AS-JUL', ds: Dataset = None,
**indexer)→ DataArray

Snow cover duration (realm: atmos)

Number of days when the snow depth is greater than or equal to a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
snow_cover_duration(). With injected parameters: thresh=1 cm.

Parameters
• snd (str or DataArray) – Surface snow thickness. Default : ds.snd. [Required units :

[length]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
SD1 (DataArray) – Snow days (SD1 cm) [days], with additional attributes: description: The
{freq} number of days with snow depth greater than or equal to {thresh}.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.SD50cm(snd: Union[DataArray, str] = 'snd', *, freq: str = 'AS-JUL', ds: Dataset =
None, **indexer)→ DataArray

Snow cover duration (realm: atmos)

Number of days when the snow depth is greater than or equal to a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
snow_cover_duration(). With injected parameters: thresh=50 cm.

Parameters
• snd (str or DataArray) – Surface snow thickness. Default : ds.snd. [Required units :

[length]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

15.1. Indicators 533

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Returns
SD50cm (DataArray) – Snow days (SD50 cm) [days], with additional attributes: description:
The {freq} number of days with snow depth greater than or equal to {thresh}.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.SD5cm(snd: Union[DataArray, str] = 'snd', *, freq: str = 'AS-JUL', ds: Dataset =
None, **indexer)→ DataArray

Snow cover duration (realm: atmos)

Number of days when the snow depth is greater than or equal to a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
snow_cover_duration(). With injected parameters: thresh=5 cm.

Parameters
• snd (str or DataArray) – Surface snow thickness. Default : ds.snd. [Required units :

[length]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
SD5cm (DataArray) – Snow days (SD5 cm) [days], with additional attributes: description: The
{freq} number of days with snow depth greater than or equal to {thresh}.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.SDII(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Simple Daily Intensity Index (realm: atmos)

Average precipitation for days with daily precipitation above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
daily_pr_intensity(). With injected parameters: thresh=1 mm/day.

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

534 Chapter 15. API

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Returns
SDII (DataArray) – Average precipitation during days with daily precipitation over {thresh}
(Simple Daily Intensity Index: SDII) (lwe_thickness_of_precipitation_amount) [mm d-1], with
additional attributes: description: {freq} Simple Daily Intensity Index (SDII) or {freq} average
precipitation for days with daily precipitation over {thresh}.

Notes

Let p = 𝑝0, 𝑝1, . . . , 𝑝𝑛 be the daily precipitation and 𝑡ℎ𝑟𝑒𝑠ℎ be the precipitation threshold defining wet days.
Then the daily precipitation intensity is defined as:∑︀𝑛

𝑖=0 𝑝𝑖[𝑝𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ]∑︀𝑛
𝑖=0[𝑝𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.SU(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', op: str = '>', ds:
Dataset = None, **indexer)→ DataArray

Number of days with maximum temperature above a given threshold (realm: atmos)

The number of days with maximum temperature above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tx_days_above(). With injected parameters: thresh=25 degC.

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
SU (DataArray) – Summer days (TX>25°C) (number_of_days_with_air_temperature_above_threshold)
[days], with additional attributes: cell_methods: time: sum over days; description: {freq}
number of days where daily maximum temperature exceeds {thresh}.

15.1. Indicators 535

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TG(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Mean temperature (realm: atmos)

Mean of daily mean temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
tg_mean().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TG (DataArray) – Mean daily mean temperature (air_temperature) [K], with additional at-
tributes: cell_methods: time: mean over days; description: {freq} mean of daily mean tem-
perature.

Notes

Let 𝑇𝑁𝑖 be the mean daily temperature of day 𝑖, then for a period 𝑝 starting at day 𝑎 and finishing on day 𝑏:

𝑇𝐺𝑝 =

∑︀𝑏
𝑖=𝑎 𝑇𝑁𝑖

𝑏− 𝑎+ 1

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TG10p(tas: Union[DataArray, str] = 'tas', tas_per: Union[DataArray, str] =
'tas_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '<', ds:
Dataset = None, **indexer)→ DataArray

Days with mean temperature below the 10th percentile (realm: atmos)

Number of days with mean temperature below the 10th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tg10p().

Parameters

536 Chapter 15. API

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-
perature]]

• tas_per (str or DataArray) – 10th percentile of daily mean temperature. Default : ds.tas_per.
[Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TG10p (DataArray) – Days with TG<10th percentile of daily mean temperature (cold days)
(days_with_air_temperature_below_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with mean temperature below the
10th percentile. A {tas_per_window} day(s) window, centered on each calendar day in the
{tas_per_period} period, is used to compute the 10th percentile.

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TG90p(tas: Union[DataArray, str] = 'tas', tas_per: Union[DataArray, str] =
'tas_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '>', ds:
Dataset = None, **indexer)→ DataArray

Days with mean temperature above the 90th percentile (realm: atmos)

Number of days with mean temperature above the 90th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tg90p().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• tas_per (str or DataArray) – 90th percentile of daily mean temperature. Default : ds.tas_per.
[Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to

15.1. Indicators 537

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TG90p (DataArray) – Days with TG>90th percentile of daily mean temperature (warm days)
(days_with_air_temperature_above_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with mean temperature above the
90th percentile. A {tas_per_window} day(s) window, centered on each calendar day in the
{tas_per_period} period, is used to compute the 90th percentile.

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TGn(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Minimum of mean temperature (realm: atmos)

Minimum of daily mean temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tg_min().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TGn (DataArray) – Minimum daily mean temperature (air_temperature) [K], with additional
attributes: cell_methods: time: minimum over days; description: {freq} minimum of daily
mean temperature.

538 Chapter 15. API

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝐺𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then the minimum daily mean temperature for period 𝑗
is:

𝑇𝐺𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝐺𝑖𝑗)

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TGx(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Maximum of mean temperature (realm: atmos)

Maximum of daily mean temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tg_max().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TGx (DataArray) – Maximum daily mean temperature (air_temperature) [K], with additional
attributes: cell_methods: time: maximum over days; description: {freq} maximum of daily
mean temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then the maximum daily mean temperature for period
𝑗 is:

𝑇𝑁𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑁𝑖𝑗)

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TN(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Mean of minimum temperature (realm: atmos)

Mean of daily minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
tn_mean().

Parameters

15.1. Indicators 539

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TN (DataArray) – Mean daily minimum temperature (air_temperature) [K], with additional at-
tributes: cell_methods: time: mean over days; description: {freq} mean of daily minimum
temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then mean values in period 𝑗 are given by:

𝑇𝑁𝑖𝑗 =

∑︀𝐼
𝑖=1 𝑇𝑁𝑖𝑗

𝐼

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TN10p(tasmin: Union[DataArray, str] = 'tasmin', tasmin_per: Union[DataArray,
str] = 'tasmin_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '<',
ds: Dataset = None, **indexer)→ DataArray

Days with minimum temperature below the 10th percentile (realm: atmos)

Number of days with minimum temperature below the 10th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tn10p().

Parameters
• tasmin (str or DataArray) – Mean daily temperature. Default : ds.tasmin. [Required units :

[temperature]]

• tasmin_per (str or DataArray) – 10th percentile of daily minimum temperature. Default :
ds.tasmin_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

540 Chapter 15. API

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Returns
TN10p (DataArray) – Days with TN<10th percentile of daily minimum temperature (cold nights)
(days_with_air_temperature_below_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with minimum temperature below the
10th percentile. A {tasmin_per_window} day(s) window, centered on each calendar day in the
{tasmin_per_period} period, is used to compute the 10th percentile.

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TN90p(tasmin: Union[DataArray, str] = 'tasmin', tasmin_per: Union[DataArray,
str] = 'tasmin_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '>',
ds: Dataset = None, **indexer)→ DataArray

Days with minimum temperature above the 90th percentile (realm: atmos)

Number of days with minimum temperature above the 90th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tn90p().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmin_per (str or DataArray) – 90th percentile of daily minimum temperature. Default :
ds.tasmin_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TN90p (DataArray) – Days with TN>90th percentile of daily minimum temperature
(warm nights) (days_with_air_temperature_above_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days with minimum tem-
perature above the 90th percentile. A {tasmin_per_window} day(s) window, centered on each
calendar day in the {tasmin_per_period} period, is used to compute the 90th percentile.

15.1. Indicators 541

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TNn(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Minimum temperature (realm: atmos)

Minimum of daily minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tn_min().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TNn (DataArray) – Minimum daily minimum temperature (air_temperature) [K], with additional
attributes: cell_methods: time: minimum over days; description: {freq} minimum of daily
minimum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then the minimum daily minimum temperature for
period 𝑗 is:

𝑇𝑁𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝑁𝑖𝑗)

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TNx(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Maximum of minimum temperature (realm: atmos)

Maximum of daily minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tn_max().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

542 Chapter 15. API

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TNx (DataArray) – Maximum daily minimum temperature (air_temperature) [K], with addi-
tional attributes: cell_methods: time: maximum over days; description: {freq} maximum of
daily minimum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then the maximum daily minimum temperature for
period 𝑗 is:

𝑇𝑁𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑁𝑖𝑗)

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TR(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS', op: str = '>', ds:
Dataset = None, **indexer)→ DataArray

Tropical nights (realm: atmos)

Number of days where minimum temperature is above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tn_days_above(). With injected parameters: thresh=20 degC.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TR (DataArray) – Tropical nights (TN>20°C) (number_of_days_with_air_temperature_above_threshold)
[days], with additional attributes: cell_methods: time: sum over days; description: {freq}
number of Tropical Nights, defined as days with minimum daily temperature above {thresh}.

15.1. Indicators 543

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TX(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Mean of maximum temperature (realm: atmos)

Mean of daily maximum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
tx_mean().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TX (DataArray) – Mean daily maximum temperature (air_temperature) [K], with additional at-
tributes: cell_methods: time: mean over days; description: {freq} mean of daily maximum
temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then mean values in period 𝑗 are given by:

𝑇𝑋𝑖𝑗 =

∑︀𝐼
𝑖=1 𝑇𝑋𝑖𝑗

𝐼

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TX10p(tasmax: Union[DataArray, str] = 'tasmax', tasmax_per: Union[DataArray,
str] = 'tasmax_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '<',
ds: Dataset = None, **indexer)→ DataArray

Days with maximum temperature below the 10th percentile (realm: atmos)

Number of days with maximum temperature below the 10th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tx10p().

Parameters

544 Chapter 15. API

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• tasmax_per (str or DataArray) – 10th percentile of daily maximum temperature. Default :
ds.tasmax_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TX10p (DataArray) – Days with TX<10th percentile of daily maximum temperature (cold
day-times) (days_with_air_temperature_below_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days with maximum tem-
perature below the 10th percentile. A {tasmax_per_window} day(s) window, centered on each
calendar day in the {tasmax_per_period} period, is used to compute the 10th percentile.

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TX90p(tasmax: Union[DataArray, str] = 'tasmax', tasmax_per: Union[DataArray,
str] = 'tasmax_per', *, freq: str = 'YS', bootstrap: bool = False, op: str = '>',
ds: Dataset = None, **indexer)→ DataArray

Days with maximum temperature above the 90th percentile (realm: atmos)

Number of days with maximum temperature above the 90th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tx90p().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• tasmax_per (str or DataArray) – 90th percentile of daily maximum temperature. Default :
ds.tasmax_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to

15.1. Indicators 545

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TX90p (DataArray) – Days with TX>90th percentile of daily maximum temperature (warm
day-times) (days_with_air_temperature_above_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days with maximum tem-
perature above the 90th percentile. A {tasmax_per_window} day(s) window, centered on each
calendar day in the {tasmax_per_period} period, is used to compute the 90th percentile.

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TXn(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Minimum of maximum temperature (realm: atmos)

Minimum of daily maximum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tx_min().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TXn (DataArray) – Minimum daily maximum temperature (air_temperature) [K], with addi-
tional attributes: cell_methods: time: minimum over days; description: {freq} minimum of
daily maximum temperature.

546 Chapter 15. API

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then the minimum daily maximum temperature for
period 𝑗 is:

𝑇𝑋𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝑋𝑖𝑗)

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.TXx(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Maximum temperature (realm: atmos)

Maximum of daily maximum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tx_max().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
TXx (DataArray) – Maximum daily maximum temperature (air_temperature) [K], with addi-
tional attributes: cell_methods: time: maximum over days; description: {freq} maximum of
daily maximum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then the maximum daily maximum temperature
for period 𝑗 is:

𝑇𝑋𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑋𝑖𝑗)

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.WD(tas: Union[DataArray, str] = 'tas', pr: Union[DataArray, str] = 'pr', tas_per:
Union[DataArray, str] = 'tas_per', pr_per: Union[DataArray, str] = 'pr_per', *,
freq: str = 'YS', ds: Dataset = None, **indexer)→ DataArray

Warm and dry days (realm: atmos)

Number of days with temperature above a given percentile and precipitation below a given percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice
warm_and_dry_days().

15.1. Indicators 547

https://www.ecad.eu/
https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Parameters
• tas (str or DataArray) – Mean daily temperature values Default : ds.tas. [Required units :

[temperature]]

• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• tas_per (str or DataArray) – Daily 75th percentile of temperature. Default : ds.tas_per.
[Required units : [temperature]]

• pr_per (str or DataArray) – Daily 25th percentile of wet day precipitation flux. Default :
ds.pr_per. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
WD (DataArray) – Warm and dry days [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days where temperature is above
{tas_per_thresh}th percentile and precipitation is below {pr_per_thresh}th percentile.

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.WSDI(tasmax: Union[DataArray, str] = 'tasmax', tasmax_per: Union[DataArray,
str] = 'tasmax_per', *, freq: str = 'YS', resample_before_rl: bool = True,
bootstrap: bool = False, op: str = '>', ds: Dataset = None)→ DataArray

Warm spell duration index (realm: atmos)

Number of days part of a percentile-defined warm spell. A warm spell occurs when the maximum daily temper-
ature is above a given percentile for a given number of consecutive days.

This indicator will check for missing values according to the method “from_context”. Based on indice
warm_spell_duration_index(). With injected parameters: window=6.

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• tasmax_per (str or DataArray) – percentile(s) of daily maximum temperature. Default :
ds.tasmax_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

548 Chapter 15. API

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
WSDI (DataArray) – Warm-spell duration index (num-
ber_of_days_with_air_temperature_above_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days with at least {window}
consecutive days where the maximum daily temperature is above the {tasmax_per_thresh}th
percentile(s). A {tasmax_per_window} day(s) window, centred on each calendar day in the
{tasmax_per_period} period, is used to compute the {tasmax_per_thresh}th percentile(s).

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.WW(tas: Union[DataArray, str] = 'tas', pr: Union[DataArray, str] = 'pr', tas_per:
Union[DataArray, str] = 'tas_per', pr_per: Union[DataArray, str] = 'pr_per', *,
freq: str = 'YS', ds: Dataset = None, **indexer)→ DataArray

Warm and wet days (realm: atmos)

Number of days with temperature above a given percentile and precipitation above a given percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice
warm_and_wet_days().

Parameters
• tas (str or DataArray) – Mean daily temperature values Default : ds.tas. [Required units :

[temperature]]

• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• tas_per (str or DataArray) – Daily 75th percentile of temperature. Default : ds.tas_per.
[Required units : [temperature]]

• pr_per (str or DataArray) – Daily 75th percentile of wet day precipitation flux. Default :
ds.pr_per. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
WW (DataArray) – Warm and wet days [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days where temperature is above
{tas_per_thresh}th percentile and precipitation is above {pr_per_thresh}th percentile.

15.1. Indicators 549

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

European Climate Assessment & Dataset https://www.ecad.eu/

xclim.indicators.icclim.iter_indicators()

Iterate over the (name, indicator) pairs in the icclim indicator module.

xclim.indicators.icclim.vDTR(tasmin: Union[DataArray, str] = 'tasmin', tasmax: Union[DataArray, str] =
'tasmax', *, freq: str = 'YS', ds: Dataset = None, **indexer)→ DataArray

Variability of daily temperature range (realm: atmos)

The average day-to-day variation in daily temperature range.

This indicator will check for missing values according to the method “from_context”. Based on indice
daily_temperature_range_variability().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
vDTR (DataArray) – Mean absolute day-to-day difference in DTR (air_temperature) [K], with
additional attributes: cell_methods: time range within days time: difference over days time:
mean over days; description: {freq} mean diurnal temperature range variability, defined as the
average day-to-day variation in daily temperature range for the given time period.

Notes

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then calculated is
the absolute day-to-day differences in period 𝑗 is:

𝑣𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=2 |(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)− (𝑇𝑋𝑖−1,𝑗 − 𝑇𝑁𝑖−1,𝑗)|

𝐼

550 Chapter 15. API

https://www.ecad.eu/

xclim Documentation, Release 0.39.0

References

European Climate Assessment & Dataset https://www.ecad.eu/

ANUCLIM indices

The ANUCLIM (v6.1) software package BIOCLIM sub-module produces a set of bioclimatic parameters derived values
of temperature and precipitation. The methods in this module are wrappers around a subset of corresponding methods
of xclim.indices.

Furthermore, according to the ANUCLIM user-guide [Xu and Hutchinson, 2010], input values should be at a weekly
or monthly frequency. However, the implementation here expands these definitions and can calculate the result with
daily input data.

xclim.indicators.anuclim.P10_MeanTempWarmestQuarter(tas: Union[DataArray, str] = 'tas', *, freq: str =
'YS', ds: Dataset = None)→ DataArray

Mean temperature of warmest/coldest quarter. (realm: atmos)

The warmest (or coldest) quarter of the year is determined, and the mean temperature of this period is calculated.
If the input data frequency is daily (“D”) or weekly (“W”), quarters are defined as 13-week periods, otherwise
as three (3) months.

This indicator will check for missing values according to the method “from_context”. Based on indice
tg_mean_warmcold_quarter(). With injected parameters: op=warmest.

Parameters
• tas (str or DataArray) – Mean temperature at daily, weekly, or monthly frequency. Default

: ds.tas. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P10_MeanTempWarmestQuarter (DataArray) – (air_temperature) [K], with additional at-
tributes: cell_methods: time: mean

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P11_MeanTempColdestQuarter(tas: Union[DataArray, str] = 'tas', *, freq: str =
'YS', ds: Dataset = None)→ DataArray

Mean temperature of warmest/coldest quarter. (realm: atmos)

The warmest (or coldest) quarter of the year is determined, and the mean temperature of this period is calculated.
If the input data frequency is daily (“D”) or weekly (“W”), quarters are defined as 13-week periods, otherwise
as three (3) months.

15.1. Indicators 551

https://www.ecad.eu/
https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

This indicator will check for missing values according to the method “from_context”. Based on indice
tg_mean_warmcold_quarter(). With injected parameters: op=coldest.

Parameters
• tas (str or DataArray) – Mean temperature at daily, weekly, or monthly frequency. Default

: ds.tas. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P11_MeanTempColdestQuarter (DataArray) – (air_temperature) [K], with additional at-
tributes: cell_methods: time: mean

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P12_AnnualPrecip(pr: Union[DataArray, str] = 'pr', *, thresh: str = '0 mm/d',
freq: str = 'YS', ds: Dataset = None)→ DataArray

Accumulated total precipitation. (realm: atmos)

The total accumulated precipitation from days where precipitation exceeds a given amount. A threshold is pro-
vided in order to allow the option of reducing the impact of days with trace precipitation amounts on period
totals.

This indicator will check for missing values according to the method “from_context”. Based on indice
prcptot().

Parameters
• pr (str or DataArray) – Total precipitation flux [mm d-1], [mm week-1], [mm month-1] or

similar. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Threshold over which precipitation starts being cumu-
lated. Default : 0 mm/d. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P12_AnnualPrecip (DataArray) – Annual Precipitation (lwe_thickness_of_precipitation_amount)
[mm], with additional attributes: cell_methods: time: sum

552 Chapter 15. API

https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P13_PrecipWettestPeriod(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS',
ds: Dataset = None)→ DataArray

Precipitation of the wettest/driest day, week, or month, depending on the time step. (realm: atmos)

The wettest (or driest) period is determined, and the total precipitation of this period is calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
prcptot_wetdry_period(). With injected parameters: op=wettest.

Parameters
• pr (str or DataArray) – Total precipitation flux [mm d-1], [mm week-1], [mm month-1] or

similar. Default : ds.pr. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P13_PrecipWettestPeriod (DataArray) – (lwe_thickness_of_precipitation_amount) [mm], with
additional attributes: cell_methods: time: sum

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P14_PrecipDriestPeriod(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS',
ds: Dataset = None)→ DataArray

Precipitation of the wettest/driest day, week, or month, depending on the time step. (realm: atmos)

The wettest (or driest) period is determined, and the total precipitation of this period is calculated.

This indicator will check for missing values according to the method “from_context”. Based on indice
prcptot_wetdry_period(). With injected parameters: op=driest.

Parameters
• pr (str or DataArray) – Total precipitation flux [mm d-1], [mm week-1], [mm month-1] or

similar. Default : ds.pr. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P14_PrecipDriestPeriod (DataArray) – (lwe_thickness_of_precipitation_amount) [mm], with
additional attributes: cell_methods: time: sum

15.1. Indicators 553

https://fennerschool.anu.edu.au/files/anuclim61.pdf
https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P15_PrecipSeasonality(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Precipitation Seasonality (C of V). (realm: atmos)

The annual precipitation Coefficient of Variation (C of V) expressed in percent. Calculated as the standard
deviation of precipitation values for a given year expressed as a percentage of the mean of those values.

This indicator will check for missing values according to the method “from_context”. Based on indice
precip_seasonality().

Parameters
• pr (str or DataArray) – Total precipitation rate at daily, weekly, or monthly frequency. Units

need to be defined as a rate (e.g. mm d-1, mm week-1). Default : ds.pr. [Required units :
[precipitation]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P15_PrecipSeasonality (DataArray) – , with additional attributes: cell_methods: time: stan-
dard_deviation; description: “The standard deviation of the precipitation estimates expressed as
a percentage of the mean of those estimates.”

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

If input units are in mm s-1 (or equivalent), values are converted to mm/day to avoid potentially small denominator
values.

554 Chapter 15. API

https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P16_PrecipWettestQuarter(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS',
ds: Dataset = None)→ DataArray

Total precipitation of wettest/driest quarter. (realm: atmos)

The wettest (or driest) quarter of the year is determined, and the total precipitation of this period is calculated. If
the input data frequency is daily (“D”) or weekly (“W”) quarters are defined as 13-week periods, otherwise are
three (3) months.

This indicator will check for missing values according to the method “from_context”. Based on indice
prcptot_wetdry_quarter(). With injected parameters: op=wettest.

Parameters
• pr (str or DataArray) – Total precipitation rate at daily, weekly, or monthly frequency. De-

fault : ds.pr. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P16_PrecipWettestQuarter (DataArray) – (lwe_thickness_of_precipitation_amount) [mm],
with additional attributes: cell_methods: time: sum

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P17_PrecipDriestQuarter(pr: Union[DataArray, str] = 'pr', *, freq: str = 'YS',
ds: Dataset = None)→ DataArray

Total precipitation of wettest/driest quarter. (realm: atmos)

The wettest (or driest) quarter of the year is determined, and the total precipitation of this period is calculated. If
the input data frequency is daily (“D”) or weekly (“W”) quarters are defined as 13-week periods, otherwise are
three (3) months.

This indicator will check for missing values according to the method “from_context”. Based on indice
prcptot_wetdry_quarter(). With injected parameters: op=driest.

Parameters
• pr (str or DataArray) – Total precipitation rate at daily, weekly, or monthly frequency. De-

fault : ds.pr. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

15.1. Indicators 555

https://fennerschool.anu.edu.au/files/anuclim61.pdf
https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P17_PrecipDriestQuarter (DataArray) – (lwe_thickness_of_precipitation_amount) [mm],
with additional attributes: cell_methods: time: sum

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P18_PrecipWarmestQuarter(pr: Union[DataArray, str] = 'pr', tas:
Union[DataArray, str] = 'tas', *, freq: str = 'YS',
ds: Dataset = None)→ DataArray

Total precipitation of warmest/coldest quarter. (realm: atmos)

The warmest (or coldest) quarter of the year is determined, and the total precipitation of this period is calculated.
If the input data frequency is daily (“D) or weekly (“W”), quarters are defined as 13-week periods, otherwise are
3 months.

This indicator will check for missing values according to the method “from_context”. Based on indice
prcptot_warmcold_quarter(). With injected parameters: op=warmest.

Parameters
• pr (str or DataArray) – Total precipitation rate at daily, weekly, or monthly frequency. De-

fault : ds.pr. [Required units : [precipitation]]

• tas (str or DataArray) – Mean temperature at daily, weekly, or monthly frequency. Default
: ds.tas. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P18_PrecipWarmestQuarter (DataArray) – (lwe_thickness_of_precipitation_amount) [mm],
with additional attributes: cell_methods: time: sum

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

556 Chapter 15. API

https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P19_PrecipColdestQuarter(pr: Union[DataArray, str] = 'pr', tas:
Union[DataArray, str] = 'tas', *, freq: str = 'YS',
ds: Dataset = None)→ DataArray

Total precipitation of warmest/coldest quarter. (realm: atmos)

The warmest (or coldest) quarter of the year is determined, and the total precipitation of this period is calculated.
If the input data frequency is daily (“D) or weekly (“W”), quarters are defined as 13-week periods, otherwise are
3 months.

This indicator will check for missing values according to the method “from_context”. Based on indice
prcptot_warmcold_quarter(). With injected parameters: op=coldest.

Parameters
• pr (str or DataArray) – Total precipitation rate at daily, weekly, or monthly frequency. De-

fault : ds.pr. [Required units : [precipitation]]

• tas (str or DataArray) – Mean temperature at daily, weekly, or monthly frequency. Default
: ds.tas. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P19_PrecipColdestQuarter (DataArray) – (lwe_thickness_of_precipitation_amount) [mm],
with additional attributes: cell_methods: time: sum

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P1_AnnMeanTemp(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Mean of daily average temperature. (realm: atmos)

Resample the original daily mean temperature series by taking the mean over each period.

This indicator will check for missing values according to the method “from_context”. Based on indice
tg_mean().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

15.1. Indicators 557

https://fennerschool.anu.edu.au/files/anuclim61.pdf
https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P1_AnnMeanTemp (DataArray) – Annual Mean Temperature (air_temperature) [K], with ad-
ditional attributes: cell_methods: time: mean

Notes

Let 𝑇𝑁𝑖 be the mean daily temperature of day 𝑖, then for a period 𝑝 starting at day 𝑎 and finishing on day 𝑏:

𝑇𝐺𝑝 =

∑︀𝑏
𝑖=𝑎 𝑇𝑁𝑖

𝑏− 𝑎+ 1

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P2_MeanDiurnalRange(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', op:
str | Callable = 'mean', ds: Dataset = None)→
DataArray

Statistics of daily temperature range. (realm: atmos)

The mean difference between the daily maximum temperature and the daily minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
daily_temperature_range().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• op ({‘std’, ‘max’, ‘mean’, ‘min’}) – Reduce operation. Can either be a DataArray method or
a function that can be applied to a DataArray. Default : mean.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P2_MeanDiurnalRange (DataArray) – Mean Diurnal Range [K], with additional attributes:
cell_methods: time: range

558 Chapter 15. API

https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

Notes

For a default calculation using op=’mean’ :

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the mean diurnal
temperature range in period 𝑗 is:

𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=1(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)

𝐼

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P3_Isothermality(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Isothermality. (realm: atmos)

The mean diurnal temperature range divided by the annual temperature range.

This indicator will check for missing values according to the method “from_context”. Based on indice
isothermality().

Parameters
• tasmin (str or DataArray) – Average daily minimum temperature at daily, weekly, or monthly

frequency. Default : ds.tasmin. [Required units : [temperature]]

• tasmax (str or DataArray) – Average daily maximum temperature at daily, weekly, or
monthly frequency. Default : ds.tasmax. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P3_Isothermality (DataArray) – , with additional attributes: cell_methods: time: range; de-
scription: The mean diurnal range (P2) divided by the Annual Temperature Range (P7).

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the output with input
data with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior
to calling the function.

15.1. Indicators 559

https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P4_TempSeasonality(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Temperature seasonality (coefficient of variation). (realm: atmos)

The annual temperature coefficient of variation expressed in percent. Calculated as the standard deviation of
temperature values for a given year expressed as a percentage of the mean of those temperatures.

This indicator will check for missing values according to the method “from_context”. Based on indice
temperature_seasonality().

Parameters
• tas (str or DataArray) – Mean temperature at daily, weekly, or monthly frequency. Default

: ds.tas. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P4_TempSeasonality (DataArray) – , with additional attributes: cell_methods: time: stan-
dard_deviation; description: “The standard deviation of the mean temperatures expressed as a
percentage of the mean of those temperatures. For this calculation, the mean in degrees Kelvin
is used. This avoids the possibility of having to divide by zero, but it does mean that the values
are usually quite small.”

Notes

For this calculation, the mean in degrees Kelvin is used. This avoids the possibility of having to divide by zero,
but it does mean that the values are usually quite small.

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P5_MaxTempWarmestPeriod(tasmax: Union[DataArray, str] = 'tasmax', *, freq:
str = 'YS', ds: Dataset = None)→ DataArray

Highest max temperature. (realm: atmos)

The maximum value of daily maximum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tx_max().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

560 Chapter 15. API

https://fennerschool.anu.edu.au/files/anuclim61.pdf
https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P5_MaxTempWarmestPeriod (DataArray) – Max Temperature of Warmest Period
(air_temperature) [K], with additional attributes: description: The highest maximum
temperature in all periods of the year.; cell_methods: time: maximum

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then the maximum daily maximum temperature
for period 𝑗 is:

𝑇𝑋𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑋𝑖𝑗)

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P6_MinTempColdestPeriod(tasmin: Union[DataArray, str] = 'tasmin', *, freq:
str = 'YS', ds: Dataset = None)→ DataArray

Lowest minimum temperature. (realm: atmos)

Minimum of daily minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tn_min().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P6_MinTempColdestPeriod (DataArray) – Min Temperature of Coldest Period
(air_temperature) [K], with additional attributes: description: The lowest minimum tem-
perature in all periods of the year.; cell_methods: time: minimum

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then the minimum daily minimum temperature for
period 𝑗 is:

𝑇𝑁𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝑁𝑖𝑗)

15.1. Indicators 561

https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P7_TempAnnualRange(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Calculate the extreme temperature range as the maximum of daily maximum temperature minus the minimum
of daily minimum temperature. (realm: atmos)

This indicator will check for missing values according to the method “from_context”. Based on indice
extreme_temperature_range().

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required
units : K]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Re-
stricted to frequencies equivalent to one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P7_TempAnnualRange (DataArray) – Temperature Annual Range [K], with additional at-
tributes: cell_methods: time: range

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P8_MeanTempWettestQuarter(tas: Union[DataArray, str] = 'tas', pr:
Union[DataArray, str] = 'pr', *, freq: str = 'YS',
ds: Dataset = None)→ DataArray

Mean temperature of wettest/driest quarter. (realm: atmos)

The wettest (or driest) quarter of the year is determined, and the mean temperature of this period is calculated.
If the input data frequency is daily (“D”) or weekly (“W”), quarters are defined as 13-week periods, otherwise
are 3 months.

This indicator will check for missing values according to the method “from_context”. Based on indice
tg_mean_wetdry_quarter(). With injected parameters: op=wettest.

Parameters
• tas (str or DataArray) – Mean temperature at daily, weekly, or monthly frequency. Default

: ds.tas. [Required units : [temperature]]

• pr (str or DataArray) – Total precipitation rate at daily, weekly, or monthly frequency. De-
fault : ds.pr. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

562 Chapter 15. API

https://fennerschool.anu.edu.au/files/anuclim61.pdf
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

Returns
P8_MeanTempWettestQuarter (DataArray) – (air_temperature) [K], with additional attributes:
cell_methods: time: mean

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.P9_MeanTempDriestQuarter(tas: Union[DataArray, str] = 'tas', pr:
Union[DataArray, str] = 'pr', *, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Mean temperature of wettest/driest quarter. (realm: atmos)

The wettest (or driest) quarter of the year is determined, and the mean temperature of this period is calculated.
If the input data frequency is daily (“D”) or weekly (“W”), quarters are defined as 13-week periods, otherwise
are 3 months.

This indicator will check for missing values according to the method “from_context”. Based on indice
tg_mean_wetdry_quarter(). With injected parameters: op=driest.

Parameters
• tas (str or DataArray) – Mean temperature at daily, weekly, or monthly frequency. Default

: ds.tas. [Required units : [temperature]]

• pr (str or DataArray) – Total precipitation rate at daily, weekly, or monthly frequency. De-
fault : ds.pr. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
P9_MeanTempDriestQuarter (DataArray) – (air_temperature) [K], with additional attributes:
cell_methods: time: mean

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

15.1. Indicators 563

https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

References

ANUCLIM https://fennerschool.anu.edu.au/files/anuclim61.pdf (ch. 6)

xclim.indicators.anuclim.iter_indicators()

Iterate over the (name, indicator) pairs in the anuclim indicator module.

15.2 Indices

15.3 Ensembles module

Ensemble tools.

This submodule defines some useful methods for dealing with ensembles of climate simulations. In xclim, an “ensem-
ble” is a Dataset or a DataArray where multiple climate realizations or models are concatenated along the realization
dimension.

xclim.ensembles.create_ensemble(datasets: Any, mf_flag: bool = False, resample_freq: Optional[str] =
None, calendar: Optional[str] = None, realizations:
Optional[Sequence[Any]] = None, cal_kwargs: Optional[dict] = None,
**xr_kwargs)→ Dataset

Create an xarray dataset of an ensemble of climate simulation from a list of netcdf files.

Input data is concatenated along a newly created data dimension (‘realization’). Returns an xarray dataset object
containing input data from the list of netcdf files concatenated along a new dimension (name:’realization’). In the
case where input files have unequal time dimensions, the output ensemble Dataset is created for maximum time-
step interval of all input files. Before concatenation, datasets not covering the entire time span have their data
padded with NaN values. Dataset and variable attributes of the first dataset are copied to the resulting dataset.

Parameters
• datasets (list or dict or string) – List of netcdf file paths or xarray Dataset/DataArray objects

. If mf_flag is True, ncfiles should be a list of lists where each sublist contains input .nc files
of an xarray multifile Dataset. If DataArray objects are passed, they should have a name in
order to be transformed into Datasets. A dictionary can be passed instead of a list, in which
case the keys are used as coordinates along the new realization axis. If a string is passed, it
is assumed to be a glob pattern for finding datasets.

• mf_flag (bool) – If True, climate simulations are treated as xarray multifile Datasets before
concatenation. Only applicable when “datasets” is sequence of list of file paths.

• resample_freq (Optional[str]) – If the members of the ensemble have the same frequency
but not the same offset, they cannot be properly aligned. If resample_freq is set, the time
coordinate of each member will be modified to fit this frequency.

• calendar (str, optional) – The calendar of the time coordinate of the ensemble. By de-
fault, the smallest common calendar is chosen. For example, a mixed input of “noleap” and
“360_day” will default to “noleap”. ‘default’ is the standard calendar using np.datetime64
objects (xarray’s “standard” with use_cftime=False).

• realizations (sequence, optional) – The coordinate values for the new realization axis. If
None (default), the new axis has a simple integer coordinate. This argument shouldn’t be
used if datasets is a glob pattern as the dataset order is random.

564 Chapter 15. API

https://fennerschool.anu.edu.au/files/anuclim61.pdf

xclim Documentation, Release 0.39.0

• cal_kwargs (dict, optional) – Additionnal arguments to pass to
py:func:xclim.core.calendar.convert_calendar. For conversions involving ‘360_day’,
the align_on=’date’ option is used by default.

• **xr_kwargs – Any keyword arguments to be given to xr.open_dataset when opening the
files (or to xr.open_mfdataset if mf_flag is True)

Returns
xr.Dataset – Dataset containing concatenated data from all input files.

Notes

Input netcdf files require equal spatial dimension size (e.g. lon, lat dimensions). If input data contains multiple
cftime calendar types they must be at monthly or coarser frequency.

Examples

from pathlib import Path
from xclim.ensembles import create_ensemble

ens = create_ensemble(temperature_datasets)

Using multifile datasets, through glob patterns.
Simulation 1 is a list of .nc files (e.g. separated by time):
datasets = list(Path("/dir").glob("*.nc"))

Simulation 2 is also a list of .nc files:
datasets.extend(Path("/dir2").glob("*.nc"))
ens = create_ensemble(datasets, mf_flag=True)

xclim.ensembles.ensemble_mean_std_max_min(ens: Dataset, weights: Optional[DataArray] = None)→
Dataset

Calculate ensemble statistics between a results from an ensemble of climate simulations.

Returns an xarray Dataset containing ensemble mean, standard-deviation, minimum and maximum for input
climate simulations.

Parameters
• ens (xr.Dataset) – Ensemble dataset (see xclim.ensembles.create_ensemble).

• weights (xr.DataArray) – Weights to apply along the ‘realization’ dimension. This array
cannot contain missing values.

Returns
xr.Dataset – Dataset with data variables of ensemble statistics.

15.3. Ensembles module 565

xclim Documentation, Release 0.39.0

Examples

from xclim.ensembles import create_ensemble, ensemble_mean_std_max_min

Create the ensemble dataset:
ens = create_ensemble(temperature_datasets)

Calculate ensemble statistics:
ens_mean_std = ensemble_mean_std_max_min(ens)

xclim.ensembles.ensemble_percentiles(ens: xarray.Dataset | xarray.DataArray, values:
Optional[Sequence[int]] = None, keep_chunk_size: Optional[bool]
= None, weights: Optional[DataArray] = None, split: bool = True)
→ xarray.DataArray | xarray.Dataset

Calculate ensemble statistics between a results from an ensemble of climate simulations.

Returns a Dataset containing ensemble percentiles for input climate simulations.

Parameters
• ens (xr.Dataset or xr.DataArray) – Ensemble dataset or dataarray (see

xclim.ensembles.create_ensemble).

• values (Sequence[int], optional) – Percentile values to calculate. Default: (10, 50, 90).

• keep_chunk_size (bool, optional) – For ensembles using dask arrays, all chunks along the
‘realization’ axis are merged. If True, the dataset is rechunked along the dimension with the
largest chunks, so that the chunks keep the same size (approximately). If False, no shrinking
is performed, resulting in much larger chunks. If not defined, the function decides which is
best.

• weights (xr.DataArray) – Weights to apply along the ‘realization’ dimension. This array
cannot contain missing values. When given, the function uses xarray’s quantile method
which is slower than xclim’s NaN-optimized algorithm.

• split (bool) – Whether to split each percentile into a new variable or concatenate the output
along a new “percentiles” dimension.

Returns
xr.Dataset or xr.DataArray – If split is True, same type as ens; dataset otherwise, containing data
variable(s) of requested ensemble statistics

Examples

from xclim.ensembles import create_ensemble, ensemble_percentiles

Create ensemble dataset:
ens = create_ensemble(temperature_datasets)

Calculate default ensemble percentiles:
ens_percs = ensemble_percentiles(ens)

Calculate non-default percentiles (25th and 75th)
ens_percs = ensemble_percentiles(ens, values=(25, 50, 75))

(continues on next page)

566 Chapter 15. API

xclim Documentation, Release 0.39.0

(continued from previous page)

If the original array has many small chunks, it might be more efficient to do:
ens_percs = ensemble_percentiles(ens, keep_chunk_size=False)

15.3.1 Ensemble Reduction

Ensemble reduction is the process of selecting a subset of members from an ensemble in order to reduce the volume of
computation needed while still covering a good portion of the simulated climate variability.

xclim.ensembles.kkz_reduce_ensemble(data: DataArray, num_select: int, *, dist_method: str = 'euclidean',
standardize: bool = True, **cdist_kwargs)→ list

Return a sample of ensemble members using KKZ selection.

The algorithm selects num_select ensemble members spanning the overall range of the ensemble. The selection
is ordered, smaller groups are always subsets of larger ones for given criteria. The first selected member is
the one nearest to the centroid of the ensemble, all subsequent members are selected in a way maximizing the
phase-space coverage of the group. Algorithm taken from Cannon [2015].

Parameters
• data (xr.DataArray) – Selection criteria data : 2-D xr.DataArray with dimensions ‘realiza-

tion’ (N) and ‘criteria’ (P). These are the values used for clustering. Realizations represent
the individual original ensemble members and criteria the variables/indicators used in the
grouping algorithm.

• num_select (int) – The number of members to select.

• dist_method (str) – Any distance metric name accepted by scipy.spatial.distance.cdist.

• standardize (bool) – Whether to standardize the input before running the selection or not.
Standardization consists in translation as to have a zero mean and scaling as to have a unit
standard deviation.

• **cdist_kwargs – All extra arguments are passed as-is to scipy.spatial.distance.cdist, see its
docs for more information.

Returns
list – Selected model indices along the realization dimension.

References

Cannon [2015], Katsavounidis, Jay Kuo, and Zhang [1994]

xclim.ensembles.kmeans_reduce_ensemble(data: DataArray, *, method: Optional[dict] = None,
make_graph: bool = True, max_clusters: Optional[int] = None,
variable_weights: Optional[ndarray] = None, model_weights:
Optional[ndarray] = None, sample_weights: Optional[ndarray]
= None, random_state: Optional[Union[int, RandomState]] =
None)→ tuple[list, numpy.ndarray, dict]

Return a sample of ensemble members using k-means clustering.

The algorithm attempts to reduce the total number of ensemble members while maintaining adequate coverage
of the ensemble uncertainty in an N-dimensional data space. K-Means clustering is carried out on the input
selection criteria data-array in order to group individual ensemble members into a reduced number of similar
groups. Subsequently, a single representative simulation is retained from each group.

Parameters

15.3. Ensembles module 567

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

• data (xr.DataArray) – Selecton criteria data : 2-D xr.DataArray with dimensions ‘realiza-
tion’ (N) and ‘criteria’ (P). These are the values used for clustering. Realizations represent
the individual original ensemble members and criteria the variables/indicators used in the
grouping algorithm.

• method (dict) – Dictionary defining selection method and associated value when required.
See Notes.

• max_clusters (int, optional) – Maximum number of members to include in the output ensem-
ble selection. When using ‘rsq_optimize’ or ‘rsq_cutoff’ methods, limit the final selection
to a maximum number even if method results indicate a higher value. Defaults to N.

• variable_weights (np.ndarray, optional) – An array of size P. This weighting can be used to
influence of weight of the climate indices (criteria dimension) on the clustering itself.

• model_weights (np.ndarray, optional) – An array of size N. This weighting can be used
to influence which realization is selected from within each cluster. This parameter has no
influence on the clustering itself.

• sample_weights (np.ndarray, optional) – An array of size N. sklearn.cluster.KMeans() sam-
ple_weights parameter. This weighting can be used to influence of weight of simulations on
the clustering itself. See: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
KMeans.html

• random_state (int or np.random.RandomState, optional) – sklearn.cluster.KMeans() ran-
dom_state parameter. Determines random number generation for centroid initialization. Use
an int to make the randomness deterministic. See: https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html

• make_graph (bool) – output a dictionary of input for displays a plot of R2 vs. the number
of clusters. Defaults to True if matplotlib is installed in runtime environment.

Notes

Parameters for method in call must follow these conventions:

rsq_optimize
Calculate coefficient of variation (R2) of cluster results for n = 1 to N clusters and determine an optimal
number of clusters that balances cost/benefit tradeoffs. This is the default setting. See supporting informa-
tion S2 text in Casajus et al. [2016].

method={‘rsq_optimize’:None}

rsq_cutoff
Calculate Coefficient of variation (R2) of cluster results for n = 1 to N clusters and determine the minimum
numbers of clusters needed for R2 > val.

val : float between 0 and 1. R2 value that must be exceeded by clustering results.

method={‘rsq_cutoff’: val}

n_clusters
Create a user determined number of clusters.

val : integer between 1 and N

method={‘n_clusters’: val}

Returns
• list – Selected model indexes (positions)

568 Chapter 15. API

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

xclim Documentation, Release 0.39.0

• np.ndarray – KMeans clustering results

• dict – Dictionary of input data for creating R2 profile plot. ‘None’ when make_graph=False

References

Casajus, Périé, Logan, Lambert, Blois, and Berteaux [2016]

Examples

import xclim
from xclim.ensembles import create_ensemble, kmeans_reduce_ensemble
from xclim.indices import hot_spell_frequency

Start with ensemble datasets for temperature:

ensTas = create_ensemble(temperature_datasets)

Calculate selection criteria -- Use annual climate change fields between 2071-
→˓2100 and 1981-2010 normals.
First, average annual temperature:

tg = xclim.atmos.tg_mean(tas=ensTas.tas)
his_tg = tg.sel(time=slice("1990", "2019")).mean(dim="time")
fut_tg = tg.sel(time=slice("2020", "2050")).mean(dim="time")
dtg = fut_tg - his_tg

Then, hot spell frequency as second indicator:

hs = hot_spell_frequency(tasmax=ensTas.tas, window=2, thresh_tasmax="10 degC")
his_hs = hs.sel(time=slice("1990", "2019")).mean(dim="time")
fut_hs = hs.sel(time=slice("2020", "2050")).mean(dim="time")
dhs = fut_hs - his_hs

Create a selection criteria xr.DataArray:

from xarray import concat

crit = concat((dtg, dhs), dim="criteria")

Finally, create clusters and select realization ids of reduced ensemble:

ids, cluster, fig_data = kmeans_reduce_ensemble(
data=crit, method={"rsq_cutoff": 0.9}, random_state=42, make_graph=False

)
ids, cluster, fig_data = kmeans_reduce_ensemble(

data=crit, method={"rsq_optimize": None}, random_state=42, make_graph=True
)

xclim.ensembles.plot_rsqprofile(fig_data)
Create an R2 profile plot using kmeans_reduce_ensemble output.

15.3. Ensembles module 569

xclim Documentation, Release 0.39.0

The R2 plot allows evaluation of the proportion of total uncertainty in the original ensemble that is provided by
the reduced selected.

Examples

>>> from xclim.ensembles import kmeans_reduce_ensemble, plot_rsqprofile
>>> is_matplotlib_installed()
>>> crit = xr.open_dataset(path_to_ensemble_file).data
>>> ids, cluster, fig_data = kmeans_reduce_ensemble(
... data=crit, method={"rsq_cutoff": 0.9}, random_state=42, make_graph=True
...)
>>> plot_rsqprofile(fig_data)

15.3.2 Ensemble Robustness metrics

Robustness metrics are used to estimate the confidence of the climate change signal of an ensemble. This submodule
is inspired by and tries to follow the guidelines of the IPCC, more specifically the 12th chapter of the Working Group
1’s contribution to the AR5 [Collins et al., 2013] (see box 12.1).

xclim.ensembles.change_significance(fut: xarray.DataArray | xarray.Dataset, ref:
Optional[Union[DataArray, Dataset]] = None, test: str = 'ttest',
weights: Optional[DataArray] = None, **kwargs)→
tuple[xarray.DataArray | xarray.Dataset, xarray.DataArray |
xarray.Dataset]

Robustness statistics qualifying how the members of an ensemble agree on the existence of change and on its
sign.

Parameters
• fut (xr.DataArray or xr.Dataset) – Future period values along ‘realization’ and ‘time’ (. . . ,

nr, nt1) or if ref is None, Delta values along realization (. . . , nr).

• ref (Union[xr.DataArray, xr.Dataset], optional) – Reference period values along realization’
and ‘time’ (. . . , nt2, nr). The size of the ‘time’ axis does not need to match the one of fut.
But their ‘realization’ axes must be identical. If None (default), values of fut are assumed to
be deltas instead of a distribution across the future period. fut and ref must be of the same
type (Dataset or DataArray). If they are Dataset, they must have the same variables (name
and coords).

• test ({‘ttest’, ‘welch-ttest’, ‘threshold’, None}) – Name of the statistical test used to determine
if there was significant change. See notes.

• weights (xr.DataArray) – Weights to apply along the ‘realization’ dimension. This array
cannot contain missing values. Note: ‘ttest’ and ‘welch-ttest’ are not currently supported
with weighted arrays.

• **kwargs – Other arguments specific to the statistical test.

For ‘ttest’ and ‘welch-ttest’:
p_change

[float (default][0.05)] p-value threshold for rejecting the hypothesis of no significant
change.

For ‘threshold’: (Only one of those must be given.)

570 Chapter 15. API

xclim Documentation, Release 0.39.0

abs_thresh
[float (no default)] Threshold for the (absolute) change to be considered significative.

rel_thresh
[float (no default, in [0, 1])] Threshold for the relative change (in reference to ref) to be
significative. Only valid if ref is given.

Returns
• change_frac (xr.DataArray or xr.Dataset) – The fraction of members that show significant

change [0, 1]. Passing test=None yields change_frac = 1 everywhere. Same type as fut.

• pos_frac (xr.DataArray or xr.Dataset) – The fraction of members showing significant
change that show a positive change]0, 1]. Null values are returned where no members show
significant change.

The table below shows the coefficient needed to retrieve the number of members that
have the indicated characteristics, by multiplying it to the total number of members
(fut.realization.size).

Significant change Non-significant change
Any direction change_frac 1 - change_frac
Positive change pos_frac * change_frac N.A.
Negative change (1 - pos_frac) * change_frac

Notes

Available statistical tests are :

‘ttest’ :
Single sample T-test. Same test as used by Tebaldi et al. [2011]. The future values are compared
against the reference mean (over ‘time’). Change is qualified as ‘significant’ when the test’s p-
value is below the user-provided p_change value.

‘welch-ttest’ :
Two-sided T-test, without assuming equal population variance. Same significance criterion as
‘ttest’.

‘threshold’ :
Change is considered significative if the absolute delta exceeds a given threshold (absolute or
relative).

None :
Significant change is not tested and, thus, members showing no change are included in the
sign_frac output.

References

Tebaldi, Arblaster, and Knutti [2011]

15.3. Ensembles module 571

xclim Documentation, Release 0.39.0

Example

This example computes the mean temperature in an ensemble and compares two time periods, qualifying signif-
icant change through a single sample T-test.

>>> from xclim import ensembles
>>> ens = ensembles.create_ensemble(temperature_datasets)
>>> tgmean = xclim.atmos.tg_mean(tas=ens.tas, freq="YS")
>>> fut = tgmean.sel(time=slice("2020", "2050"))
>>> ref = tgmean.sel(time=slice("1990", "2020"))
>>> chng_f, pos_f = ensembles.change_significance(fut, ref, test="ttest")

If the deltas were already computed beforehand, the ‘threshold’ test can still be used, here with a 2 K threshold.

>>> delta = fut.mean("time") - ref.mean("time")
>>> chng_f, pos_f = ensembles.change_significance(
... delta, test="threshold", abs_thresh=2
...)

xclim.ensembles.robustness_coefficient(fut: xarray.DataArray | xarray.Dataset, ref: xarray.DataArray |
xarray.Dataset)→ xarray.DataArray | xarray.Dataset

Robustness coefficient quantifying the robustness of a climate change signal in an ensemble.

Taken from Knutti and Sedlácek [2013].

The robustness metric is defined as R = 1 A1 / A2 , where A1 is defined as the integral of the squared area
between two cumulative density functions characterizing the individual model projections and the multimodel
mean projection and A2 is the integral of the squared area between two cumulative density functions character-
izing the multimodel mean projection and the historical climate. Description taken from Knutti and Sedlácek
[2013].

A value of R equal to one implies perfect model agreement. Higher model spread or smaller signal decreases
the value of R.

Parameters
• fut (Union[xr.DataArray, xr.Dataset]) – Future ensemble values along ‘realization’ and

‘time’ (nr, nt). Can be a dataset, in which case the coefficient is computed on each vari-
able.

• ref (Union[xr.DataArray, xr.Dataset]) – Reference period values along ‘time’ (nt). Same
type as fut.

Returns
xr.DataArray or xr.Dataset – The robustness coefficient,]-inf, 1], float. Same type as fut or ref.

References

Knutti and Sedlácek [2013]

572 Chapter 15. API

xclim Documentation, Release 0.39.0

15.4 Indicator Tools

15.4.1 Indicators utilities

The Indicator class wraps indices computations with pre- and post-processing functionality. Prior to computations,
the class runs data and metadata health checks. After computations, the class masks values that should be considered
missing and adds metadata attributes to the object.

There are many ways to construct indicators. A good place to start is this notebook.

Dictionary and YAML parser

To construct indicators dynamically, xclim can also use dictionaries and parse them from YAML files. This is especially
useful for generating whole indicator “submodules” from files. This functionality is inspired by the work of clix-meta.

YAML file structure

Indicator-defining yaml files are structured in the following way. Most entries of the indicators section are mirroring
attributes of the Indicator, please refer to its documentation for more details on each.

module: <module name> # Defaults to the file name
realm: <realm> # If given here, applies to all indicators that do not already provide␣
→˓it.
keywords: <keywords> # Merged with indicator-specific keywords (joined with a space)
references: <references> # Merged with indicator-specific references (joined with a new␣
→˓line)
base: <base indicator class> # Defaults to "Daily" and applies to all indicators that␣
→˓do not give it.
doc: <module docstring> # Defaults to a minimal header, only valid if the module doesn't␣
→˓already exists.
indicators:
<identifier>:
From which Indicator to inherit
base: <base indicator class> # Defaults to module-wide base class

If the name startswith a '.', the base class is taken␣
→˓from the current module (thus an indicator declared _above_)

Available classes are listed in `xclim.core.
→˓indicator.registry` and `xclim.core.indicator.base_registry`.

General metadata, usually parsed from the `compute`'s docstring when possible.
realm: <realm> # defaults to module-wide realm. One of "atmos", "land", "seaIce",

→˓"ocean".
title: <title>
abstract: <abstract>
keywords: <keywords> # Space-separated, merged to module-wide keywords.
references: <references> # newline-seperated, merged to module-wide references.
notes: <notes>

Other options
missing: <missing method name>
missing_options:

(continues on next page)

15.4. Indicator Tools 573

https://github.com/clix-meta/clix-meta/

xclim Documentation, Release 0.39.0

(continued from previous page)

missing options mapping
allowed_periods: [<list>, <of>, <allowed>, <periods>]

Compute function
compute: <function name> # Referring to a function in the supplied `Indices` module,␣

→˓xclim.indices.generic or xclim.indices
input: # When "compute" is a generic function this is a mapping from argument

name to what CMIP6/xclim variable is expected. This will allow for
declaring expected input units and have a CF metadata check on the inputs.
Can also be used to modify the expected variable, as long as it has
the same units. Ex: tas instead of tasmin.

<var name in compute> : <variable official name>
...

parameters:
<param name>: <param data> # Simplest case, to inject parameters in the compute␣

→˓function.
<param name>: # To change parameters metadata or to declare units when "compute"␣

→˓is a generic function.
units: <param units> # Only valid if "compute" points to a generic function
default : <param default>
description: <param description>

...
... # and so on.

All fields are optional. Other fields found in the yaml file will trigger errors in xclim. In the following, the section under
<identifier> is referred to as data. When creating indicators from a dictionary, with Indicator.from_dict(), the
input dict must follow the same structure of data.

The resulting yaml file can be validated using the provided schema (in xclim/data/schema.yml) and the YAMALE tool
[Lopker, 2022]. See the “Extending xclim” notebook for more info.

Inputs

As xclim has strict definitions of possible input variables (see xclim.core.utils.variables), the mapping of
data.input simply links an argument name from the function given in “compute” to one of those official variables.

class xclim.core.indicator.Parameter(kind: ~xclim.core.utils.InputKind, default: ~typing.Any, description:
str = '', units: str = <class 'xclim.core.indicator._empty'>, choices:
set = <class 'xclim.core.indicator._empty'>, value: ~typing.Any =
<class 'xclim.core.indicator._empty'>)

Bases: object

Class for storing an indicator’s controllable parameter.

For retrocompatibility, this class implements a “getitem” and a special “contains”.

574 Chapter 15. API

xclim Documentation, Release 0.39.0

Example

>>> p = Parameter(InputKind.NUMBER, default=2, description="A simple number")
>>> p.units is Parameter._empty # has not been set
True
>>> "units" in p # Easier/retrocompatible way to test if units are set
False
>>> p.description
'A simple number'
>>> p["description"] # Same as above, for convenience.
'A simple number'

default

alias of _empty

update(other: dict)→ None
Update a parameter’s values from a dict.

classmethod is_parameter_dict(other: dict)→ bool
Return whether indicator has a parameter dictionary.

asdict()→ dict
Format indicators as a dictionary.

property injected: bool

Indicate whether values are injected.

class xclim.core.indicator.IndicatorRegistrar

Bases: object

Climate Indicator registering object.

classmethod get_instance()

Return first found instance.

Raises ValueError if no instance exists.

class xclim.core.indicator.Indicator(**kwds)
Bases: IndicatorRegistrar

Climate indicator base class.

Climate indicator object that, when called, computes an indicator and assigns its output a number of CF-
compliant attributes. Some of these attributes can be templated, allowing metadata to reflect the value of call
arguments.

Instantiating a new indicator returns an instance but also creates and registers a custom subclass in xclim.core.
indicator.registry.

Attributes in Indicator.cf_attrs will be formatted and added to the output variable(s). This attribute is a list of
dictionaries. For convenience and retro-compatibility, standard CF attributes (names listed in xclim.core.
indicator.Indicator._cf_names) can be passed as strings or list of strings directly to the indicator con-
structor.

A lot of the Indicator’s metadata is parsed from the underlying compute function’s docstring and sig-
nature. Input variables and parameters are listed in xclim.core.indicator.Indicator.parameters,
while parameters that will be injected in the compute function are in xclim.core.indicator.
Indicator.injected_parameters. Both are simply views of xclim.core.indicator.Indicator.
_all_parameters.

15.4. Indicator Tools 575

xclim Documentation, Release 0.39.0

Compared to their base compute function, indicators add the possibility of using dataset as input, with the injected
argument ds in the call signature. All arguments that were indicated by the compute function to be variables
(DataArrays) through annotations will be promoted to also accept strings that correspond to variable names in
the ds dataset.

Parameters
• identifier (str) – Unique ID for class registry, should be a valid slug.

• realm ({‘atmos’, ‘seaIce’, ‘land’, ‘ocean’}) – General domain of validity of the indicator.
Indicators created outside xclim.indicators must set this attribute.

• compute (func) – The function computing the indicators. It should return one or more
DataArray.

• cf_attrs (list of dicts) – Attributes to be formatted and added to the computation’s output.
See xclim.core.indicator.Indicator.cf_attrs.

• title (str) – A succinct description of what is in the computed outputs. Parsed from compute
docstring if None (first paragraph).

• abstract (str) – A long description of what is in the computed outputs. Parsed from compute
docstring if None (second paragraph).

• keywords (str) – Comma separated list of keywords. Parsed from compute docstring if None
(from a “Keywords” section).

• references (str) – Published or web-based references that describe the data or methods used
to produce it. Parsed from compute docstring if None (from the “References” section).

• notes (str) – Notes regarding computing function, for example the mathematical formulation.
Parsed from compute docstring if None (form the “Notes” section).

• src_freq (str, sequence of strings, optional) – The expected frequency of the input data. Can
be a list for multiple frequencies, or None if irrelevant.

• context (str) – The pint unit context, for example use ‘hydro’ to allow conversion from kg
m-2 s-1 to mm/day.

Notes

All subclasses created are available in the registry attribute and can be used to define custom subclasses or parse
all available instances.

cf_attrs: Sequence[Mapping[str, Any]] = None

A list of metadata information for each output of the indicator.

It minimally contains a “var_name” entry, and may contain : “standard_name”, “long_name”, “units”,
“cell_methods”, “description” and “comment” on official xclim indicators. Other fields could also be
present if the indicator was created from outside xclim.

var_name:
Output variable(s) name(s). For derived single-output indicators, this field is not inherited from the
parent indicator and defaults to the identifier.

standard_name:
Variable name, must be in the CF standard names table (this is not checked).

long_name:
Descriptive variable name. Parsed from compute docstring if not given. (first line after the output
dtype, only works on single output function).

576 Chapter 15. API

xclim Documentation, Release 0.39.0

units:
Representative units of the physical quantity.

cell_methods:
List of blank-separated words of the form “name: method”. Must respect the CF-conventions and
vocabulary (not checked).

description:
Sentence(s) meant to clarify the qualifiers of the fundamental quantities, such as which surface a quan-
tity is defined on or what the flux sign conventions are.

comment:
Miscellaneous information about the data or methods used to produce it.

classmethod from_dict(data: dict, identifier: str, module: Optional[str] = None)
Create an indicator subclass and instance from a dictionary of parameters.

Most parameters are passed directly as keyword arguments to the class constructor, except:

• “base” : A subclass of Indicator or a name of one listed in xclim.core.indicator.registry or
xclim.core.indicator.base_registry. When passed, it acts as if from_dict was called on that
class instead.

• “compute” : A string function name translates to a xclim.indices.generic or xclim.indices
function.

Parameters
• data (dict) – The exact structure of this dictionary is detailed in the submodule documen-

tation.

• identifier (str) – The name of the subclass and internal indicator name.

• module (str) – The module name of the indicator. This is meant to be used only if the
indicator is part of a dynamically generated submodule, to override the module of the base
class.

classmethod translate_attrs(locale: Union[str, Sequence[str]], fill_missing: bool = True)
Return a dictionary of unformatted translated translatable attributes.

Translatable attributes are defined in xclim.core.locales.TRANSLATABLE_ATTRS.

Parameters
• locale (str or sequence of str) – The POSIX name of the locale or a tuple of a locale name

and a path to a json file defining the translations. See xclim.locale for details.

• fill_missing (bool) – If True (default) fill the missing attributes by their english values.

json(args=None)
Return a serializable dictionary representation of the class.

Parameters
args (mapping, optional) – Arguments as passed to the call method of the indicator. If not
given, the default arguments will be used when formatting the attributes.

15.4. Indicator Tools 577

xclim Documentation, Release 0.39.0

Notes

This is meant to be used by a third-party library wanting to wrap this class into another interface.

static compute(*args, **kwds)
Compute the indicator.

This would typically be a function from xclim.indices.

cfcheck(**das)
Compare metadata attributes to CF-Convention standards.

Default cfchecks use the specifications in xclim.core.utils.VARIABLES, assuming the indicator’s inputs are
using the CMIP6/xclim variable names correctly. Variables absent from these default specs are silently
ignored.

When subclassing this method, use functions decorated using xclim.core.options.cfcheck.

datacheck(**das)
Verify that input data is valid.

When subclassing this method, use functions decorated using xclim.core.options.datacheck.

For example, checks could include:

• assert no precipitation is negative

• assert no temperature has the same value 5 days in a row

This base datacheck checks that the input data has a valid sampling frequency, as given in self.src_freq. If
there are multiple inputs, it also checks if they all have the same frequency and the same anchor.

property n_outs

Return the length of all cf_attrs.

property parameters

Create a dictionary of controllable parameters.

Similar to Indicator._all_parameters, but doesn’t include injected parameters.

property injected_parameters

Return a dictionary of all injected parameters.

Opposite of Indicator.parameters().

class xclim.core.indicator.ResamplingIndicator(**kwds)
Bases: Indicator

Indicator that performs a resampling computation.

Compared to the base Indicator, this adds the handling of missing data, and the check of allowed periods.

Parameters
• missing ({any, wmo, pct, at_least_n, skip, from_context}) – The name of the missing value

method. See xclim.core.missing.MissingBase to create new custom methods. If None,
this will be determined by the global configuration (see xclim.set_options). Defaults to
“from_context”.

• missing_options (dict, None) – Arguments to pass to the missing function. If None, this will
be determined by the global configuration.

578 Chapter 15. API

xclim Documentation, Release 0.39.0

• allowed_periods (Sequence[str], optional) – A list of allowed periods, i.e. base parts of
the freq parameter. For example, indicators meant to be computed annually only will have
allowed_periods=[“A”]. None means “any period” or that the indicator doesn’t take a freq
argument.

class xclim.core.indicator.ResamplingIndicatorWithIndexing(**kwds)
Bases: ResamplingIndicator

Resampling indicator that also injects “indexer” kwargs to subset the inputs before computation.

class xclim.core.indicator.Daily(**kwds)
Bases: ResamplingIndicator

Class for daily inputs and resampling computes.

class xclim.core.indicator.Hourly(**kwds)
Bases: ResamplingIndicator

Class for hourly inputs and resampling computes.

xclim.core.indicator.add_iter_indicators(module)
Create an iterable of loaded indicators.

xclim.core.indicator.build_indicator_module(name: str, objs: Mapping[str, Indicator], doc:
Optional[str] = None)→ module

Create or update a module from imported objects.

The module is inserted as a submodule of xclim.indicators.

Parameters
• name (str) – New module name. If it already exists, the module is extended with the passed

objects, overwriting those with same names.

• objs (dict) – Mapping of the indicators to put in the new module. Keyed by the name they
will take in that module.

• doc (str) – Docstring of the new module. Defaults to a simple header. Invalid if the module
already exists.

Returns
ModuleType – A indicator module built from a mapping of Indicators.

xclim.core.indicator.build_indicator_module_from_yaml(filename: PathLike, name: Optional[str] =
None, indices: Optional[Union[Mapping[str,
Callable], module, PathLike]] = None,
translations: Optional[dict[str, dict |
os.PathLike]] = None, mode: str = 'raise',
encoding: str = 'UTF8')→ module

Build or extend an indicator module from a YAML file.

The module is inserted as a submodule of xclim.indicators. When given only a base filename (no ‘yml’
extension), this tries to find custom indices in a module of the same name (.py) and translations in json files
(.<lang>.json), see Notes.

Parameters
• filename (PathLike) – Path to a YAML file or to the stem of all module files. See Notes for

behaviour when passing a basename only.

• name (str, optional) – The name of the new or existing module, defaults to the basename of
the file. (e.g: atmos.yml -> atmos)

15.4. Indicator Tools 579

xclim Documentation, Release 0.39.0

• indices (Mapping of callables or module or path, optional) – A mapping or module of
indice functions or a python file declaring such a file. When creating the indicator, the
name in the index_function field is first sought here, then the indicator class will search in
xclim.indices.generic and finally in xclim.indices.

• translations (Mapping of dicts or path, optional) – Translated metadata for the new indica-
tors. Keys of the mapping must be 2-char language tags. Values can be translations dictio-
naries as defined in Internationalization. They can also be a path to a json file defining the
translations.

• mode ({‘raise’, ‘warn’, ‘ignore’}) – How to deal with broken indice definitions.

• encoding (str) – The encoding used to open the .yaml and .json files. It defaults to UTF-8,
overriding python’s mechanism which is machine dependent.

Returns
ModuleType – A submodule of pym:mod:`xclim.indicators.

Notes

When the given filename has no suffix (usually ‘.yaml’ or ‘.yml’), the function will try to load custom indice
definitions from a file with the same name but with a .py extension. Similarly, it will try to load translations in
*.<lang>.json files, where <lang> is the IETF language tag.

For example. a set of custom indicators could be fully described by the following files:

• example.yml : defining the indicator’s metadata.

• example.py : defining a few indice functions.

• example.fr.json : French translations

• example.tlh.json : Klingon translations.

See also:
xclim.core.indicator, build_module

15.5 Unit Handling module

15.5.1 Units handling submodule

Pint is used to define the units UnitRegistry and xclim.units.core defines most unit handling methods.

xclim.core.units.amount2rate(amount: DataArray, dim: str = 'time', out_units: Optional[str] = None)→
DataArray

Convert an amount variable to a rate by dividing by the sampling period length.

If the sampling period length cannot be inferred, the amount values are divided by the duration between their
time coordinate and the next one. The last period is estimated with the duration of the one just before.

This is the inverse operation of rate2amount().

Parameters
• amount (xr.DataArray) – “amount” variable. Ex: Precipitation amount in “mm”.

• dim (str) – The time dimension.

• out_units (str, optional) – Output units to convert to.

580 Chapter 15. API

xclim Documentation, Release 0.39.0

Returns
xr.DataArray

xclim.core.units.check_units(val: str | int | float | None, dim: str | None)→ None
Check units for appropriate convention compliance.

xclim.core.units.convert_units_to(source: Union[str, DataArray, Any], target: Union[str, DataArray, Any],
context: Optional[str] = None)→ Union[DataArray, float, int, str, Any]

Convert a mathematical expression into a value with the same units as a DataArray.

Parameters
• source (str or xr.DataArray or Any) – The value to be converted, e.g. ‘4C’ or ‘1 mm/d’.

• target (str or xr.DataArray or Any) – Target array of values to which units must conform.

• context (str, optional) – The unit definition context. Default: None.

Returns
xr.DataArray or float or int or str or Any – The source value converted to target’s units.

xclim.core.units.declare_units(**units_by_name)→ Callable
Create a decorator to check units of function arguments.

The decorator checks that input and output values have units that are compatible with expected dimensions. It
also stores the input units as a ‘in_units’ attribute.

Parameters
units_by_name (Mapping[str, str]) – Mapping from the input parameter names to their units or
dimensionality (“[. . .]”).

Returns
Callable

Examples

In the following function definition:

@declare_units(tas=["temperature"])
def func(tas):

...

The decorator will check that tas has units of temperature (C, K, F).

xclim.core.units.infer_sampling_units(da: DataArray, deffreq: str | None = 'D', dim: str = 'time')→
tuple[int, str]

Infer a multiplier and the units corresponding to one sampling period.

Parameters
• da (xr.DataArray) – A DataArray from which to take coordinate dim.

• deffreq (str, optional) – If no frequency is inferred from da[dim], take this one.

• dim (str) – Dimension from which to infer the frequency.

Raises
ValueError – If the frequency has no exact corresponding units.

Returns
• int – The magnitude (number of base periods per period)

15.5. Unit Handling module 581

xclim Documentation, Release 0.39.0

• str – Units as a string, understandable by pint.

xclim.core.units.pint2cfunits(value: Unit)→ str
Return a CF-compliant unit string from a pint unit.

Parameters
value (pint.Unit) – Input unit.

Returns
str – Units following CF-Convention, using symbols.

xclim.core.units.pint_multiply(da: DataArray, q: Any, out_units: Optional[str] = None)
Multiply xarray.DataArray by pint.Quantity.

Parameters
• da (xr.DataArray) – Input array.

• q (pint.Quantity) – Multiplicative factor.

• out_units (str, optional) – Units the output array should be converted into.

xclim.core.units.rate2amount(rate: DataArray, dim: str = 'time', out_units: Optional[str] = None)→
DataArray

Convert a rate variable to an amount by multiplying by the sampling period length.

If the sampling period length cannot be inferred, the rate values are multiplied by the duration between their time
coordinate and the next one. The last period is estimated with the duration of the one just before.

This is the inverse operation of amount2rate().

Parameters
• rate (xr.DataArray) – “Rate” variable, with units of “amount” per time. Ex: Precipitation

in “mm / d”.

• dim (str) – The time dimension.

• out_units (str, optional) – Output units to convert to.

Returns
xr.DataArray

Examples

The following converts a daily array of precipitation in mm/h to the daily amounts in mm:

>>> time = xr.cftime_range("2001-01-01", freq="D", periods=365)
>>> pr = xr.DataArray(
... [1] * 365, dims=("time",), coords={"time": time}, attrs={"units": "mm/h"}
...)
>>> pram = rate2amount(pr)
>>> pram.units
'mm'
>>> float(pram[0])
24.0

Also works if the time axis is irregular : the rates are assumed constant for the whole period starting on the values
timestamp to the next timestamp:

582 Chapter 15. API

xclim Documentation, Release 0.39.0

>>> time = time[[0, 9, 30]] # The time axis is Jan 1st, Jan 10th, Jan 31st
>>> pr = xr.DataArray(
... [1] * 3, dims=("time",), coords={"time": time}, attrs={"units": "mm/h"}
...)
>>> pram = rate2amount(pr)
>>> pram.values
array([216., 504., 504.])

Finally, we can force output units:

>>> pram = rate2amount(pr, out_units="pc") # Get rain amount in parsecs. Why not.
>>> pram.values
array([7.00008327e-18, 1.63335276e-17, 1.63335276e-17])

xclim.core.units.str2pint(val: str)→ Quantity
Convert a string to a pint.Quantity, splitting the magnitude and the units.

Parameters
val (str) – A quantity in the form “[{magnitude}]{units}”, where magnitude can be cast to a
float and units is understood by units2pint.

Returns
pint.Quantity – Magnitude is 1 if no magnitude was present in the string.

xclim.core.units.to_agg_units(out: DataArray, orig: DataArray, op: str, dim: str = 'time')→ DataArray
Set and convert units of an array after an aggregation operation along the sampling dimension (time).

Parameters
• out (xr.DataArray) – The output array of the aggregation operation, no units operation done

yet.

• orig (xr.DataArray) – The original array before the aggregation operation, used to infer the
sampling units and get the variable units.

• op ({‘count’, ‘prod’, ‘delta_prod’}) – The type of aggregation operation performed. The
special “delta_*” ops are used with temperature units needing conversion to their “delta”
counterparts (e.g. degree days)

• dim (str) – The time dimension along which the aggregation was performed.

Returns
xr.DataArray

Examples

Take a daily array of temperature and count number of days above a threshold. to_agg_units will infer the units
from the sampling rate along “time”, so we ensure the final units are correct:

>>> time = xr.cftime_range("2001-01-01", freq="D", periods=365)
>>> tas = xr.DataArray(
... np.arange(365),
... dims=("time",),
... coords={"time": time},
... attrs={"units": "degC"},
...)

(continues on next page)

15.5. Unit Handling module 583

xclim Documentation, Release 0.39.0

(continued from previous page)

>>> cond = tas > 100 # Which days are boiling
>>> Ndays = cond.sum("time") # Number of boiling days
>>> Ndays.attrs.get("units")
None
>>> Ndays = to_agg_units(Ndays, tas, op="count")
>>> Ndays.units
'd'

Similarly, here we compute the total heating degree-days, but we have weekly data:

>>> time = xr.cftime_range("2001-01-01", freq="7D", periods=52)
>>> tas = xr.DataArray(
... np.arange(52) + 10,
... dims=("time",),
... coords={"time": time},
... attrs={"units": "degC"},
...)
>>> degdays = (
... (tas - 16).clip(0).sum("time")
...) # Integral of temperature above a threshold
>>> degdays = to_agg_units(degdays, tas, op="delta_prod")
>>> degdays.units
'week delta_degC'

Which we can always convert to the more common “K days”:

>>> degdays = convert_units_to(degdays, "K days")
>>> degdays.units
'K d'

xclim.core.units.units2pint(value: xarray.DataArray | str | pint.util.Quantity)→ Unit
Return the pint Unit for the DataArray units.

Parameters
value (xr.DataArray or str or pint.Quantity) – Input data array or string representing a unit (with
no magnitude).

Returns
pint.Unit – Units of the data array.

15.6 Other Utilities

15.6.1 Calendar handling utilities

Helper function to handle dates, times and different calendars with xarray.

xclim.core.calendar.adjust_doy_calendar(source: DataArray, target: xarray.DataArray | xarray.Dataset)
→ DataArray

Interpolate from one set of dayofyear range to another calendar.

Interpolate an array defined over a dayofyear range (say 1 to 360) to another dayofyear range (say 1 to 365).

Parameters

584 Chapter 15. API

xclim Documentation, Release 0.39.0

• source (xr.DataArray) – Array with dayofyear coordinate.

• target (xr.DataArray or xr.Dataset) – Array with time coordinate.

Returns
xr.DataArray – Interpolated source array over coordinates spanning the target dayofyear range.

xclim.core.calendar.build_climatology_bounds(da: DataArray)→ list[str]
Build the climatology_bounds property with the start and end dates of input data.

Parameters
da (xr.DataArray) – The input data. Must have a time dimension.

xclim.core.calendar.cfindex_end_time(cfindex: CFTimeIndex, freq: str)→ CFTimeIndex
Get the end of a period for a pseudo-period index.

As we are using datetime indices to stand in for period indices, assumptions regarding the period are made based
on the given freq. IMPORTANT NOTE: this function cannot be used on greater-than-day freq that start at the
beginning of a month, e.g. ‘MS’, ‘QS’, ‘AS’ – this mirrors pandas behavior.

Parameters
• cfindex (CFTimeIndex) – CFTimeIndex as a proxy representation for CFPeriodIndex

• freq (str) – String specifying the frequency/offset such as ‘MS’, ‘2D’, ‘H’, or ‘3T’

Returns
CFTimeIndex – The ending datetimes of periods inferred from dates and freq

xclim.core.calendar.cfindex_start_time(cfindex: CFTimeIndex, freq: str)→ CFTimeIndex
Get the start of a period for a pseudo-period index.

As we are using datetime indices to stand in for period indices, assumptions regarding the period are made based
on the given freq. IMPORTANT NOTE: this function cannot be used on greater-than-day freq that start at the
beginning of a month, e.g. ‘MS’, ‘QS’, ‘AS’ – this mirrors pandas behavior.

Parameters
• cfindex (CFTimeIndex) – CFTimeIndex as a proxy representation for CFPeriodIndex

• freq (str) – String specifying the frequency/offset such as ‘MS’, ‘2D’, ‘H’, or ‘3T’

Returns
CFTimeIndex – The starting datetimes of periods inferred from dates and freq

xclim.core.calendar.cftime_end_time(date: datetime, freq: str)→ datetime
Get the cftime.datetime for the end of a period.

As we are not supplying actual period objects, assumptions regarding the period are made based on the given
freq. IMPORTANT NOTE: this function cannot be used on greater-than-day freq that start at the beginning of a
month, e.g. ‘MS’, ‘QS’, ‘AS’ – this mirrors pandas behavior.

Parameters
• date (cftime.datetime) – The original datetime object as a proxy representation for period.

• freq (str) – String specifying the frequency/offset such as ‘MS’, ‘2D’, ‘H’, or ‘3T’

Returns
cftime.datetime – The ending datetime of the period inferred from date and freq.

15.6. Other Utilities 585

xclim Documentation, Release 0.39.0

xclim.core.calendar.cftime_start_time(date: datetime, freq: str)→ datetime
Get the cftime.datetime for the start of a period.

As we are not supplying actual period objects, assumptions regarding the period are made based on the given
freq. IMPORTANT NOTE: this function cannot be used on greater-than-day freq that start at the beginning of a
month, e.g. ‘MS’, ‘QS’, ‘AS’ – this mirrors pandas behavior.

Parameters
• date (cftime.datetime) – The original datetime object as a proxy representation for period.

• freq (str) – String specifying the frequency/offset such as ‘MS’, ‘2D’, ‘H’, or ‘3T’

Returns
cftime.datetime – The starting datetime of the period inferred from date and freq.

xclim.core.calendar.climatological_mean_doy(arr: DataArray, window: int = 5)→
tuple[xarray.DataArray, xarray.DataArray]

Calculate the climatological mean and standard deviation for each day of the year.

Parameters
• arr (xarray.DataArray) – Input array.

• window (int) – Window size in days.

Returns
xarray.DataArray, xarray.DataArray – Mean and standard deviation.

xclim.core.calendar.compare_offsets(freqA: str, op: str, freqB: str)→ bool
Compare offsets string based on their approximate length, according to a given operator.

Offset are compared based on their length approximated for a period starting after 1970-01-01 00:00:00. If
the offsets are from the same category (same first letter), only the multiplier prefix is compared (QS-DEC ==
QS-JAN, MS < 2MS). “Business” offsets are not implemented.

Parameters
• freqA (str) – RHS Date offset string (‘YS’, ‘1D’, ‘QS-DEC’, . . .)

• op ({‘<’, ‘<=’, ‘==’, ‘>’, ‘>=’, ‘!=’}) – Operator to use.

• freqB (str) – LHS Date offset string (‘YS’, ‘1D’, ‘QS-DEC’, . . .)

Returns
bool – freqA op freqB

xclim.core.calendar.convert_calendar(source: xarray.DataArray | xarray.Dataset, target:
xarray.DataArray | str, align_on: Optional[str] = None, missing:
Optional[Any] = None, dim: str = 'time')→ xarray.DataArray |
xarray.Dataset

Convert a DataArray/Dataset to another calendar using the specified method.

Only converts the individual timestamps, does not modify any data except in dropping invalid/surplus dates or
inserting missing dates.

If the source and target calendars are either no_leap, all_leap or a standard type, only the type of the time array is
modified. When converting to a leap year from a non-leap year, the 29th of February is removed from the array.
In the other direction and if target is a string, the 29th of February will be missing in the output, unless missing
is specified, in which case that value is inserted.

For conversions involving 360_day calendars, see Notes.

This method is safe to use with sub-daily data as it doesn’t touch the time part of the timestamps.

586 Chapter 15. API

xclim Documentation, Release 0.39.0

Parameters
• source (xr.DataArray or xr.Dataset) – Input array/dataset with a time coordinate of a valid

dtype (datetime64 or a cftime.datetime).

• target (xr.DataArray or str) – Either a calendar name or the 1D time coordinate to convert
to. If an array is provided, the output will be reindexed using it and in that case, days in target
that are missing in the converted source are filled by missing (which defaults to NaN).

• align_on ({None, ‘date’, ‘year’, ‘random’}) – Must be specified when either source or target
is a 360_day calendar, ignored otherwise. See Notes.

• missing (Any, optional) – A value to use for filling in dates in the target that were missing in
the source. If target is a string, default (None) is not to fill values. If it is an array, default is
to fill with NaN.

• dim (str) – Name of the time coordinate.

Returns
xr.DataArray or xr.Dataset – Copy of source with the time coordinate converted to the target
calendar. If target is given as an array, the output is reindexed to it, with fill value missing. If
target was a string and missing was None (default), invalid dates in the new calendar are dropped,
but missing dates are not inserted. If target was a string and missing was given, then start, end
and frequency of the new time axis are inferred and the output is reindexed to that a new array.

Notes

If one of the source or target calendars is 360_day, align_on must be specified and two options are offered.

“year”
The dates are translated according to their rank in the year (dayofyear), ignoring their original month and
day information, meaning that the missing/surplus days are added/removed at regular intervals.

From a 360_day to a standard calendar, the output will be missing the following dates (day of year
in parentheses):

To a leap year:
January 31st (31), March 31st (91), June 1st (153), July 31st (213), September 31st (275) and
November 30th (335).

To a non-leap year:
February 6th (36), April 19th (109), July 2nd (183), September 12th (255), November 25th (329).

From standard calendar to a ‘360_day’, the following dates in the source array will be dropped:
From a leap year:

January 31st (31), April 1st (92), June 1st (153), August 1st (214), September 31st (275), Decem-
ber 1st (336)

From a non-leap year:
February 6th (37), April 20th (110), July 2nd (183), September 13th (256), November 25th (329)

This option is best used on daily and subdaily data.

“date”
The month/day information is conserved and invalid dates are dropped from the output. This means that
when converting from a 360_day to a standard calendar, all 31st (Jan, March, May, July, August, October
and December) will be missing as there is no equivalent dates in the 360_day and the 29th (on non-leap
years) and 30th of February will be dropped as there are no equivalent dates in a standard calendar.

This option is best used with data on a frequency coarser than daily.

15.6. Other Utilities 587

xclim Documentation, Release 0.39.0

“random”
Similar to “year”, each day of year of the source is mapped to another day of year of the target. However,
instead of having always the same missing days according the source and target years, here 5 days are chosen
randomly, one for each fifth of the year. However, February 29th is always missing when converting to a
leap year, or its value is dropped when converting from a leap year. This is similar to method used in the
Pierce et al. [2014] dataset.

This option best used on daily data.

References

Pierce, Cayan, and Thrasher [2014]

Examples

This method does not try to fill the missing dates other than with a constant value, passed with missing. In order
to fill the missing dates with interpolation, one can simply use xarray’s method:

>>> tas_nl = convert_calendar(tas, "noleap") # For the example
>>> with_missing = convert_calendar(tas_nl, "standard", missing=np.NaN)
>>> out = with_missing.interpolate_na("time", method="linear")

Here, if Nans existed in the source data, they will be interpolated too. If that is, for some reason, not wanted, the
workaround is to do:

>>> mask = convert_calendar(tas_nl, "standard").notnull()
>>> out2 = out.where(mask)

xclim.core.calendar.date_range(*args, calendar: str = 'default', **kwargs)→
pandas.core.indexes.datetimes.DatetimeIndex | xarray.CFTimeIndex

Wrap pd.date_range (if calendar == ‘default’) or xr.cftime_range (otherwise).

xclim.core.calendar.date_range_like(source: DataArray, calendar: str)→ DataArray
Generate a datetime array with the same frequency, start and end as another one, but in a different calendar.

Parameters
• source (xr.DataArray) – 1D datetime coordinate DataArray

• calendar (str) – New calendar name.

Raises
ValueError – If the source’s frequency was not found.

Returns
xr.DataArray –

1D datetime coordinate with the same start, end and frequency as the source, but in the
new calendar.

The start date is assumed to exist in the target calendar. If the end date doesn’t exist, the code
tries 1 and 2 calendar days before. Exception when the source is in 360_day and the end of
the range is the 30th of a 31-days month, then the 31st is appended to the range.

588 Chapter 15. API

xclim Documentation, Release 0.39.0

xclim.core.calendar.datetime_to_decimal_year(times: DataArray, calendar: str = '')→ DataArray
Convert a datetime xr.DataArray to decimal years according to its calendar or the given one.

Decimal years are the number of years since 0001-01-01 00:00:00 AD. Ex: ‘2000-03-01 12:00’ is 2000.1653 in
a standard calendar, 2000.16301 in a “noleap” or 2000.16806 in a “360_day”.

Parameters
• times (xr.DataArray)

• calendar (str)

Returns
xr.DataArray

xclim.core.calendar.days_in_year(year: int, calendar: str = 'default')→ int
Return the number of days in the input year according to the input calendar.

xclim.core.calendar.days_since_to_doy(da: DataArray, start: Optional[DayOfYearStr] = None, calendar:
Optional[str] = None)→ DataArray

Reverse the conversion made by doy_to_days_since().

Converts data given in days since a specific date to day-of-year.

Parameters
• da (xr.DataArray) – The result of doy_to_days_since().

• start (DateOfYearStr, optional) – da is considered as days since that start date (in the year
of the time index). If None (default), it is read from the attributes.

• calendar (str, optional) – Calendar the “days since” were computed in. If None (default), it
is read from the attributes.

Returns
xr.DataArray – Same shape as da, values as day of year.

Examples

>>> from xarray import DataArray
>>> time = date_range("2020-07-01", "2021-07-01", freq="AS-JUL")
>>> da = DataArray(
... [-86, 92],
... dims=("time",),
... coords={"time": time},
... attrs={"units": "days since 10-02"},
...)
>>> days_since_to_doy(da).values
array([190, 2])

xclim.core.calendar.doy_to_days_since(da: DataArray, start: Optional[DayOfYearStr] = None, calendar:
Optional[str] = None)→ DataArray

Convert day-of-year data to days since a given date.

This is useful for computing meaningful statistics on doy data.

Parameters
• da (xr.DataArray) – Array of “day-of-year”, usually int dtype, must have a time dimension.

Sampling frequency should be finer or similar to yearly and coarser then daily.

15.6. Other Utilities 589

xclim Documentation, Release 0.39.0

• start (date of year str, optional) – A date in “MM-DD” format, the base day of the new array.
If None (default), the time axis is used. Passing start only makes sense if da has a yearly
sampling frequency.

• calendar (str, optional) – The calendar to use when computing the new interval. If None
(default), the calendar attribute of the data or of its time axis is used. All time coordinates of
da must exist in this calendar. No check is done to ensure doy values exist in this calendar.

Returns
xr.DataArray – Same shape as da, int dtype, day-of-year data translated to a number of days since
a given date. If start is not None, there might be negative values.

Notes

The time coordinates of da are considered as the START of the period. For example, a doy value of 350 with a
timestamp of ‘2020-12-31’ is understood as ‘2021-12-16’ (the 350th day of 2021). Passing start=None, will use
the time coordinate as the base, so in this case the converted value will be 350 “days since time coordinate”.

Examples

>>> from xarray import DataArray
>>> time = date_range("2020-07-01", "2021-07-01", freq="AS-JUL")
>>> # July 8th 2020 and Jan 2nd 2022
>>> da = DataArray([190, 2], dims=("time",), coords={"time": time})
>>> # Convert to days since Oct. 2nd, of the data's year.
>>> doy_to_days_since(da, start="10-02").values
array([-86, 92])

xclim.core.calendar.ensure_cftime_array(time: Sequence)→ ndarray
Convert an input 1D array to a numpy array of cftime objects.

Python’s datetime are converted to cftime.DatetimeGregorian (“standard” calendar).

Parameters
time (sequence) – A 1D array of datetime-like objects.

Returns
np.ndarray

Raises
ValueError – When unable to cast the input.:

xclim.core.calendar.get_calendar(obj: Any, dim: str = 'time')→ str
Return the calendar of an object.

Parameters
• obj (Any) – An object defining some date. If obj is an array/dataset with a datetime coor-

dinate, use dim to specify its name. Values must have either a datetime64 dtype or a cftime
dtype. obj can also be a python datetime.datetime, a cftime object or a pandas Timestamp
or an iterable of those, in which case the calendar is inferred from the first value.

• dim (str) – Name of the coordinate to check (if obj is a DataArray or Dataset).

Raises
ValueError – If no calendar could be inferred.

590 Chapter 15. API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

Returns
str – The cftime calendar name or “default” when the data is using numpy’s or python’s datetime
types. Will always return “standard” instead of “gregorian”, following CF conventions 1.9.

xclim.core.calendar.interp_calendar(source: xarray.DataArray | xarray.Dataset, target: DataArray, dim:
str = 'time')→ xarray.DataArray | xarray.Dataset

Interpolates a DataArray/Dataset to another calendar based on decimal year measure.

Each timestamp in source and target are first converted to their decimal year equivalent then source is interpolated
on the target coordinate. The decimal year is the number of years since 0001-01-01 AD. Ex: ‘2000-03-01 12:00’
is 2000.1653 in a standard calendar or 2000.16301 in a ‘noleap’ calendar.

This method should be used with daily data or coarser. Sub-daily result will have a modified day cycle.

Parameters
• source (xr.DataArray or xr.Dataset) – The source data to interpolate, must have a time co-

ordinate of a valid dtype (np.datetime64 or cftime objects)

• target (xr.DataArray) – The target time coordinate of a valid dtype (np.datetime64 or cftime
objects)

• dim (str) – The time coordinate name.

Returns
xr.DataArray or xr.Dataset – The source interpolated on the decimal years of target,

xclim.core.calendar.parse_offset(freq: str)→ Sequence[str]
Parse an offset string.

Parse a frequency offset and, if needed, convert to cftime-compatible components.

Parameters
freq (str) – Frequency offset.

Returns
• multiplier (int) – Multiplier of the base frequency. “[n]W” is always replaced with “[7n]D”,

as xarray doesn’t support “W” for cftime indexes.

• offset_base (str) – Base frequency. “Y” is always replaced with “A”.

• is_start_anchored (bool) – Whether coordinates of this frequency should correspond to the
beginning of the period (True) or its end (False). Can only be False when base is A, Q or M.

• anchor (str or None) – Anchor date for bases A or Q. As xarray doesn’t support “W”, neither
does xclim (anchor information is lost when given).

xclim.core.calendar.percentile_doy(arr: DataArray, window: int = 5, per: Union[float, Sequence[float]] =
10.0, alpha: float = 0.3333333333333333, beta: float =
0.3333333333333333, copy: bool = True)→ PercentileDataArray

Percentile value for each day of the year.

Return the climatological percentile over a moving window around each day of the year. Different quantile
estimators can be used by specifying alpha and beta according to specifications given by Hyndman and Fan
[1996]. The default definition corresponds to method 8, which meets multiple desirable statistical properties for
sample quantiles. Note that numpy.percentile corresponds to method 7, with alpha and beta set to 1.

Parameters
• arr (xr.DataArray) – Input data, a daily frequency (or coarser) is required.

• window (int) – Number of time-steps around each day of the year to include in the calcula-
tion.

15.6. Other Utilities 591

xclim Documentation, Release 0.39.0

• per (float or sequence of floats) – Percentile(s) between [0, 100]

• alpha (float) – Plotting position parameter.

• beta (float) – Plotting position parameter.

• copy (bool) – If True (default) the input array will be deep-copied. It’s a necessary step to
keep the data integrity, but it can be costly. If False, no copy is made of the input array. It
will be mutated and rendered unusable but performances may significantly improve. Put this
flag to False only if you understand the consequences.

Returns
xr.DataArray – The percentiles indexed by the day of the year. For calendars with 366 days,
percentiles of doys 1-365 are interpolated to the 1-366 range.

References

Hyndman and Fan [1996]

xclim.core.calendar.resample_doy(doy: DataArray, arr: xarray.DataArray | xarray.Dataset)→ DataArray
Create a temporal DataArray where each day takes the value defined by the day-of-year.

Parameters
• doy (xr.DataArray) – Array with dayofyear coordinate.

• arr (xr.DataArray or xr.Dataset) – Array with time coordinate.

Returns
xr.DataArray – An array with the same dimensions as doy, except for dayofyear, which is replaced
by the time dimension of arr. Values are filled according to the day of year value in doy.

xclim.core.calendar.select_time(da: xarray.DataArray | xarray.Dataset, drop: bool = False, season:
Optional[Union[str, Sequence[str]]] = None, month: Optional[Union[int,
Sequence[int]]] = None, doy_bounds: Optional[tuple[int, int]] = None,
date_bounds: Optional[tuple[str, str]] = None)→ xarray.DataArray |
xarray.Dataset

Select entries according to a time period.

This conveniently improves xarray’s xarray.DataArray.where() and xarray.DataArray.sel() with
fancier ways of indexing over time elements. In addition to the data da and argument drop, only one of sea-
son, month, doy_bounds or date_bounds may be passed.

Parameters
• da (xr.DataArray or xr.Dataset) – Input data.

• drop (boolean) – Whether to drop elements outside the period of interest or to simply mask
them (default).

• season (string or sequence of strings) – One or more of ‘DJF’, ‘MAM’, ‘JJA’ and ‘SON’.

• month (integer or sequence of integers) – Sequence of month numbers (January = 1 . . .
December = 12)

• doy_bounds (2-tuple of integers) – The bounds as (start, end) of the period of interest ex-
pressed in day-of-year, integers going from 1 (January 1st) to 365 or 366 (December 31st). If
calendar awareness is needed, consider using date_bounds instead. Bounds are inclusive.

• date_bounds (2-tuple of strings) – The bounds as (start, end) of the period of interest ex-
pressed as dates in the month-day (%m-%d) format. Bounds are inclusive.

592 Chapter 15. API

xclim Documentation, Release 0.39.0

Returns
xr.DataArray or xr.Dataset – Selected input values. If drop=False, this has the same length as
da (along dimension ‘time’), but with masked (NaN) values outside the period of interest.

Examples

Keep only the values of fall and spring.

>>> ds = open_dataset("ERA5/daily_surface_cancities_1990-1993.nc")
>>> ds.time.size
1461
>>> out = select_time(ds, drop=True, season=["MAM", "SON"])
>>> out.time.size
732

Or all values between two dates (included).

>>> out = select_time(ds, drop=True, date_bounds=("02-29", "03-02"))
>>> out.time.values
array(['1990-03-01T00:00:00.000000000', '1990-03-02T00:00:00.000000000',

'1991-03-01T00:00:00.000000000', '1991-03-02T00:00:00.000000000',
'1992-02-29T00:00:00.000000000', '1992-03-01T00:00:00.000000000',
'1992-03-02T00:00:00.000000000', '1993-03-01T00:00:00.000000000',
'1993-03-02T00:00:00.000000000'], dtype='datetime64[ns]')

xclim.core.calendar.time_bnds(group, freq: str)→ Sequence[tuple[cftime._cftime.datetime,
cftime._cftime.datetime]]

Find the time bounds for a pseudo-period index.

As we are using datetime indices to stand in for period indices, assumptions regarding the period are made based
on the given freq. IMPORTANT NOTE: this function cannot be used on greater-than-day freq that start at the
beginning of a month, e.g. ‘MS’, ‘QS’, ‘AS’ – this mirrors pandas behavior.

Parameters
• group (CFTimeIndex or DataArrayResample) – Object which contains CFTimeIndex as a

proxy representation for CFPeriodIndex

• freq (str) – String specifying the frequency/offset such as ‘MS’, ‘2D’, or ‘3T’

Returns
Sequence[(cftime.datetime, cftime.datetime)] – The start and end times of the period inferred
from datetime and freq.

Examples

>>> from xarray import cftime_range
>>> from xclim.core.calendar import time_bnds
>>> index = cftime_range(
... start="2000-01-01", periods=3, freq="2QS", calendar="360_day"
...)
>>> out = time_bnds(index, "2Q")
>>> for bnds in out:
... print(

(continues on next page)

15.6. Other Utilities 593

xclim Documentation, Release 0.39.0

(continued from previous page)

... bnds[0].strftime("%Y-%m-%dT%H:%M:%S"),

... " -",

... bnds[1].strftime("%Y-%m-%dT%H:%M:%S"),

...)

...
2000-01-01T00:00:00 - 2000-03-30T23:59:59
2000-07-01T00:00:00 - 2000-09-30T23:59:59
2001-01-01T00:00:00 - 2001-03-30T23:59:59

xclim.core.calendar.within_bnds_doy(arr: DataArray, *, low: DataArray, high: DataArray)→ DataArray
Return whether array values are within bounds for each day of the year.

Parameters
• arr (xarray.DataArray) – Input array.

• low (xarray.DataArray) – Low bound with dayofyear coordinate.

• high (xarray.DataArray) – High bound with dayofyear coordinate.

Returns
xarray.DataArray

15.6.2 Formatting utilities for indicators

class xclim.core.formatting.AttrFormatter(mapping: Mapping[str, Sequence[str]], modifiers:
Sequence[str])

Bases: Formatter

A formatter for frequently used attribute values.

See the doc of format_field() for more details.

format(format_string: str, /, *args: Any, **kwargs: dict)→ str
Format a string.

Parameters
• format_string (str)

• args (Any)

• **kwargs
Returns

str

format_field(value, format_spec)
Format a value given a formatting spec.

If format_spec is in this Formatter’s modifiers, the corresponding variation of value is given. If format_spec
is ‘r’ (raw), the value is returned unmodified. If format_spec is not specified but value is in the mapping,
the first variation is returned.

594 Chapter 15. API

xclim Documentation, Release 0.39.0

Examples

Let’s say the string “The dog is {adj1}, the goose is {adj2}” is to be translated to French and that we know
that possible values of adj are nice and evil. In French, the genre of the noun changes the adjective (cat =
chat is masculine, and goose = oie is feminine) so we initialize the formatter as:

>>> fmt = AttrFormatter(
... {
... "nice": ["beau", "belle"],
... "evil": ["méchant", "méchante"],
... "smart": ["intelligent", "intelligente"],
... },
... ["m", "f"],
...)
>>> fmt.format(
... "Le chien est {adj1:m}, l'oie est {adj2:f}, le gecko est {adj3:r}",
... adj1="nice",
... adj2="evil",
... adj3="smart",
...)
"Le chien est beau, l'oie est méchante, le gecko est smart"

The base values may be given using unix shell-like patterns:

>>> fmt = AttrFormatter(
... {"AS-*": ["annuel", "annuelle"], "MS": ["mensuel", "mensuelle"]},
... ["m", "f"],
...)
>>> fmt.format(
... "La moyenne {freq:f} est faite sur un échantillon {src_timestep:m}",
... freq="AS-JUL",
... src_timestep="MS",
...)
'La moyenne annuelle est faite sur un échantillon mensuel'

xclim.core.formatting.gen_call_string(funcname: str, *args, **kwargs)
Generate a signature string for use in the history attribute.

DataArrays and Dataset are replaced with their name, while Nones, floats, ints and strings are printed directly.
All other objects have their type printed between < >.

Arguments given through positional arguments are printed positionnally and those given through keywords are
printed prefixed by their name.

Parameters
• funcname (str) – Name of the function

• args, kwargs – Arguments given to the function.

15.6. Other Utilities 595

xclim Documentation, Release 0.39.0

Example

>>> A = xr.DataArray([1], dims=("x",), name="A")
>>> gen_call_string("func", A, b=2.0, c="3", d=[10] * 100)
"func(A, b=2.0, c='3', d=<list>)"

xclim.core.formatting.generate_indicator_docstring(ind)→ str
Generate an indicator’s docstring from keywords.

Parameters
ind (Indicator instance)

Returns
str

xclim.core.formatting.get_percentile_metadata(data: DataArray, prefix: str)→ dict[str, str]
Get the metadata related to percentiles from the given DataArray as a dictionary.

Parameters
• data (xr.DataArray) – Must be compatible with PercentileDataArray, this means the neces-

sary metadata must be available in its attributes and coordinates.

• prefix (str) – The prefix to be used in the metadata key. Usually this takes the form of
“tasmin_per” or equivalent.

Returns
dict – A mapping of the configuration used to compute these percentiles.

xclim.core.formatting.merge_attributes(attribute: str, *inputs_list: xarray.DataArray | xarray.Dataset,
new_line: str = '\n', missing_str: Optional[str] = None,
**inputs_kws: xarray.DataArray | xarray.Dataset)

Merge attributes from several DataArrays or Datasets.

If more than one input is given, its name (if available) is prepended as: “<input name> : <input attribute>”.

Parameters
• attribute (str) – The attribute to merge.

• inputs_list (xr.DataArray or xr.Dataset) – The datasets or variables that were used to pro-
duce the new object. Inputs given that way will be prefixed by their name attribute if avail-
able.

• new_line (str) – The character to put between each instance of the attributes. Usually, in
CF-conventions, the history attributes uses ‘\n’ while cell_methods uses ‘ ‘.

• missing_str (str) – A string that is printed if an input doesn’t have the attribute. Defaults to
None, in which case the input is simply skipped.

• **inputs_kws (xr.DataArray or xr.Dataset) – Mapping from names to the datasets or vari-
ables that were used to produce the new object. Inputs given that way will be prefixes by the
passed name.

Returns
str – The new attribute made from the combination of the ones from all the inputs.

xclim.core.formatting.parse_doc(doc: str)→ dict[str, str]
Crude regex parsing reading an indice docstring and extracting information needed in indicator construction.

The appropriate docstring syntax is detailed in Defining new indices.

596 Chapter 15. API

xclim Documentation, Release 0.39.0

Parameters
doc (str) – The docstring of an indice function.

Returns
dict – A dictionary with all parsed sections.

xclim.core.formatting.prefix_attrs(source: dict, keys: Sequence, prefix: str)
Rename some keys of a dictionary by adding a prefix.

Parameters
• source (dict) – Source dictionary, for example data attributes.

• keys (sequence) – Names of keys to prefix.

• prefix (str) – Prefix to prepend to keys.

Returns
dict – Dictionary of attributes with some keys prefixed.

xclim.core.formatting.unprefix_attrs(source: dict, keys: Sequence, prefix: str)
Remove prefix from keys in a dictionary.

Parameters
• source (dict) – Source dictionary, for example data attributes.

• keys (sequence) – Names of original keys for which prefix should be removed.

• prefix (str) – Prefix to remove from keys.

Returns
dict – Dictionary of attributes whose keys were prefixed, with prefix removed.

xclim.core.formatting.update_history(hist_str: str, *inputs_list: Sequence[xarray.DataArray |
xarray.Dataset], new_name: Optional[str] = None, **inputs_kws:
Mapping[str, xarray.DataArray | xarray.Dataset])

Return a history string with the timestamped message and the combination of the history of all inputs.

The new history entry is formatted as “[<timestamp>] <new_name>: <hist_str> - xclim version:
<xclim.__version__>.”

Parameters
• hist_str (str) – The string describing what has been done on the data.

• new_name (Optional[str]) – The name of the newly created variable or dataset to prefix
hist_msg.

• inputs_list (Sequence[Union[xr.DataArray, xr.Dataset]]) – The datasets or variables that
were used to produce the new object. Inputs given that way will be prefixed by their “name”
attribute if available.

• inputs_kws (Mapping[str, Union[xr.DataArray, xr.Dataset]]) – Mapping from names to the
datasets or variables that were used to produce the new object. Inputs given that way will be
prefixes by the passed name.

Returns
str – The combine history of all inputs starting with hist_str.

See also:
merge_attributes

15.6. Other Utilities 597

xclim Documentation, Release 0.39.0

xclim.core.formatting.update_xclim_history(func)
Decorator that auto-generates and fills the history attribute.

The history is generated from the signature of the function and added to the first output. Because of a limitation
of the boltons wrapper, all arguments passed to the wrapped function will be printed as keyword arguments.

15.6.3 Options submodule

Global or contextual options for xclim, similar to xarray.set_options.

class xclim.core.options.set_options(**kwargs)
Set options for xclim in a controlled context.

Variables
• metadata_locales (list[Any]) – List of IETF language tags or tuples of language tags

and a translation dict, or tuples of language tags and a path to a json file defining translation
of attributes. Default: [].

• data_validation ({"log", "raise", "error"}) – Whether to “log”, “raise” an error
or ‘warn’ the user on inputs that fail the data checks in xclim.core.datachecks(). De-
fault: "raise".

• cf_compliance ({"log", "raise", "error"}) – Whether to “log”, “raise” an error or
“warn” the user on inputs that fail the CF compliance checks in xclim.core.cfchecks().
Default: "warn".

• check_missing ({"any", "wmo", "pct", "at_least_n", "skip"}) – How to check
for missing data and flag computed indicators. Available methods are “any”, “wmo”,
“pct”, “at_least_n” and “skip”. Missing method can be registered through the
xclim.core.options.register_missing_method decorator. Default: "any"

• missing_options (dict) – Dictionary of options to pass to the missing method. Keys must
the name of missing method and values must be mappings from option names to values.

• run_length_ufunc (str) – Whether to use the 1D ufunc version of run length algorithms
or the dask-ready broadcasting version. Default is "auto", which means the latter is used
for dask-backed and large arrays.

• sdba_extra_output (bool) – Whether to add diagnostic variables to outputs of sdba’s
train, adjust and processing operations. Details about these additional variables are given
in the object’s docstring. When activated, adjust will return a Dataset with scen and those
extra diagnostics For processing functions, see the doc, the output type might change, or not
depending on the algorithm. Default: False.

• sdba_encode_cf (bool) – Whether to encode cf coordinates in the map_blocks optimiza-
tion that most adjustment methods are based on. This should have no impact on the results,
but should run much faster in the graph creation phase.

• keep_attrs (bool or str) – Controls attributes handling in indicators. If True, attributes
from all inputs are merged using the drop_conflicts strategy and then updated with xclim-
provided attributes. If False, attributes from the inputs are ignored. If “xarray”, xclim will
use xarray’s keep_attrs option. Note that xarray’s “default” is equivalent to False. Default:
"xarray".

598 Chapter 15. API

xclim Documentation, Release 0.39.0

Examples

You can use set_options either as a context manager:

>>> import xclim
>>> ds = xr.open_dataset(path_to_tas_file).tas
>>> with xclim.set_options(metadata_locales=["fr"]):
... out = xclim.atmos.tg_mean(ds)
...

Or to set global options:

import xclim

xclim.set_options(missing_options={"pct": {"tolerance": 0.04}})

15.6.4 Miscellaneous indices utilities

Helper functions for the indices computations, indicator construction and other things.

xclim.core.utils.DateStr

Type annotation for strings representing full dates (YYYY-MM-DD), may include time.

alias of str

xclim.core.utils.DayOfYearStr

Type annotation for strings representing dates without a year (MM-DD).

alias of str

xclim.core.utils.wrapped_partial(func: Callable, suggested: Optional[dict] = None, **fixed)→ Callable
Wrap a function, updating its signature but keeping its docstring.

Parameters
• func (Callable) – The function to be wrapped

• suggested (dict, optional) – Keyword arguments that should have new default values but still
appear in the signature.

• **fixed – Keyword arguments that should be fixed by the wrapped and removed from the
signature.

Returns
Callable

Examples

>>> from inspect import signature
>>> def func(a, b=1, c=1):
... print(a, b, c)
...
>>> newf = wrapped_partial(func, b=2)
>>> signature(newf)
<Signature (a, *, c=1)>

(continues on next page)

15.6. Other Utilities 599

xclim Documentation, Release 0.39.0

(continued from previous page)

>>> newf(1)
1 2 1
>>> newf = wrapped_partial(func, suggested=dict(c=2), b=2)
>>> signature(newf)
<Signature (a, *, c=2)>
>>> newf(1)
1 2 2

xclim.core.utils.walk_map(d: dict, func: Callable)→ dict
Apply a function recursively to values of dictionary.

Parameters
• d (dict) – Input dictionary, possibly nested.

• func (Callable) – Function to apply to dictionary values.

Returns
dict – Dictionary whose values are the output of the given function.

xclim.core.utils.load_module(path: PathLike, name: Optional[str] = None)
Load a python module from a python file, optionally changing its name.

Examples

Given a path to a module file (.py):

from pathlib import Path
import os

path = Path("path/to/example.py")

The two following imports are equivalent, the second uses this method.

os.chdir(path.parent)
import example as mod1 # noqa

os.chdir(previous_working_dir)
mod2 = load_module(path)
mod1 == mod2

exception xclim.core.utils.ValidationError

Bases: ValueError

Error raised when input data to an indicator fails the validation tests.

property msg

exception xclim.core.utils.MissingVariableError

Bases: ValueError

Error raised when a dataset is passed to an indicator but one of the needed variable is missing.

600 Chapter 15. API

xclim Documentation, Release 0.39.0

xclim.core.utils.ensure_chunk_size(da: DataArray, **minchunks: Mapping[str, int])→ DataArray
Ensure that the input DataArray has chunks of at least the given size.

If only one chunk is too small, it is merged with an adjacent chunk. If many chunks are too small, they are
grouped together by merging adjacent chunks.

Parameters
• da (xr.DataArray) – The input DataArray, with or without the dask backend. Does nothing

when passed a non-dask array.

• **minchunks (Mapping[str, int]) – A kwarg mapping from dimension name to minimum
chunk size. Pass -1 to force a single chunk along that dimension.

Returns
xr.DataArray

xclim.core.utils.uses_dask(da: DataArray)→ bool
Evaluate whether dask is installed and array is loaded as a dask array.

Parameters
da (xr.DataArray)

Returns
bool

xclim.core.utils.calc_perc(arr: ndarray, percentiles: Optional[Sequence[float]] = None, alpha: float = 1.0,
beta: float = 1.0, copy: bool = True)→ ndarray

Compute percentiles using nan_calc_percentiles and move the percentiles’ axis to the end.

xclim.core.utils.nan_calc_percentiles(arr: ndarray, percentiles: Optional[Sequence[float]] = None,
axis=-1, alpha=1.0, beta=1.0, copy=True)→ ndarray

Convert the percentiles to quantiles and compute them using _nan_quantile.

xclim.core.utils.raise_warn_or_log(err: Exception, mode: str, msg: ~typing.Optional[str] = None,
err_type: type = <class 'ValueError'>, stacklevel: int = 1)

Raise, warn or log an error according.

Parameters
• err (Exception) – An error.

• mode ({‘ignore’, ‘log’, ‘warn’, ‘raise’}) – What to do with the error.

• msg (str, optional) – The string used when logging or warning. Defaults to the msg attr of
the error (if present) or to “Failed with <err>”.

• err_type (type) – The type of error/exception to raise.

• stacklevel (int) – Stacklevel when warning. Relative to the call of this function (1 is added).

class xclim.core.utils.InputKind(value)
Bases: IntEnum

Constants for input parameter kinds.

For use by external parses to determine what kind of data the indicator expects. On the creation of an indicator,
the appropriate constant is stored in xclim.core.indicator.Indicator.parameters. The integer value is
what gets stored in the output of xclim.core.indicator.Indicator.json().

For developers : for each constant, the docstring specifies the annotation a parameter of an indice function
should use in order to be picked up by the indicator constructor. Notice that we are using the annotation format
as described in PEP604/py3.10, i.e. with | indicating an union and without import objects from typing.

15.6. Other Utilities 601

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

VARIABLE = 0

A data variable (DataArray or variable name).

Annotation : xr.DataArray.

OPTIONAL_VARIABLE = 1

An optional data variable (DataArray or variable name).

Annotation : xr.DataArray | None. The default should be None.

QUANTITY_STR = 2

A string representing a quantity with units.

Annotation : str + an entry in the xclim.core.units.declare_units() decorator.

FREQ_STR = 3

A string representing an “offset alias”, as defined by pandas.

See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases . Annotation
: str + freq as the parameter name.

NUMBER = 4

A number.

Annotation : int, float and unions thereof, potentially optional.

STRING = 5

A simple string.

Annotation : str or str | None. In most cases, this kind of parameter makes sense with choices indicated
in the docstring’s version of the annotation with curly braces. See Defining new indices.

DAY_OF_YEAR = 6

A date, but without a year, in the MM-DD format.

Annotation : xclim.core.utils.DayOfYearStr (may be optional).

DATE = 7

A date in the YYYY-MM-DD format, may include a time.

Annotation : xclim.core.utils.DateStr (may be optional).

NUMBER_SEQUENCE = 8

A sequence of numbers

Annotation : Sequence[int], Sequence[float] and unions thereof, may include single int and float,
may be optional.

BOOL = 9

A boolean flag.

Annotation : bool, may be optional.

KWARGS = 50

A mapping from argument name to value.

Developers : maps the **kwargs. Please use as little as possible.

DATASET = 70

An xarray dataset.

Developers : as indices only accept DataArrays, this should only be added on the indicator’s constructor.

602 Chapter 15. API

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

xclim Documentation, Release 0.39.0

OTHER_PARAMETER = 99

An object that fits None of the previous kinds.

Developers : This is the fallback kind, it will raise an error in xclim’s unit tests if used.

xclim.core.utils.infer_kind_from_parameter(param: Parameter, has_units: bool = False)→ InputKind
Return the appropriate InputKind constant from an inspect.Parameter object.

The correspondence between parameters and kinds is documented in xclim.core.utils.InputKind . The
only information not inferable through the inspect object is whether the parameter has been assigned units through
the xclim.core.units.declare_units() decorator. That can be given with the has_units flag.

xclim.core.utils.adapt_clix_meta_yaml(raw: os.PathLike | _io.StringIO | str, adapted: PathLike)
Read in a clix-meta yaml representation and refactor it to fit xclim’s yaml specifications.

class xclim.core.utils.PercentileDataArray(data: ~typing.Any = <NA>, coords: ~typ-
ing.Optional[~typing.Union[~typing.Sequence[~typing.Union[~typing.Sequence[~typing.Any],
~pandas.core.indexes.base.Index, ~xarray.DataArray]],
~typing.Mapping[~typing.Any, ~typing.Any]]] = None,
dims: ~typing.Optional[~typing.Union[~typing.Hashable,
~typing.Sequence[~typing.Hashable]]] = None, name:
~typing.Optional[~typing.Hashable] = None, attrs:
~typing.Optional[~typing.Mapping] = None, indexes:
~typing.Optional[dict[typing.Hashable,
xarray.core.indexes.Index]] = None, fastpath: bool = False)

Bases: DataArray

Wrap xarray DataArray for percentiles values.

This class is used internally with its corresponding InputKind to recognize this sort of input and to retrieve from
it the attributes needed to build indicator metadata.

cumprod(dim=None, axis=None, skipna=None, **kwargs)
Apply cumprod along some dimension of PercentileDataArray.

Parameters
• dim (str or sequence of str, optional) – Dimension over which to apply cumprod.

• axis (int or sequence of int, optional) – Axis over which to apply cumprod. Only one of
the ‘dim’ and ‘axis’ arguments can be supplied.

• skipna (bool, optional) – If True, skip missing values (as marked by NaN). By default,
only skips missing values for float dtypes; other dtypes either do not have a sentinel missing
value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).

• keep_attrs (bool, optional) – If True, the attributes (attrs) will be copied from the original
object to the new one. If False (default), the new object will be returned without attributes.

• **kwargs (dict) – Additional keyword arguments passed on to cumprod.

Returns
cumvalue (PercentileDataArray) – New PercentileDataArray object with cumprod applied
to its data along the indicated dimension.

cumsum(dim=None, axis=None, skipna=None, **kwargs)
Apply cumsum along some dimension of PercentileDataArray.

Parameters
• dim (str or sequence of str, optional) – Dimension over which to apply cumsum.

15.6. Other Utilities 603

xclim Documentation, Release 0.39.0

• axis (int or sequence of int, optional) – Axis over which to apply cumsum. Only one of the
‘dim’ and ‘axis’ arguments can be supplied.

• skipna (bool, optional) – If True, skip missing values (as marked by NaN). By default,
only skips missing values for float dtypes; other dtypes either do not have a sentinel missing
value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).

• keep_attrs (bool, optional) – If True, the attributes (attrs) will be copied from the original
object to the new one. If False (default), the new object will be returned without attributes.

• **kwargs (dict) – Additional keyword arguments passed on to cumsum.

Returns
cumvalue (PercentileDataArray) – New PercentileDataArray object with cumsum applied to
its data along the indicated dimension.

item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args (Arguments (variable number and type)) –

• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which element
to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z (Standard Python scalar object) – A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array
using Python’s optimized math.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],

[1, 3, 6],
[1, 0, 1]])

>>> x.item(3)
1
>>> x.item(7)
0

(continues on next page)

604 Chapter 15. API

xclim Documentation, Release 0.39.0

(continued from previous page)

>>> x.item((0, 1))
2
>>> x.item((2, 2))
1

searchsorted(v, side='left', sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted
equivalent function

classmethod is_compatible(source: DataArray)→ bool
Evaluate whether PecentileDataArray is conformant with expected fields.

A PercentileDataArray must have climatology_bounds attributes and either a quantile or percentiles coor-
dinate, the window is not mandatory.

classmethod from_da(source: DataArray, climatology_bounds: Optional[list[str]] = None)→
PercentileDataArray

Create a PercentileDataArray from a xarray.DataArray.

Parameters
• source (xr.DataArray) – A DataArray with its content containing percentiles values. It

must also have a coordinate variable percentiles or quantile.

• climatology_bounds (list[str]) – Optional. A List of size two which contains the period on
which the percentiles were computed. See xclim.core.calendar.build_climatology_bounds
to build this list from a DataArray.

Returns
PercentileDataArray – The initial source DataArray but wrap by PercentileDataArray class.
The data is unchanged and only climatology_bounds attributes is overridden if q new value
is given in inputs.

15.7 Other xclim modules

15.7.1 Spatial Analogs module

See Spatial Analogues.

15.7. Other xclim modules 605

https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html#numpy.searchsorted

xclim Documentation, Release 0.39.0

15.7.2 Testing module

Helpers for testing xclim.

Testing and tutorial utilities’ module.

xclim.testing.utils.get_all_CMIP6_variables(get_cell_methods=True)

xclim.testing.utils.list_datasets(github_repo='Ouranosinc/xclim-testdata', branch='main')
Return a DataFrame listing all xclim test datasets available on the GitHub repo for the given branch.

The result includes the filepath, as passed to open_dataset, the file size (in KB) and the html url to the file. This
uses an unauthenticated call to GitHub’s REST API, so it is limited to 60 requests per hour (per IP). A single call
of this function triggers one request per subdirectory, so use with parsimony.

xclim.testing.utils.list_input_variables(submodules: Optional[Sequence[str]] = None, realms:
Optional[Sequence[str]] = None)→ dict

List all possible variables names used in xclim’s indicators.

Made for development purposes. Parses all indicator parameters with the xclim.core.utils.InputKind.
VARIABLE or OPTIONAL_VARIABLE kinds.

Parameters
• realms (Sequence of str, optional) – Restrict the output to indicators of a list of realms only.

Default None, which parses all indicators.

• submodules (str, optional) – Restrict the output to indicators of a list of submodules only.
Default None, which parses all indicators.

Returns
dict – A mapping from variable name to indicator class.

xclim.testing.utils.open_dataset(name: str | os.PathLike, suffix: Optional[str] = None, dap_url:
Optional[str] = None, github_url: str =
'https://github.com/Ouranosinc/xclim-testdata', branch: str = 'main',
cache: bool = True, cache_dir: Path =
PosixPath('/home/docs/.xclim_testing_data'), **kwargs)→ Dataset

Open a dataset from the online GitHub-like repository.

If a local copy is found then always use that to avoid network traffic.

Parameters
• name (str or os.PathLike) – Name of the file containing the dataset.

• suffix (str, optional) – If no suffix is given, assumed to be netCDF (‘.nc’ is appended). For
no suffix, set “”.

• dap_url (str, optional) – URL to OPeNDAP folder where the data is stored. If supplied,
supersedes github_url.

• github_url (str) – URL to GitHub repository where the data is stored.

• branch (str, optional) – For GitHub-hosted files, the branch to download from.

• cache_dir (Path) – The directory in which to search for and write cached data.

• cache (bool) – If True, then cache data locally for use on subsequent calls.

• kwargs – For NetCDF files, keywords passed to xarray.open_dataset().

Returns
Union[Dataset, Path]

606 Chapter 15. API

xclim Documentation, Release 0.39.0

See also:
xarray.open_dataset

xclim.testing.utils.publish_release_notes(style: str = 'md', file: Optional[Union[PathLike, StringIO,
TextIO]] = None)→ str | None

Format release history in Markdown or ReStructuredText.

Parameters
• style ({“rst”, “md”}) – Use ReStructuredText formatting or Markdown. Default: Mark-

down.

• file ({os.PathLike, StringIO, TextIO}, optional) – If provided, prints to the given file-like
object. Otherwise, returns a string.

Returns
str, optional

Notes

This function is solely for development purposes.

xclim.testing.utils.show_versions(file: Optional[Union[PathLike, StringIO, TextIO]] = None, deps:
Optional[list] = None)→ str | None

Print the versions of xclim and its dependencies.

Parameters
• file ({os.PathLike, StringIO, TextIO}, optional) – If provided, prints to the given file-like

object. Otherwise, returns a string.

• deps (list, optional) – A list of dependencies to gather and print version information from.
Otherwise, prints xclim dependencies.

Returns
str or None

xclim.testing.utils.update_variable_yaml(filename=None, xclim_needs_only=True)
Update a variable from a yaml file.

15.7.3 Subset module

Warning: Subsetting is now offered via clisops.core.subset. The subsetting functions offered by clisops are
available at the following link:

CLISOPS API

Note: For more information about clisops refer to their documentation here: CLISOPS documentation

15.7. Other xclim modules 607

https://clisops.readthedocs.io/en/latest/api.html
https://clisops.readthedocs.io/en/latest/readme.html

xclim Documentation, Release 0.39.0

608 Chapter 15. API

CHAPTER

SIXTEEN

XCLIM

16.1 xclim package

16.1.1 Subpackages

xclim.core package

Core module.

Submodules

xclim.core.bootstrapping module

Module comprising the bootstrapping algorithm for indicators.

xclim.core.bootstrapping._get_bootstrap_freq(freq)

xclim.core.bootstrapping._get_year_label(year_dt)→ str

xclim.core.bootstrapping.bootstrap_func(compute_index_func: Callable, **kwargs)→ DataArray
Bootstrap the computation of percentile-based indices.

Indices measuring exceedance over percentile-based thresholds (such as tx90p) may contain artificial discontinu-
ities at the beginning and end of the reference period used to calculate percentiles. The bootstrap procedure can
reduce those discontinuities by iteratively computing the percentile estimate and the index on altered reference
periods.

Theses altered reference periods are themselves built iteratively: When computing the index for year x, the
bootstrapping create as many altered reference period as the number of years in the reference period. To build
one altered reference period, the values of year x are replaced by the values of another year in the reference
period, then the index is computed on this altered period. This is repeated for each year of the reference period,
excluding year x, The final result of the index for year x, is then the average of all the index results on altered
years.

Parameters
• compute_index_func (Callable) – Index function.

• **kwargs – Arguments to func.

Returns
xr.DataArray – The result of func with bootstrapping.

609

xclim Documentation, Release 0.39.0

References

Zhang, Hegerl, Zwiers, and Kenyon [2005]

Notes

This function is meant to be used by the percentile_bootstrap decorator. The parameters of the percentile calcula-
tion (percentile, window, reference_period) are stored in the attributes of the percentile DataArray. The bootstrap
algorithm implemented here does the following:

For each temporal grouping in the calculation of the index
If the group `g_t` is in the reference period

For every other group `g_s` in the reference period
Replace group `g_t` by `g_s`
Compute percentile on resampled time series
Compute index function using percentile

Average output from index function over all resampled time series
Else compute index function using original percentile

xclim.core.bootstrapping.build_bootstrap_year_da(da: DataArray, groups: dict[Any, slice], label: Any,
dim: str = 'time')→ DataArray

Return an array where a group in the original is replaced by every other groups along a new dimension.

Parameters
• da (DataArray) – Original input array over reference period.

• groups (dict) – Output of grouping functions, such as DataArrayResample.groups.

• label (Any) – Key identifying the group item to replace.

• dim (str) – Dimension recognized as time. Default: time.

Returns
DataArray – Array where one group is replaced by values from every other group along the
bootstrap dimension.

xclim.core.bootstrapping.percentile_bootstrap(func)
Decorator applying a bootstrap step to the calculation of exceedance over a percentile threshold.

This feature is experimental.

Bootstraping avoids discontinuities in the exceedance between the reference period over which percentiles are
computed, and “out of reference” periods. See bootstrap_func for details.

Declaration example:

@declare_units(tas="[temperature]", t90="[temperature]")
@percentile_bootstrap
def tg90p(

tas: xarray.DataArray,
t90: xarray.DataArray,
freq: str = "YS",
bootstrap: bool = False,

) -> xarray.DataArray:
pass

610 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tg90p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> # To start bootstrap reference period must not fully overlap the studied period.
>>> tas_ref = tas.sel(time=slice("1990-01-01", "1992-12-31"))
>>> t90 = percentile_doy(tas_ref, window=5, per=90)
>>> tg90p(tas=tas, tas_per=t90.sel(percentiles=90), freq="YS", bootstrap=True)

xclim.core.calendar module

Calendar handling utilities

Helper function to handle dates, times and different calendars with xarray.

xclim.core.calendar.adjust_doy_calendar(source: DataArray, target: xarray.DataArray | xarray.Dataset)
→ DataArray

Interpolate from one set of dayofyear range to another calendar.

Interpolate an array defined over a dayofyear range (say 1 to 360) to another dayofyear range (say 1 to 365).

Parameters
• source (xr.DataArray) – Array with dayofyear coordinate.

• target (xr.DataArray or xr.Dataset) – Array with time coordinate.

Returns
xr.DataArray – Interpolated source array over coordinates spanning the target dayofyear range.

xclim.core.calendar.build_climatology_bounds(da: DataArray)→ list[str]
Build the climatology_bounds property with the start and end dates of input data.

Parameters
da (xr.DataArray) – The input data. Must have a time dimension.

xclim.core.calendar.cfindex_end_time(cfindex: CFTimeIndex, freq: str)→ CFTimeIndex
Get the end of a period for a pseudo-period index.

As we are using datetime indices to stand in for period indices, assumptions regarding the period are made based
on the given freq. IMPORTANT NOTE: this function cannot be used on greater-than-day freq that start at the
beginning of a month, e.g. ‘MS’, ‘QS’, ‘AS’ – this mirrors pandas behavior.

Parameters
• cfindex (CFTimeIndex) – CFTimeIndex as a proxy representation for CFPeriodIndex

• freq (str) – String specifying the frequency/offset such as ‘MS’, ‘2D’, ‘H’, or ‘3T’

Returns
CFTimeIndex – The ending datetimes of periods inferred from dates and freq

xclim.core.calendar.cfindex_start_time(cfindex: CFTimeIndex, freq: str)→ CFTimeIndex
Get the start of a period for a pseudo-period index.

As we are using datetime indices to stand in for period indices, assumptions regarding the period are made based
on the given freq. IMPORTANT NOTE: this function cannot be used on greater-than-day freq that start at the
beginning of a month, e.g. ‘MS’, ‘QS’, ‘AS’ – this mirrors pandas behavior.

16.1. xclim package 611

xclim Documentation, Release 0.39.0

Parameters
• cfindex (CFTimeIndex) – CFTimeIndex as a proxy representation for CFPeriodIndex

• freq (str) – String specifying the frequency/offset such as ‘MS’, ‘2D’, ‘H’, or ‘3T’

Returns
CFTimeIndex – The starting datetimes of periods inferred from dates and freq

xclim.core.calendar.cftime_end_time(date: datetime, freq: str)→ datetime
Get the cftime.datetime for the end of a period.

As we are not supplying actual period objects, assumptions regarding the period are made based on the given
freq. IMPORTANT NOTE: this function cannot be used on greater-than-day freq that start at the beginning of a
month, e.g. ‘MS’, ‘QS’, ‘AS’ – this mirrors pandas behavior.

Parameters
• date (cftime.datetime) – The original datetime object as a proxy representation for period.

• freq (str) – String specifying the frequency/offset such as ‘MS’, ‘2D’, ‘H’, or ‘3T’

Returns
cftime.datetime – The ending datetime of the period inferred from date and freq.

xclim.core.calendar.cftime_start_time(date: datetime, freq: str)→ datetime
Get the cftime.datetime for the start of a period.

As we are not supplying actual period objects, assumptions regarding the period are made based on the given
freq. IMPORTANT NOTE: this function cannot be used on greater-than-day freq that start at the beginning of a
month, e.g. ‘MS’, ‘QS’, ‘AS’ – this mirrors pandas behavior.

Parameters
• date (cftime.datetime) – The original datetime object as a proxy representation for period.

• freq (str) – String specifying the frequency/offset such as ‘MS’, ‘2D’, ‘H’, or ‘3T’

Returns
cftime.datetime – The starting datetime of the period inferred from date and freq.

xclim.core.calendar.climatological_mean_doy(arr: DataArray, window: int = 5)→
tuple[xarray.DataArray, xarray.DataArray]

Calculate the climatological mean and standard deviation for each day of the year.

Parameters
• arr (xarray.DataArray) – Input array.

• window (int) – Window size in days.

Returns
xarray.DataArray, xarray.DataArray – Mean and standard deviation.

xclim.core.calendar.compare_offsets(freqA: str, op: str, freqB: str)→ bool
Compare offsets string based on their approximate length, according to a given operator.

Offset are compared based on their length approximated for a period starting after 1970-01-01 00:00:00. If
the offsets are from the same category (same first letter), only the multiplier prefix is compared (QS-DEC ==
QS-JAN, MS < 2MS). “Business” offsets are not implemented.

Parameters
• freqA (str) – RHS Date offset string (‘YS’, ‘1D’, ‘QS-DEC’, . . .)

612 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• op ({‘<’, ‘<=’, ‘==’, ‘>’, ‘>=’, ‘!=’}) – Operator to use.

• freqB (str) – LHS Date offset string (‘YS’, ‘1D’, ‘QS-DEC’, . . .)

Returns
bool – freqA op freqB

xclim.core.calendar.convert_calendar(source: xarray.DataArray | xarray.Dataset, target:
xarray.DataArray | str, align_on: Optional[str] = None, missing:
Optional[Any] = None, dim: str = 'time')→ xarray.DataArray |
xarray.Dataset

Convert a DataArray/Dataset to another calendar using the specified method.

Only converts the individual timestamps, does not modify any data except in dropping invalid/surplus dates or
inserting missing dates.

If the source and target calendars are either no_leap, all_leap or a standard type, only the type of the time array is
modified. When converting to a leap year from a non-leap year, the 29th of February is removed from the array.
In the other direction and if target is a string, the 29th of February will be missing in the output, unless missing
is specified, in which case that value is inserted.

For conversions involving 360_day calendars, see Notes.

This method is safe to use with sub-daily data as it doesn’t touch the time part of the timestamps.

Parameters
• source (xr.DataArray or xr.Dataset) – Input array/dataset with a time coordinate of a valid

dtype (datetime64 or a cftime.datetime).

• target (xr.DataArray or str) – Either a calendar name or the 1D time coordinate to convert
to. If an array is provided, the output will be reindexed using it and in that case, days in target
that are missing in the converted source are filled by missing (which defaults to NaN).

• align_on ({None, ‘date’, ‘year’, ‘random’}) – Must be specified when either source or target
is a 360_day calendar, ignored otherwise. See Notes.

• missing (Any, optional) – A value to use for filling in dates in the target that were missing in
the source. If target is a string, default (None) is not to fill values. If it is an array, default is
to fill with NaN.

• dim (str) – Name of the time coordinate.

Returns
xr.DataArray or xr.Dataset – Copy of source with the time coordinate converted to the target
calendar. If target is given as an array, the output is reindexed to it, with fill value missing. If
target was a string and missing was None (default), invalid dates in the new calendar are dropped,
but missing dates are not inserted. If target was a string and missing was given, then start, end
and frequency of the new time axis are inferred and the output is reindexed to that a new array.

Notes

If one of the source or target calendars is 360_day, align_on must be specified and two options are offered.

“year”
The dates are translated according to their rank in the year (dayofyear), ignoring their original month and
day information, meaning that the missing/surplus days are added/removed at regular intervals.

From a 360_day to a standard calendar, the output will be missing the following dates (day of year
in parentheses):

16.1. xclim package 613

xclim Documentation, Release 0.39.0

To a leap year:
January 31st (31), March 31st (91), June 1st (153), July 31st (213), September 31st (275) and
November 30th (335).

To a non-leap year:
February 6th (36), April 19th (109), July 2nd (183), September 12th (255), November 25th (329).

From standard calendar to a ‘360_day’, the following dates in the source array will be dropped:
From a leap year:

January 31st (31), April 1st (92), June 1st (153), August 1st (214), September 31st (275), Decem-
ber 1st (336)

From a non-leap year:
February 6th (37), April 20th (110), July 2nd (183), September 13th (256), November 25th (329)

This option is best used on daily and subdaily data.

“date”
The month/day information is conserved and invalid dates are dropped from the output. This means that
when converting from a 360_day to a standard calendar, all 31st (Jan, March, May, July, August, October
and December) will be missing as there is no equivalent dates in the 360_day and the 29th (on non-leap
years) and 30th of February will be dropped as there are no equivalent dates in a standard calendar.

This option is best used with data on a frequency coarser than daily.

“random”
Similar to “year”, each day of year of the source is mapped to another day of year of the target. However,
instead of having always the same missing days according the source and target years, here 5 days are chosen
randomly, one for each fifth of the year. However, February 29th is always missing when converting to a
leap year, or its value is dropped when converting from a leap year. This is similar to method used in the
Pierce et al. [2014] dataset.

This option best used on daily data.

References

Pierce, Cayan, and Thrasher [2014]

Examples

This method does not try to fill the missing dates other than with a constant value, passed with missing. In order
to fill the missing dates with interpolation, one can simply use xarray’s method:

>>> tas_nl = convert_calendar(tas, "noleap") # For the example
>>> with_missing = convert_calendar(tas_nl, "standard", missing=np.NaN)
>>> out = with_missing.interpolate_na("time", method="linear")

Here, if Nans existed in the source data, they will be interpolated too. If that is, for some reason, not wanted, the
workaround is to do:

>>> mask = convert_calendar(tas_nl, "standard").notnull()
>>> out2 = out.where(mask)

xclim.core.calendar.date_range(*args, calendar: str = 'default', **kwargs)→
pandas.core.indexes.datetimes.DatetimeIndex | xarray.CFTimeIndex

Wrap pd.date_range (if calendar == ‘default’) or xr.cftime_range (otherwise).

614 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.core.calendar.date_range_like(source: DataArray, calendar: str)→ DataArray
Generate a datetime array with the same frequency, start and end as another one, but in a different calendar.

Parameters
• source (xr.DataArray) – 1D datetime coordinate DataArray

• calendar (str) – New calendar name.

Raises
ValueError – If the source’s frequency was not found.

Returns
xr.DataArray –

1D datetime coordinate with the same start, end and frequency as the source, but in the
new calendar.

The start date is assumed to exist in the target calendar. If the end date doesn’t exist, the code
tries 1 and 2 calendar days before. Exception when the source is in 360_day and the end of
the range is the 30th of a 31-days month, then the 31st is appended to the range.

xclim.core.calendar.datetime_to_decimal_year(times: DataArray, calendar: str = '')→ DataArray
Convert a datetime xr.DataArray to decimal years according to its calendar or the given one.

Decimal years are the number of years since 0001-01-01 00:00:00 AD. Ex: ‘2000-03-01 12:00’ is 2000.1653 in
a standard calendar, 2000.16301 in a “noleap” or 2000.16806 in a “360_day”.

Parameters
• times (xr.DataArray)

• calendar (str)

Returns
xr.DataArray

xclim.core.calendar.days_in_year(year: int, calendar: str = 'default')→ int
Return the number of days in the input year according to the input calendar.

xclim.core.calendar.days_since_to_doy(da: DataArray, start: Optional[DayOfYearStr] = None, calendar:
Optional[str] = None)→ DataArray

Reverse the conversion made by doy_to_days_since().

Converts data given in days since a specific date to day-of-year.

Parameters
• da (xr.DataArray) – The result of doy_to_days_since().

• start (DateOfYearStr, optional) – da is considered as days since that start date (in the year
of the time index). If None (default), it is read from the attributes.

• calendar (str, optional) – Calendar the “days since” were computed in. If None (default), it
is read from the attributes.

Returns
xr.DataArray – Same shape as da, values as day of year.

16.1. xclim package 615

xclim Documentation, Release 0.39.0

Examples

>>> from xarray import DataArray
>>> time = date_range("2020-07-01", "2021-07-01", freq="AS-JUL")
>>> da = DataArray(
... [-86, 92],
... dims=("time",),
... coords={"time": time},
... attrs={"units": "days since 10-02"},
...)
>>> days_since_to_doy(da).values
array([190, 2])

xclim.core.calendar.doy_to_days_since(da: DataArray, start: Optional[DayOfYearStr] = None, calendar:
Optional[str] = None)→ DataArray

Convert day-of-year data to days since a given date.

This is useful for computing meaningful statistics on doy data.

Parameters
• da (xr.DataArray) – Array of “day-of-year”, usually int dtype, must have a time dimension.

Sampling frequency should be finer or similar to yearly and coarser then daily.

• start (date of year str, optional) – A date in “MM-DD” format, the base day of the new array.
If None (default), the time axis is used. Passing start only makes sense if da has a yearly
sampling frequency.

• calendar (str, optional) – The calendar to use when computing the new interval. If None
(default), the calendar attribute of the data or of its time axis is used. All time coordinates of
da must exist in this calendar. No check is done to ensure doy values exist in this calendar.

Returns
xr.DataArray – Same shape as da, int dtype, day-of-year data translated to a number of days since
a given date. If start is not None, there might be negative values.

Notes

The time coordinates of da are considered as the START of the period. For example, a doy value of 350 with a
timestamp of ‘2020-12-31’ is understood as ‘2021-12-16’ (the 350th day of 2021). Passing start=None, will use
the time coordinate as the base, so in this case the converted value will be 350 “days since time coordinate”.

Examples

>>> from xarray import DataArray
>>> time = date_range("2020-07-01", "2021-07-01", freq="AS-JUL")
>>> # July 8th 2020 and Jan 2nd 2022
>>> da = DataArray([190, 2], dims=("time",), coords={"time": time})
>>> # Convert to days since Oct. 2nd, of the data's year.
>>> doy_to_days_since(da, start="10-02").values
array([-86, 92])

616 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.core.calendar.ensure_cftime_array(time: Sequence)→ ndarray
Convert an input 1D array to a numpy array of cftime objects.

Python’s datetime are converted to cftime.DatetimeGregorian (“standard” calendar).

Parameters
time (sequence) – A 1D array of datetime-like objects.

Returns
np.ndarray

Raises
ValueError – When unable to cast the input.:

xclim.core.calendar.get_calendar(obj: Any, dim: str = 'time')→ str
Return the calendar of an object.

Parameters
• obj (Any) – An object defining some date. If obj is an array/dataset with a datetime coor-

dinate, use dim to specify its name. Values must have either a datetime64 dtype or a cftime
dtype. obj can also be a python datetime.datetime, a cftime object or a pandas Timestamp
or an iterable of those, in which case the calendar is inferred from the first value.

• dim (str) – Name of the coordinate to check (if obj is a DataArray or Dataset).

Raises
ValueError – If no calendar could be inferred.

Returns
str – The cftime calendar name or “default” when the data is using numpy’s or python’s datetime
types. Will always return “standard” instead of “gregorian”, following CF conventions 1.9.

xclim.core.calendar.interp_calendar(source: xarray.DataArray | xarray.Dataset, target: DataArray, dim:
str = 'time')→ xarray.DataArray | xarray.Dataset

Interpolates a DataArray/Dataset to another calendar based on decimal year measure.

Each timestamp in source and target are first converted to their decimal year equivalent then source is interpolated
on the target coordinate. The decimal year is the number of years since 0001-01-01 AD. Ex: ‘2000-03-01 12:00’
is 2000.1653 in a standard calendar or 2000.16301 in a ‘noleap’ calendar.

This method should be used with daily data or coarser. Sub-daily result will have a modified day cycle.

Parameters
• source (xr.DataArray or xr.Dataset) – The source data to interpolate, must have a time co-

ordinate of a valid dtype (np.datetime64 or cftime objects)

• target (xr.DataArray) – The target time coordinate of a valid dtype (np.datetime64 or cftime
objects)

• dim (str) – The time coordinate name.

Returns
xr.DataArray or xr.Dataset – The source interpolated on the decimal years of target,

xclim.core.calendar.parse_offset(freq: str)→ Sequence[str]
Parse an offset string.

Parse a frequency offset and, if needed, convert to cftime-compatible components.

Parameters
freq (str) – Frequency offset.

16.1. xclim package 617

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

Returns
• multiplier (int) – Multiplier of the base frequency. “[n]W” is always replaced with “[7n]D”,

as xarray doesn’t support “W” for cftime indexes.

• offset_base (str) – Base frequency. “Y” is always replaced with “A”.

• is_start_anchored (bool) – Whether coordinates of this frequency should correspond to the
beginning of the period (True) or its end (False). Can only be False when base is A, Q or M.

• anchor (str or None) – Anchor date for bases A or Q. As xarray doesn’t support “W”, neither
does xclim (anchor information is lost when given).

xclim.core.calendar.percentile_doy(arr: DataArray, window: int = 5, per: Union[float, Sequence[float]] =
10.0, alpha: float = 0.3333333333333333, beta: float =
0.3333333333333333, copy: bool = True)→ PercentileDataArray

Percentile value for each day of the year.

Return the climatological percentile over a moving window around each day of the year. Different quantile
estimators can be used by specifying alpha and beta according to specifications given by Hyndman and Fan
[1996]. The default definition corresponds to method 8, which meets multiple desirable statistical properties for
sample quantiles. Note that numpy.percentile corresponds to method 7, with alpha and beta set to 1.

Parameters
• arr (xr.DataArray) – Input data, a daily frequency (or coarser) is required.

• window (int) – Number of time-steps around each day of the year to include in the calcula-
tion.

• per (float or sequence of floats) – Percentile(s) between [0, 100]

• alpha (float) – Plotting position parameter.

• beta (float) – Plotting position parameter.

• copy (bool) – If True (default) the input array will be deep-copied. It’s a necessary step to
keep the data integrity, but it can be costly. If False, no copy is made of the input array. It
will be mutated and rendered unusable but performances may significantly improve. Put this
flag to False only if you understand the consequences.

Returns
xr.DataArray – The percentiles indexed by the day of the year. For calendars with 366 days,
percentiles of doys 1-365 are interpolated to the 1-366 range.

References

Hyndman and Fan [1996]

xclim.core.calendar.resample_doy(doy: DataArray, arr: xarray.DataArray | xarray.Dataset)→ DataArray
Create a temporal DataArray where each day takes the value defined by the day-of-year.

Parameters
• doy (xr.DataArray) – Array with dayofyear coordinate.

• arr (xr.DataArray or xr.Dataset) – Array with time coordinate.

Returns
xr.DataArray – An array with the same dimensions as doy, except for dayofyear, which is replaced
by the time dimension of arr. Values are filled according to the day of year value in doy.

618 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.core.calendar.select_time(da: xarray.DataArray | xarray.Dataset, drop: bool = False, season:
Optional[Union[str, Sequence[str]]] = None, month: Optional[Union[int,
Sequence[int]]] = None, doy_bounds: Optional[tuple[int, int]] = None,
date_bounds: Optional[tuple[str, str]] = None)→ xarray.DataArray |
xarray.Dataset

Select entries according to a time period.

This conveniently improves xarray’s xarray.DataArray.where() and xarray.DataArray.sel() with
fancier ways of indexing over time elements. In addition to the data da and argument drop, only one of sea-
son, month, doy_bounds or date_bounds may be passed.

Parameters
• da (xr.DataArray or xr.Dataset) – Input data.

• drop (boolean) – Whether to drop elements outside the period of interest or to simply mask
them (default).

• season (string or sequence of strings) – One or more of ‘DJF’, ‘MAM’, ‘JJA’ and ‘SON’.

• month (integer or sequence of integers) – Sequence of month numbers (January = 1 . . .
December = 12)

• doy_bounds (2-tuple of integers) – The bounds as (start, end) of the period of interest ex-
pressed in day-of-year, integers going from 1 (January 1st) to 365 or 366 (December 31st). If
calendar awareness is needed, consider using date_bounds instead. Bounds are inclusive.

• date_bounds (2-tuple of strings) – The bounds as (start, end) of the period of interest ex-
pressed as dates in the month-day (%m-%d) format. Bounds are inclusive.

Returns
xr.DataArray or xr.Dataset – Selected input values. If drop=False, this has the same length as
da (along dimension ‘time’), but with masked (NaN) values outside the period of interest.

Examples

Keep only the values of fall and spring.

>>> ds = open_dataset("ERA5/daily_surface_cancities_1990-1993.nc")
>>> ds.time.size
1461
>>> out = select_time(ds, drop=True, season=["MAM", "SON"])
>>> out.time.size
732

Or all values between two dates (included).

>>> out = select_time(ds, drop=True, date_bounds=("02-29", "03-02"))
>>> out.time.values
array(['1990-03-01T00:00:00.000000000', '1990-03-02T00:00:00.000000000',

'1991-03-01T00:00:00.000000000', '1991-03-02T00:00:00.000000000',
'1992-02-29T00:00:00.000000000', '1992-03-01T00:00:00.000000000',
'1992-03-02T00:00:00.000000000', '1993-03-01T00:00:00.000000000',
'1993-03-02T00:00:00.000000000'], dtype='datetime64[ns]')

xclim.core.calendar.time_bnds(group, freq: str)→ Sequence[tuple[cftime._cftime.datetime,
cftime._cftime.datetime]]

16.1. xclim package 619

xclim Documentation, Release 0.39.0

Find the time bounds for a pseudo-period index.

As we are using datetime indices to stand in for period indices, assumptions regarding the period are made based
on the given freq. IMPORTANT NOTE: this function cannot be used on greater-than-day freq that start at the
beginning of a month, e.g. ‘MS’, ‘QS’, ‘AS’ – this mirrors pandas behavior.

Parameters
• group (CFTimeIndex or DataArrayResample) – Object which contains CFTimeIndex as a

proxy representation for CFPeriodIndex

• freq (str) – String specifying the frequency/offset such as ‘MS’, ‘2D’, or ‘3T’

Returns
Sequence[(cftime.datetime, cftime.datetime)] – The start and end times of the period inferred
from datetime and freq.

Examples

>>> from xarray import cftime_range
>>> from xclim.core.calendar import time_bnds
>>> index = cftime_range(
... start="2000-01-01", periods=3, freq="2QS", calendar="360_day"
...)
>>> out = time_bnds(index, "2Q")
>>> for bnds in out:
... print(
... bnds[0].strftime("%Y-%m-%dT%H:%M:%S"),
... " -",
... bnds[1].strftime("%Y-%m-%dT%H:%M:%S"),
...)
...
2000-01-01T00:00:00 - 2000-03-30T23:59:59
2000-07-01T00:00:00 - 2000-09-30T23:59:59
2001-01-01T00:00:00 - 2001-03-30T23:59:59

xclim.core.calendar.within_bnds_doy(arr: DataArray, *, low: DataArray, high: DataArray)→ DataArray
Return whether array values are within bounds for each day of the year.

Parameters
• arr (xarray.DataArray) – Input array.

• low (xarray.DataArray) – Low bound with dayofyear coordinate.

• high (xarray.DataArray) – High bound with dayofyear coordinate.

Returns
xarray.DataArray

620 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.core.cfchecks module

CF-Convention checking

Utilities designed to verify the compliance of metadata with the CF-Convention.

xclim.core.cfchecks._check_cell_methods(data_cell_methods: str, expected_method: str)→ None

xclim.core.cfchecks.cfcheck_from_name(varname, vardata, attrs: Optional[list[str]] = None)
Perform cfchecks on a DataArray using specifications from xclim’s default variables.

xclim.core.cfchecks.check_valid(var, key: str, expected: Union[str, Sequence[str]])
Check that a variable’s attribute has one of the expected values. Raise a ValidationError otherwise.

xclim.core.datachecks module

Data checks

Utilities designed to check the validity of data inputs.

xclim.core.datachecks.check_common_time(inputs: Sequence[DataArray])
Raise an error if the list of inputs doesn’t have a single common frequency.

Raises
ValidationError –

• if the frequency of any input can’t be inferred - if inputs have different frequencies - if inputs
have a daily or hourly frequency, but they are not given at the same time of day.

Parameters
inputs (Sequence of xr.DataArray) – Input arrays.

xclim.core.datachecks.check_daily(var: DataArray)
Raise an error if not series has a frequency other that daily, or is not monotonically increasing.

Notes

This does not check for gaps in series.

xclim.core.datachecks.check_freq(var: DataArray, freq: Union[str, Sequence[str]], strict: bool = True)
Raise an error if not series has not the expected temporal frequency or is not monotonically increasing.

Parameters
• var (xr.DataArray) – Input array.

• freq (str or sequence of str) – The expected temporal frequencies, using Pandas frequency
terminology ({‘A’, ‘M’, ‘D’, ‘H’, ‘T’, ‘S’, ‘L’, ‘U’}) and multiples thereof. To test strictly for
‘W’, pass ‘7D’ with strict=True. This ignores the start flag and the anchor (ex: ‘AS-JUL’
will validate against ‘Y’).

• strict (bool) – Whether multiples of the frequencies are considered invalid or not. With strict
set to False, a ‘3H’ series will not raise an error if freq is set to ‘H’.

Raises
ValidationError –

16.1. xclim package 621

xclim Documentation, Release 0.39.0

• If the frequency of var is not inferrable. - If the frequency of var does not match the requested
freq.

xclim.core.dataflags module

Data flags

Pseudo-indicators designed to analyse supplied variables for suspicious/erroneous indicator values.

exception xclim.core.dataflags.DataQualityException(flag_array: Dataset, message='Data quality
flags indicate suspicious values. Flags raised
are:\n - ')

Bases: Exception

Raised when any data evaluation checks are flagged as True.

Variables
• flag_array (xarray.Dataset) – Xarray.Dataset of Data Flags.

• message (str) – Message prepended to the error messages.

xclim.core.dataflags.data_flags(da: DataArray, ds: Optional[Dataset] = None, flags: Optional[dict] =
None, dims: Union[None, str, Sequence[str]] = 'all', freq: Optional[str] =
None, raise_flags: bool = False)→ Dataset

Evaluate the supplied DataArray for a set of data flag checks.

Test triggers depend on variable name and availability of extra variables within Dataset for comparison. If called
with raise_flags=True, will raise a DataQualityException with comments for each failed quality check.

Parameters
• da (xarray.DataArray) – The variable to check. Must have a name that is a valid CMIP6

variable name and appears in xclim.core.utils.VARIABLES.

• ds (xarray.Dataset, optional) – An optional dataset with extra variables needed by some
checks.

• flags (dict, optional) – A dictionary where the keys are the name of the flags to check and
the values are parameter dictionaries. The value can be None if there are no parameters to
pass (i.e. default will be used). The default, None, means that the data flags list will be taken
from xclim.core.utils.VARIABLES.

• dims ({“all”, None} or str or a sequence of strings) – Dimenions upon which aggregation
should be performed. Default: “all”.

• freq (str, optional) – Resampling frequency to have data_flags aggregated over periods. De-
faults to None, which means the “time” axis is treated as any other dimension (see dims).

• raise_flags (bool) – Raise exception if any of the quality assessment flags are raised. Default:
False.

Returns
xarray.Dataset

622 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Examples

To evaluate all applicable data flags for a given variable:

>>> from xclim.core.dataflags import data_flags
>>> ds = xr.open_dataset(path_to_pr_file)
>>> flagged = data_flags(ds.pr, ds)
>>> # The next example evaluates only one data flag, passing specific parameters.␣
→˓It also aggregates the flags
>>> # yearly over the "time" dimension only, such that a True means there is a bad␣
→˓data point for that year
>>> # at that location.
>>> flagged = data_flags(
... ds.pr,
... ds,
... flags={"very_large_precipitation_events": {"thresh": "250 mm d-1"}},
... dims=None,
... freq="YS",
...)

xclim.core.dataflags.ecad_compliant(ds: Dataset, dims: Union[None, str, Sequence[str]] = 'all',
raise_flags: bool = False, append: bool = True)→ xarray.DataArray
| xarray.Dataset | None

Run ECAD compliance tests.

Assert file adheres to ECAD-based quality assurance checks.

Parameters
• ds (xarray.Dataset) – Dataset containing variables to be examined.

• dims ({“all”, None} or str or a sequence of strings) – Dimensions upon which aggregation
should be performed. Default: "all".

• raise_flags (bool) – Raise exception if any of the quality assessment flags are raised, other-
wise returns None. Default: False.

• append (bool) – If True, returns the Dataset with the ecad_qc_flag array appended to
data_vars. If False, returns the DataArray of the ecad_qc_flag variable.

Returns
xarray.DataArray or xarray.Dataset or None

xclim.core.dataflags.negative_accumulation_values(da: DataArray)→ DataArray
Check if variable values are negative for any given day.

Parameters
da (xarray.DataArray)

Returns
xarray.DataArray, [bool]

16.1. xclim package 623

xclim Documentation, Release 0.39.0

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import negative_accumulation_values
>>> ds = xr.open_dataset(path_to_pr_file)
>>> flagged = negative_accumulation_values(ds.pr)

xclim.core.dataflags.outside_n_standard_deviations_of_climatology(da: DataArray, *, n: int,
window: int = 5)→
DataArray

Check if any daily value is outside n standard deviations from the day of year mean.

Parameters
• da (xarray.DataArray) – The DataArray being examined.

• n (int) – Number of standard deviations.

• window (int) – Moving window used to determining climatological mean. Default: 5.

Returns
xarray.DataArray, [bool]

Notes

A moving window of 5 days is suggested for tas data flag calculations according to ICCLIM data quality standards.

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import outside_n_standard_deviations_of_climatology
>>> ds = xr.open_dataset(path_to_tas_file)
>>> std_devs = 5
>>> average_over = 5
>>> flagged = outside_n_standard_deviations_of_climatology(
... ds.tas, n=std_devs, window=average_over
...)

References

Project team ECA&D and KNMI [2013]

xclim.core.dataflags.percentage_values_outside_of_bounds(da: DataArray)→ DataArray
Check if variable values fall below 0% or rise above 100% for any given day.

Parameters
da (xarray.DataArray)

Returns
xarray.DataArray, [bool]

624 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import percentage_values_outside_of_bounds
>>> flagged = percentage_values_outside_of_bounds(huss_dataset)

xclim.core.dataflags.register_methods(func)
Summarize all methods used in dataflags checks.

xclim.core.dataflags.tas_below_tasmin(tas: DataArray, tasmin: DataArray)→ DataArray
Check if tas values are below tasmin values for any given day.

Parameters
• tas (xarray.DataArray)

• tasmin (xarray.DataArray)

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import tas_below_tasmin
>>> ds = xr.open_dataset(path_to_tas_file)
>>> flagged = tas_below_tasmin(ds.tas, ds.tasmin)

xclim.core.dataflags.tas_exceeds_tasmax(tas: DataArray, tasmax: DataArray)→ DataArray
Check if tas values tasmax values for any given day.

Parameters
• tas (xarray.DataArray)

• tasmax (xarray.DataArray)

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import tas_exceeds_tasmax
>>> ds = xr.open_dataset(path_to_tas_file)
>>> flagged = tas_exceeds_tasmax(ds.tas, ds.tasmax)

xclim.core.dataflags.tasmax_below_tasmin(tasmax: DataArray, tasmin: DataArray)→ DataArray
Check if tasmax values are below tasmin values for any given day.

Parameters
• tasmax (xarray.DataArray)

• tasmin (xarray.DataArray)

16.1. xclim package 625

xclim Documentation, Release 0.39.0

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import tasmax_below_tasmin
>>> ds = xr.open_dataset(path_to_tas_file)
>>> flagged = tasmax_below_tasmin(ds.tasmax, ds.tasmin)

xclim.core.dataflags.temperature_extremely_high(da: DataArray, *, thresh: str = '60 degC')→
DataArray

Check if temperatures values exceed 60 degrees Celsius for any given day.

Parameters
• da (xarray.DataArray)

• thresh (str)

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import temperature_extremely_high
>>> ds = xr.open_dataset(path_to_tas_file)
>>> temperature = "60 degC"
>>> flagged = temperature_extremely_high(ds.tas, thresh=temperature)

xclim.core.dataflags.temperature_extremely_low(da: DataArray, *, thresh: str = '-90 degC')→
DataArray

Check if temperatures values are below -90 degrees Celsius for any given day.

Parameters
• da (xarray.DataArray)

• thresh (str)

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import temperature_extremely_low
>>> ds = xr.open_dataset(path_to_tas_file)
>>> temperature = "-90 degC"
>>> flagged = temperature_extremely_low(ds.tas, thresh=temperature)

626 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.core.dataflags.values_op_thresh_repeating_for_n_or_more_days(da: DataArray, *, n: int,
thresh: str, op: str = '==')
→ DataArray

Check if array values repeat at a given threshold for N or more days.

Parameters
• da (xarray.DataArray) – The DataArray being examined.

• n (int) – Number of days needed to trigger flag.

• thresh (str) – Repeating values to search for that will trigger flag.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Operator
used for comparison with thresh.

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import values_op_thresh_repeating_for_n_or_more_days
>>> ds = xr.open_dataset(path_to_pr_file)
>>> units = "5 mm d-1"
>>> days = 5
>>> comparison = "eq"
>>> flagged = values_op_thresh_repeating_for_n_or_more_days(
... ds.pr, n=days, thresh=units, op=comparison
...)

xclim.core.dataflags.values_repeating_for_n_or_more_days(da: DataArray, *, n: int)→ DataArray
Check if exact values are found to be repeating for at least 5 or more days.

Parameters
• da (xarray.DataArray) – The DataArray being examined.

• n (int) – Number of days to trigger flag.

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import values_repeating_for_n_or_more_days
>>> ds = xr.open_dataset(path_to_pr_file)
>>> flagged = values_repeating_for_n_or_more_days(ds.pr, n=5)

xclim.core.dataflags.very_large_precipitation_events(da: DataArray, *, thresh='300 mm d-1')→
DataArray

Check if precipitation values exceed 300 mm/day for any given day.

Parameters

16.1. xclim package 627

xclim Documentation, Release 0.39.0

• da (xarray.DataArray) – The DataArray being examined.

• thresh (str) – Threshold to search array for that will trigger flag if any day exceeds value.

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import very_large_precipitation_events
>>> ds = xr.open_dataset(path_to_pr_file)
>>> rate = "300 mm d-1"
>>> flagged = very_large_precipitation_events(ds.pr, thresh=rate)

xclim.core.dataflags.wind_values_outside_of_bounds(da: DataArray, *, lower: str = '0 m s-1', upper:
str = '46 m s-1')→ DataArray

Check if variable values fall below 0% or rise above 100% for any given day.

Parameters
• da (xarray.DataArray) – The DataArray being examined.

• lower (str) – The lower limit for wind speed.

• upper (str) – The upper limit for wind speed.

Returns
xarray.DataArray, [bool]

Examples

To gain access to the flag_array:

>>> from xclim.core.dataflags import wind_values_outside_of_bounds
>>> ceiling, floor = "46 m s-1", "0 m s-1"
>>> flagged = wind_values_outside_of_bounds(
... sfcWind_dataset, upper=ceiling, lower=floor
...)

xclim.core.formatting module

Formatting utilities for indicators

class xclim.core.formatting.AttrFormatter(mapping: Mapping[str, Sequence[str]], modifiers:
Sequence[str])

Bases: Formatter

A formatter for frequently used attribute values.

See the doc of format_field() for more details.

_match_value(value)

628 Chapter 16. xclim

xclim Documentation, Release 0.39.0

format(format_string: str, /, *args: Any, **kwargs: dict)→ str
Format a string.

Parameters
• format_string (str)

• args (Any)

• **kwargs
Returns

str

format_field(value, format_spec)
Format a value given a formatting spec.

If format_spec is in this Formatter’s modifiers, the corresponding variation of value is given. If format_spec
is ‘r’ (raw), the value is returned unmodified. If format_spec is not specified but value is in the mapping,
the first variation is returned.

Examples

Let’s say the string “The dog is {adj1}, the goose is {adj2}” is to be translated to French and that we know
that possible values of adj are nice and evil. In French, the genre of the noun changes the adjective (cat =
chat is masculine, and goose = oie is feminine) so we initialize the formatter as:

>>> fmt = AttrFormatter(
... {
... "nice": ["beau", "belle"],
... "evil": ["méchant", "méchante"],
... "smart": ["intelligent", "intelligente"],
... },
... ["m", "f"],
...)
>>> fmt.format(
... "Le chien est {adj1:m}, l'oie est {adj2:f}, le gecko est {adj3:r}",
... adj1="nice",
... adj2="evil",
... adj3="smart",
...)
"Le chien est beau, l'oie est méchante, le gecko est smart"

The base values may be given using unix shell-like patterns:

>>> fmt = AttrFormatter(
... {"AS-*": ["annuel", "annuelle"], "MS": ["mensuel", "mensuelle"]},
... ["m", "f"],
...)
>>> fmt.format(
... "La moyenne {freq:f} est faite sur un échantillon {src_timestep:m}",
... freq="AS-JUL",
... src_timestep="MS",
...)
'La moyenne annuelle est faite sur un échantillon mensuel'

16.1. xclim package 629

xclim Documentation, Release 0.39.0

xclim.core.formatting._gen_parameters_section(parameters: Mapping, allowed_periods:
Optional[list[str]] = None)

Generate the “parameters” section of the indicator docstring.

Parameters
• parameters (mapping) – Parameters dictionary (Ind.parameters).

• allowed_periods (List[str], optional) – Restrict parameters to specific periods. Default:
None.

xclim.core.formatting._gen_returns_section(cf_attrs: Sequence[dict[str, Any]])
Generate the “Returns” section of an indicator’s docstring.

Parameters
cf_attrs (Sequence[Dict[str, Any]]) – The list of attributes, usually Indicator.cf_attrs.

xclim.core.formatting._parse_parameters(section)
Parse the ‘parameters’ section of a docstring into a dictionary mapping the parameter name to its description
and, potentially, to its set of choices.

The type annotation are not parsed, except for fixed sets of values (listed as “{‘a’, ‘b’, ‘c’}”). The annotation
parsing only accepts strings, numbers, None and nan (to represent numpy.nan).

xclim.core.formatting._parse_returns(section)
Parse the returns section of a docstring into a dictionary mapping the parameter name to its description.

xclim.core.formatting.gen_call_string(funcname: str, *args, **kwargs)
Generate a signature string for use in the history attribute.

DataArrays and Dataset are replaced with their name, while Nones, floats, ints and strings are printed directly.
All other objects have their type printed between < >.

Arguments given through positional arguments are printed positionnally and those given through keywords are
printed prefixed by their name.

Parameters
• funcname (str) – Name of the function

• args, kwargs – Arguments given to the function.

Example

>>> A = xr.DataArray([1], dims=("x",), name="A")
>>> gen_call_string("func", A, b=2.0, c="3", d=[10] * 100)
"func(A, b=2.0, c='3', d=<list>)"

xclim.core.formatting.generate_indicator_docstring(ind)→ str
Generate an indicator’s docstring from keywords.

Parameters
ind (Indicator instance)

Returns
str

630 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.core.formatting.get_percentile_metadata(data: DataArray, prefix: str)→ dict[str, str]
Get the metadata related to percentiles from the given DataArray as a dictionary.

Parameters
• data (xr.DataArray) – Must be compatible with PercentileDataArray, this means the neces-

sary metadata must be available in its attributes and coordinates.

• prefix (str) – The prefix to be used in the metadata key. Usually this takes the form of
“tasmin_per” or equivalent.

Returns
dict – A mapping of the configuration used to compute these percentiles.

xclim.core.formatting.merge_attributes(attribute: str, *inputs_list: xarray.DataArray | xarray.Dataset,
new_line: str = '\n', missing_str: Optional[str] = None,
**inputs_kws: xarray.DataArray | xarray.Dataset)

Merge attributes from several DataArrays or Datasets.

If more than one input is given, its name (if available) is prepended as: “<input name> : <input attribute>”.

Parameters
• attribute (str) – The attribute to merge.

• inputs_list (xr.DataArray or xr.Dataset) – The datasets or variables that were used to pro-
duce the new object. Inputs given that way will be prefixed by their name attribute if avail-
able.

• new_line (str) – The character to put between each instance of the attributes. Usually, in
CF-conventions, the history attributes uses ‘\n’ while cell_methods uses ‘ ‘.

• missing_str (str) – A string that is printed if an input doesn’t have the attribute. Defaults to
None, in which case the input is simply skipped.

• **inputs_kws (xr.DataArray or xr.Dataset) – Mapping from names to the datasets or vari-
ables that were used to produce the new object. Inputs given that way will be prefixes by the
passed name.

Returns
str – The new attribute made from the combination of the ones from all the inputs.

xclim.core.formatting.parse_doc(doc: str)→ dict[str, str]
Crude regex parsing reading an indice docstring and extracting information needed in indicator construction.

The appropriate docstring syntax is detailed in Defining new indices.

Parameters
doc (str) – The docstring of an indice function.

Returns
dict – A dictionary with all parsed sections.

xclim.core.formatting.prefix_attrs(source: dict, keys: Sequence, prefix: str)
Rename some keys of a dictionary by adding a prefix.

Parameters
• source (dict) – Source dictionary, for example data attributes.

• keys (sequence) – Names of keys to prefix.

• prefix (str) – Prefix to prepend to keys.

16.1. xclim package 631

xclim Documentation, Release 0.39.0

Returns
dict – Dictionary of attributes with some keys prefixed.

xclim.core.formatting.unprefix_attrs(source: dict, keys: Sequence, prefix: str)
Remove prefix from keys in a dictionary.

Parameters
• source (dict) – Source dictionary, for example data attributes.

• keys (sequence) – Names of original keys for which prefix should be removed.

• prefix (str) – Prefix to remove from keys.

Returns
dict – Dictionary of attributes whose keys were prefixed, with prefix removed.

xclim.core.formatting.update_history(hist_str: str, *inputs_list: Sequence[xarray.DataArray |
xarray.Dataset], new_name: Optional[str] = None, **inputs_kws:
Mapping[str, xarray.DataArray | xarray.Dataset])

Return a history string with the timestamped message and the combination of the history of all inputs.

The new history entry is formatted as “[<timestamp>] <new_name>: <hist_str> - xclim version:
<xclim.__version__>.”

Parameters
• hist_str (str) – The string describing what has been done on the data.

• new_name (Optional[str]) – The name of the newly created variable or dataset to prefix
hist_msg.

• inputs_list (Sequence[Union[xr.DataArray, xr.Dataset]]) – The datasets or variables that
were used to produce the new object. Inputs given that way will be prefixed by their “name”
attribute if available.

• inputs_kws (Mapping[str, Union[xr.DataArray, xr.Dataset]]) – Mapping from names to the
datasets or variables that were used to produce the new object. Inputs given that way will be
prefixes by the passed name.

Returns
str – The combine history of all inputs starting with hist_str.

See also:
merge_attributes

xclim.core.formatting.update_xclim_history(func)
Decorator that auto-generates and fills the history attribute.

The history is generated from the signature of the function and added to the first output. Because of a limitation
of the boltons wrapper, all arguments passed to the wrapped function will be printed as keyword arguments.

632 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.core.indicator module

Indicators utilities

The Indicator class wraps indices computations with pre- and post-processing functionality. Prior to computations,
the class runs data and metadata health checks. After computations, the class masks values that should be considered
missing and adds metadata attributes to the object.

There are many ways to construct indicators. A good place to start is this notebook.

Dictionary and YAML parser

To construct indicators dynamically, xclim can also use dictionaries and parse them from YAML files. This is especially
useful for generating whole indicator “submodules” from files. This functionality is inspired by the work of clix-meta.

YAML file structure

Indicator-defining yaml files are structured in the following way. Most entries of the indicators section are mirroring
attributes of the Indicator, please refer to its documentation for more details on each.

module: <module name> # Defaults to the file name
realm: <realm> # If given here, applies to all indicators that do not already provide␣
→˓it.
keywords: <keywords> # Merged with indicator-specific keywords (joined with a space)
references: <references> # Merged with indicator-specific references (joined with a new␣
→˓line)
base: <base indicator class> # Defaults to "Daily" and applies to all indicators that␣
→˓do not give it.
doc: <module docstring> # Defaults to a minimal header, only valid if the module doesn't␣
→˓already exists.
indicators:
<identifier>:
From which Indicator to inherit
base: <base indicator class> # Defaults to module-wide base class

If the name startswith a '.', the base class is taken␣
→˓from the current module (thus an indicator declared _above_)

Available classes are listed in `xclim.core.
→˓indicator.registry` and `xclim.core.indicator.base_registry`.

General metadata, usually parsed from the `compute`'s docstring when possible.
realm: <realm> # defaults to module-wide realm. One of "atmos", "land", "seaIce",

→˓"ocean".
title: <title>
abstract: <abstract>
keywords: <keywords> # Space-separated, merged to module-wide keywords.
references: <references> # newline-seperated, merged to module-wide references.
notes: <notes>

Other options
missing: <missing method name>
missing_options:

(continues on next page)

16.1. xclim package 633

https://github.com/clix-meta/clix-meta/

xclim Documentation, Release 0.39.0

(continued from previous page)

missing options mapping
allowed_periods: [<list>, <of>, <allowed>, <periods>]

Compute function
compute: <function name> # Referring to a function in the supplied `Indices` module,␣

→˓xclim.indices.generic or xclim.indices
input: # When "compute" is a generic function this is a mapping from argument

name to what CMIP6/xclim variable is expected. This will allow for
declaring expected input units and have a CF metadata check on the inputs.
Can also be used to modify the expected variable, as long as it has
the same units. Ex: tas instead of tasmin.

<var name in compute> : <variable official name>
...

parameters:
<param name>: <param data> # Simplest case, to inject parameters in the compute␣

→˓function.
<param name>: # To change parameters metadata or to declare units when "compute"␣

→˓is a generic function.
units: <param units> # Only valid if "compute" points to a generic function
default : <param default>
description: <param description>

...
... # and so on.

All fields are optional. Other fields found in the yaml file will trigger errors in xclim. In the following, the section under
<identifier> is referred to as data. When creating indicators from a dictionary, with Indicator.from_dict(), the
input dict must follow the same structure of data.

The resulting yaml file can be validated using the provided schema (in xclim/data/schema.yml) and the YAMALE tool
[Lopker, 2022]. See the “Extending xclim” notebook for more info.

Inputs

As xclim has strict definitions of possible input variables (see xclim.core.utils.variables), the mapping of
data.input simply links an argument name from the function given in “compute” to one of those official variables.

class xclim.core.indicator.Daily(**kwds)
Bases: ResamplingIndicator

Class for daily inputs and resampling computes.

src_freq = 'D'

class xclim.core.indicator.Hourly(**kwds)
Bases: ResamplingIndicator

Class for hourly inputs and resampling computes.

src_freq = 'H'

class xclim.core.indicator.Indicator(**kwds)
Bases: IndicatorRegistrar

Climate indicator base class.

634 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Climate indicator object that, when called, computes an indicator and assigns its output a number of CF-
compliant attributes. Some of these attributes can be templated, allowing metadata to reflect the value of call
arguments.

Instantiating a new indicator returns an instance but also creates and registers a custom subclass in xclim.core.
indicator.registry.

Attributes in Indicator.cf_attrs will be formatted and added to the output variable(s). This attribute is a list of
dictionaries. For convenience and retro-compatibility, standard CF attributes (names listed in xclim.core.
indicator.Indicator._cf_names) can be passed as strings or list of strings directly to the indicator con-
structor.

A lot of the Indicator’s metadata is parsed from the underlying compute function’s docstring and sig-
nature. Input variables and parameters are listed in xclim.core.indicator.Indicator.parameters,
while parameters that will be injected in the compute function are in xclim.core.indicator.
Indicator.injected_parameters. Both are simply views of xclim.core.indicator.Indicator.
_all_parameters.

Compared to their base compute function, indicators add the possibility of using dataset as input, with the injected
argument ds in the call signature. All arguments that were indicated by the compute function to be variables
(DataArrays) through annotations will be promoted to also accept strings that correspond to variable names in
the ds dataset.

Parameters
• identifier (str) – Unique ID for class registry, should be a valid slug.

• realm ({‘atmos’, ‘seaIce’, ‘land’, ‘ocean’}) – General domain of validity of the indicator.
Indicators created outside xclim.indicators must set this attribute.

• compute (func) – The function computing the indicators. It should return one or more
DataArray.

• cf_attrs (list of dicts) – Attributes to be formatted and added to the computation’s output.
See xclim.core.indicator.Indicator.cf_attrs.

• title (str) – A succinct description of what is in the computed outputs. Parsed from compute
docstring if None (first paragraph).

• abstract (str) – A long description of what is in the computed outputs. Parsed from compute
docstring if None (second paragraph).

• keywords (str) – Comma separated list of keywords. Parsed from compute docstring if None
(from a “Keywords” section).

• references (str) – Published or web-based references that describe the data or methods used
to produce it. Parsed from compute docstring if None (from the “References” section).

• notes (str) – Notes regarding computing function, for example the mathematical formulation.
Parsed from compute docstring if None (form the “Notes” section).

• src_freq (str, sequence of strings, optional) – The expected frequency of the input data. Can
be a list for multiple frequencies, or None if irrelevant.

• context (str) – The pint unit context, for example use ‘hydro’ to allow conversion from kg
m-2 s-1 to mm/day.

16.1. xclim package 635

xclim Documentation, Release 0.39.0

Notes

All subclasses created are available in the registry attribute and can be used to define custom subclasses or parse
all available instances.

_all_parameters: Mapping[str, Parameter] = {}

A dictionary mapping metadata about the input parameters to the indicator.

Keys are the arguments of the “compute” function. All parameters are listed, even those “injected”, absent
from the indicator’s call signature. All are instances of xclim.core.indicator.Parameter.

_assign_named_args(ba)
Assign inputs passed as strings from ds.

_bind_call(func, **das)
Call function using __call__ DataArray arguments.

This will try to bind keyword arguments to func arguments. If this fails, func is called with positional
arguments only.

Notes

This method is used to support two main use cases.

In use case #1, we have two compute functions with arguments in a different order:
func1(tasmin, tasmax) and func2(tasmax, tasmin)

In use case #2, we have two compute functions with arguments that have different names:
generic_func(da) and custom_func(tas)

For each case, we want to define a single cfcheck and datacheck methods that will work with both compute
functions.

Passing a dictionary of arguments will solve #1, but not #2.

_cf_names = ['var_name', 'standard_name', 'long_name', 'units', 'cell_methods',
'description', 'comment']

static _check_identifier(identifier: str)→ None
Verify that the identifier is a proper slug.

classmethod _ensure_correct_parameters(parameters)
Ensure the parameters are correctly set and ordered.

Sets the correct variable default to be sure.

classmethod _format(attrs: dict, args: ~typing.Optional[dict] = None, formatter:
~xclim.core.formatting.AttrFormatter = <xclim.core.formatting.AttrFormatter
object>)→ dict

Format attributes including {} tags with arguments.

Parameters
• attrs (dict) – Attributes containing tags to replace with arguments’ values.

• args (dict, optional) – Function call arguments. If not given, the default arguments will be
used when formatting the attributes.

• formatter (AttrFormatter) – Plaintext mappings for indicator attributes.

636 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Returns
dict

_funcs = ['compute']

_gen_signature()

Generate the correct signature.

classmethod _get_translated_metadata(locale, var_id=None, names=None,
append_locale_name=True)

Get raw translated metadata for the current indicator and a given locale.

All available translated metadata from the current indicator and those it is based on are merged, with the
highest priority set to the current one.

_history_string(**kwargs)

classmethod _injected_parameters()

Create a list of tuples for arguments to inject, (name, Parameter).

static _parse_indice(compute, passed_parameters)
Parse the compute function.

• Metadata is extracted from the docstring

• Parameters are parsed from the docstring (description, choices), decorator (units), signature (kind,
default)

‘passed_parameters’ is only needed when compute is a generic function (not decorated by declare_units)
and it takes a string parameter. In that case we need to check if that parameter has units (which have been
passed explicitly).

classmethod _parse_output_attrs(kwds: dict[str, Any], identifier: str)→ list[dict[str, Union[str,
Callable]]]

CF-compliant metadata attributes for all output variables.

classmethod _parse_var_mapping(variable_mapping, parameters, kwds)
Parse the variable mapping passed in input and update parameters in-place.

_parse_variables_from_call(args, kwds)
Extract variable and optional variables from call arguments.

_postprocess(outs, das, params)
Actions to done after computing.

_preprocess_and_checks(das, params)
Actions to be done after parsing the arguments and before computing.

_show_deprecation_warning()

_text_fields = ['long_name', 'description', 'comment']

_update_attrs(args, das, attrs, var_id=None, names=None)
Format attributes with the run-time values of compute call parameters.

Cell methods and history attributes are updated, adding to existing values. The language of the string is
taken from the OPTIONS configuration dictionary.

Parameters
• args (Mapping[str, Any]) – Keyword arguments of the compute call.

16.1. xclim package 637

xclim Documentation, Release 0.39.0

• das (Mapping[str, DataArray]) – Input arrays.

• attrs (Mapping[str, str]) – The attributes to format and update.

• var_id (str) – The identifier to use when requesting the attributes translations. Defaults
to the class name (for the translations) or the identifier field of the class (for the history
attribute). If given, the identifier will be converted to uppercase to get the translation at-
tributes. This is meant for multi-outputs indicators.

• names (Sequence[str]) – List of attribute names for which to get a translation.

Returns
dict – Attributes with {} expressions replaced by call argument values. With updated
cell_methods and history. cell_methods is not added if names is given and those not con-
tain cell_methods.

classmethod _update_parameters(parameters, passed)
Update parameters with the ones passed.

_variable_mapping = {}

_version_deprecated = ''

abstract = ''

cf_attrs: Sequence[Mapping[str, Any]] = None

A list of metadata information for each output of the indicator.

It minimally contains a “var_name” entry, and may contain : “standard_name”, “long_name”, “units”,
“cell_methods”, “description” and “comment” on official xclim indicators. Other fields could also be
present if the indicator was created from outside xclim.

var_name:
Output variable(s) name(s). For derived single-output indicators, this field is not inherited from the
parent indicator and defaults to the identifier.

standard_name:
Variable name, must be in the CF standard names table (this is not checked).

long_name:
Descriptive variable name. Parsed from compute docstring if not given. (first line after the output
dtype, only works on single output function).

units:
Representative units of the physical quantity.

cell_methods:
List of blank-separated words of the form “name: method”. Must respect the CF-conventions and
vocabulary (not checked).

description:
Sentence(s) meant to clarify the qualifiers of the fundamental quantities, such as which surface a quan-
tity is defined on or what the flux sign conventions are.

comment:
Miscellaneous information about the data or methods used to produce it.

cfcheck(**das)
Compare metadata attributes to CF-Convention standards.

638 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Default cfchecks use the specifications in xclim.core.utils.VARIABLES, assuming the indicator’s inputs are
using the CMIP6/xclim variable names correctly. Variables absent from these default specs are silently
ignored.

When subclassing this method, use functions decorated using xclim.core.options.cfcheck.

static compute(*args, **kwds)
Compute the indicator.

This would typically be a function from xclim.indices.

context = 'none'

datacheck(**das)
Verify that input data is valid.

When subclassing this method, use functions decorated using xclim.core.options.datacheck.

For example, checks could include:

• assert no precipitation is negative

• assert no temperature has the same value 5 days in a row

This base datacheck checks that the input data has a valid sampling frequency, as given in self.src_freq. If
there are multiple inputs, it also checks if they all have the same frequency and the same anchor.

classmethod from_dict(data: dict, identifier: str, module: Optional[str] = None)
Create an indicator subclass and instance from a dictionary of parameters.

Most parameters are passed directly as keyword arguments to the class constructor, except:

• “base” : A subclass of Indicator or a name of one listed in xclim.core.indicator.registry or
xclim.core.indicator.base_registry. When passed, it acts as if from_dict was called on that
class instead.

• “compute” : A string function name translates to a xclim.indices.generic or xclim.indices
function.

Parameters
• data (dict) – The exact structure of this dictionary is detailed in the submodule documen-

tation.

• identifier (str) – The name of the subclass and internal indicator name.

• module (str) – The module name of the indicator. This is meant to be used only if the
indicator is part of a dynamically generated submodule, to override the module of the base
class.

identifier = None

property injected_parameters

Return a dictionary of all injected parameters.

Opposite of Indicator.parameters().

json(args=None)
Return a serializable dictionary representation of the class.

Parameters
args (mapping, optional) – Arguments as passed to the call method of the indicator. If not
given, the default arguments will be used when formatting the attributes.

16.1. xclim package 639

xclim Documentation, Release 0.39.0

Notes

This is meant to be used by a third-party library wanting to wrap this class into another interface.

keywords = ''

property n_outs

Return the length of all cf_attrs.

notes = ''

property parameters

Create a dictionary of controllable parameters.

Similar to Indicator._all_parameters, but doesn’t include injected parameters.

realm = None

references = ''

src_freq = None

title = ''

classmethod translate_attrs(locale: Union[str, Sequence[str]], fill_missing: bool = True)
Return a dictionary of unformatted translated translatable attributes.

Translatable attributes are defined in xclim.core.locales.TRANSLATABLE_ATTRS.

Parameters
• locale (str or sequence of str) – The POSIX name of the locale or a tuple of a locale name

and a path to a json file defining the translations. See xclim.locale for details.

• fill_missing (bool) – If True (default) fill the missing attributes by their english values.

class xclim.core.indicator.IndicatorRegistrar

Bases: object

Climate Indicator registering object.

classmethod get_instance()

Return first found instance.

Raises ValueError if no instance exists.

class xclim.core.indicator.Parameter(kind: ~xclim.core.utils.InputKind, default: ~typing.Any, description:
str = '', units: str = <class 'xclim.core.indicator._empty'>, choices:
set = <class 'xclim.core.indicator._empty'>, value: ~typing.Any =
<class 'xclim.core.indicator._empty'>)

Bases: object

Class for storing an indicator’s controllable parameter.

For retrocompatibility, this class implements a “getitem” and a special “contains”.

640 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Example

>>> p = Parameter(InputKind.NUMBER, default=2, description="A simple number")
>>> p.units is Parameter._empty # has not been set
True
>>> "units" in p # Easier/retrocompatible way to test if units are set
False
>>> p.description
'A simple number'
>>> p["description"] # Same as above, for convenience.
'A simple number'

class _empty

Bases: object

asdict()→ dict
Format indicators as a dictionary.

choices

alias of _empty

default

alias of _empty

description: str = ''

property injected: bool

Indicate whether values are injected.

classmethod is_parameter_dict(other: dict)→ bool
Return whether indicator has a parameter dictionary.

kind: InputKind

units

alias of _empty

update(other: dict)→ None
Update a parameter’s values from a dict.

value

alias of _empty

class xclim.core.indicator.ResamplingIndicator(**kwds)
Bases: Indicator

Indicator that performs a resampling computation.

Compared to the base Indicator, this adds the handling of missing data, and the check of allowed periods.

Parameters
• missing ({any, wmo, pct, at_least_n, skip, from_context}) – The name of the missing value

method. See xclim.core.missing.MissingBase to create new custom methods. If None,
this will be determined by the global configuration (see xclim.set_options). Defaults to
“from_context”.

• missing_options (dict, None) – Arguments to pass to the missing function. If None, this will
be determined by the global configuration.

16.1. xclim package 641

xclim Documentation, Release 0.39.0

• allowed_periods (Sequence[str], optional) – A list of allowed periods, i.e. base parts of
the freq parameter. For example, indicators meant to be computed annually only will have
allowed_periods=[“A”]. None means “any period” or that the indicator doesn’t take a freq
argument.

classmethod _ensure_correct_parameters(parameters)
Ensure the parameters are correctly set and ordered.

Sets the correct variable default to be sure.

_history_string(**kwargs)

_postprocess(outs, das, params)
Masking of missing values.

_preprocess_and_checks(das, params)
Perform parent’s checks and also check if freq is allowed.

allowed_periods = None

missing = 'from_context'

missing_options = None

class xclim.core.indicator.ResamplingIndicatorWithIndexing(**kwds)
Bases: ResamplingIndicator

Resampling indicator that also injects “indexer” kwargs to subset the inputs before computation.

classmethod _injected_parameters()

Create a list of tuples for arguments to inject, (name, Parameter).

_preprocess_and_checks(das: dict[str, xarray.DataArray], params: dict[str, Any])
Perform parent’s checks and also check if freq is allowed.

class xclim.core.indicator._empty

Bases: object

xclim.core.indicator.add_iter_indicators(module)
Create an iterable of loaded indicators.

xclim.core.indicator.build_indicator_module(name: str, objs: Mapping[str, Indicator], doc:
Optional[str] = None)→ module

Create or update a module from imported objects.

The module is inserted as a submodule of xclim.indicators.

Parameters
• name (str) – New module name. If it already exists, the module is extended with the passed

objects, overwriting those with same names.

• objs (dict) – Mapping of the indicators to put in the new module. Keyed by the name they
will take in that module.

• doc (str) – Docstring of the new module. Defaults to a simple header. Invalid if the module
already exists.

Returns
ModuleType – A indicator module built from a mapping of Indicators.

642 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.core.indicator.build_indicator_module_from_yaml(filename: PathLike, name: Optional[str] =
None, indices: Optional[Union[Mapping[str,
Callable], module, PathLike]] = None,
translations: Optional[dict[str, dict |
os.PathLike]] = None, mode: str = 'raise',
encoding: str = 'UTF8')→ module

Build or extend an indicator module from a YAML file.

The module is inserted as a submodule of xclim.indicators. When given only a base filename (no ‘yml’
extension), this tries to find custom indices in a module of the same name (.py) and translations in json files
(.<lang>.json), see Notes.

Parameters
• filename (PathLike) – Path to a YAML file or to the stem of all module files. See Notes for

behaviour when passing a basename only.

• name (str, optional) – The name of the new or existing module, defaults to the basename of
the file. (e.g: atmos.yml -> atmos)

• indices (Mapping of callables or module or path, optional) – A mapping or module of
indice functions or a python file declaring such a file. When creating the indicator, the
name in the index_function field is first sought here, then the indicator class will search in
xclim.indices.generic and finally in xclim.indices.

• translations (Mapping of dicts or path, optional) – Translated metadata for the new indica-
tors. Keys of the mapping must be 2-char language tags. Values can be translations dictio-
naries as defined in Internationalization. They can also be a path to a json file defining the
translations.

• mode ({‘raise’, ‘warn’, ‘ignore’}) – How to deal with broken indice definitions.

• encoding (str) – The encoding used to open the .yaml and .json files. It defaults to UTF-8,
overriding python’s mechanism which is machine dependent.

Returns
ModuleType – A submodule of pym:mod:`xclim.indicators.

Notes

When the given filename has no suffix (usually ‘.yaml’ or ‘.yml’), the function will try to load custom indice
definitions from a file with the same name but with a .py extension. Similarly, it will try to load translations in
*.<lang>.json files, where <lang> is the IETF language tag.

For example. a set of custom indicators could be fully described by the following files:

• example.yml : defining the indicator’s metadata.

• example.py : defining a few indice functions.

• example.fr.json : French translations

• example.tlh.json : Klingon translations.

See also:
xclim.core.indicator, build_module

16.1. xclim package 643

xclim Documentation, Release 0.39.0

xclim.core.locales module

Internationalization

This module defines methods and object to help the internationalization of metadata for climate indicators computed
by xclim. Go to Adding translated metadata to see how to use this feature.

All the methods and objects in this module use localization data given in json files. These files are expected to be
defined as in this example for french:

{
"attrs_mapping": {

"modifiers": ["", "f", "mpl", "fpl"],
"YS": ["annuel", "annuelle", "annuels", "annuelles"],
"AS-*": ["annuel", "annuelle", "annuels", "annuelles"],
... and so on for other frequent parameters translation...

},
"DTRVAR": {

"long_name": "Variabilité de l'amplitude de la température diurne",
"description": "Variabilité {freq:f} de l'amplitude de la température diurne␣

→˓(définie comme la moyenne de la variation journalière de l'amplitude de température␣
→˓sur une période donnée)",

"title": "Variation quotidienne absolue moyenne de l'amplitude de la température␣
→˓diurne",

"comment": "",
"abstract": "La valeur absolue de la moyenne de l'amplitude de la température␣

→˓diurne.",
},
... and so on for other indicators...

}

Indicators are named by subclass identifier, the same as in the indicator registry (xclim.core.indicators.registry),
but which can differ from the callable name. In this case, the indicator is called through at-
mos.daily_temperature_range_variability, but its identifier is DTRVAR. Use the ind.__class__.__name__ accessor to
get its registry name.

Here, the usual parameter passed to the formatting of “description” is “freq” and is usually translated from “YS” to
“annual”. However, in french and in this sentence, the feminine form should be used, so the “f” modifier is added by
the translator so that the formatting function knows which translation to use. Acceptable entries for the mappings are
limited to what is already defined in xclim.core.indicators.utils.default_formatter.

For user-provided internationalization dictionaries, only the “attrs_mapping” and its “modifiers” key are mandatory, all
other entries (translations of frequent parameters and all indicator entries) are optional. For xclim-provided translations
(for now only French), all indicators must have en entry and the “attrs_mapping” entries must match exactly the default
formatter. Those default translations are found in the xclim/locales folder.

xclim.core.locales.TRANSLATABLE_ATTRS = ['long_name', 'description', 'comment', 'title',
'abstract', 'keywords']

List of attributes to consider translatable when generating locale dictionaries.

exception xclim.core.locales.UnavailableLocaleError(locale)
Bases: ValueError

Error raised when a locale is requested but doesn’t exist.

644 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.core.locales._valid_locales(locales)
Check if the locales are valid.

xclim.core.locales.generate_local_dict(locale: str, init_english: bool = False)→ dict
Generate a dictionary with keys for each indicator and translatable attributes.

Parameters
• locale (str) – Locale in the IETF format

• init_english (bool) – If True, fills the initial dictionary with the english versions of the at-
tributes. Defaults to False.

xclim.core.locales.get_local_attrs(indicator: Union[str, Sequence[str]], *locales: Union[str,
Sequence[str], tuple[str, dict]], names: Optional[Sequence[str]] =
None, append_locale_name: bool = True)→ dict

Get all attributes of an indicator in the requested locales.

Parameters
• indicator (str or sequence of strings) – Indicator’s class name, usually the same as in

xc.core.indicator.registry. If multiple names are passed, the attrs from each indicator are
merged, with the highest priority set to the first name.

• locales (str or tuple of str) – IETF language tag or a tuple of the language tag and a translation
dict, or a tuple of the language tag and a path to a json file defining translation of attributes.

• names (sequence of str, optional) – If given, only returns translations of attributes in this list.

• append_locale_name (bool) – If True (default), append the language tag (as
“{attr_name}_{locale}”) to the returned attributes.

Raises
ValueError – If append_locale_name is False and multiple locales are requested.

Returns
dict – All CF attributes available for given indicator and locales. Warns and returns an empty
dict if none were available.

xclim.core.locales.get_local_dict(locale: Union[str, Sequence[str], tuple[str, dict]])→ tuple[str, dict]
Return all translated metadata for a given locale.

Parameters
locale (str or sequence of str) – IETF language tag or a tuple of the language tag and a translation
dict, or a tuple of the language tag and a path to a json file defining translation of attributes.

Raises
UnavailableLocaleError – If the given locale is not available.

Returns
• str – The best fitting locale string

• dict – The available translations in this locale.

xclim.core.locales.get_local_formatter(locale: Union[str, Sequence[str], tuple[str, dict]])→
AttrFormatter

Return an AttrFormatter instance for the given locale.

Parameters
locale (str or tuple of str) – IETF language tag or a tuple of the language tag and a translation
dict, or a tuple of the language tag and a path to a json file defining translation of attributes.

16.1. xclim package 645

xclim Documentation, Release 0.39.0

xclim.core.locales.list_locales()

List of loaded locales. Includes all loaded locales, no matter how complete the translations are.

xclim.core.locales.load_locale(locdata: Union[str, Path, Mapping[str, dict]], locale: str)
Load translations from a json file into xclim.

Parameters
• locdata (str or dictionary) – Either a loaded locale dictionary or a path to a json file.

• locale (str) – The locale name (IETF tag).

xclim.core.locales.read_locale_file(filename, module: Optional[str] = None, encoding: str = 'UTF8')→
dict

Read a locale file (.json) and return its dictionary.

Parameters
• filename (PathLike) – The file to read.

• module (str, optional) – If module is a string, this module name is added to all identifiers
translated in this file. Defaults to None, and no module name is added (as if the indicator
was an official xclim indicator).

• encoding (str) – The encoding to use when reading the file. Defaults to UTF-8, overriding
python’s default mechanism which is machine dependent.

xclim.core.missing module

Missing values identification

Indicators may use different criteria to determine whether a computed indicator value should be considered missing. In
some cases, the presence of any missing value in the input time series should result in a missing indicator value for that
period. In other cases, a minimum number of valid values or a percentage of missing values should be enforced. The
World Meteorological Organisation (WMO) suggests criteria based on the number of consecutive and overall missing
values per month.

xclim has a registry of missing value detection algorithms that can be extended by users to customize the behavior of
indicators. Once registered, algorithms can be used within indicators by setting the missing attribute of an Indicator
subclass. By default, xclim registers the following algorithms:

• any: A result is missing if any input value is missing.

• at_least_n: A result is missing if less than a given number of valid values are present.

• pct: A result is missing if more than a given fraction of values are missing.

• wmo: A result is missing if 11 days are missing, or 5 consecutive values are missing in a month.

• skip: Skip missing value detection.

• from_context: Look-up the missing value algorithm from options settings. See xclim.set_options().

To define another missing value algorithm, subclass MissingBase and decorate it with xclim.core.options.
register_missing_method().

xclim.core.missing.at_least_n_valid(da, freq, n=1, src_timestep=None, **indexer)
Return whether there are at least a given number of valid values.

Parameters
• da (xr.DataArray) – Input array.

646 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

• n (int) – Minimum of valid values required.

• src_timestep ({“D”, “H”}) – Expected input frequency.

• indexer ({dim: indexer, }, optional) – Time attribute and values over which to subset the
array. For example, use season=’DJF’ to select winter values, month=1 to select January, or
month=[6,7,8] to select summer months. If not indexer is given, all values are considered.

Returns
xr.DataArray – A boolean array set to True if period has missing values.

xclim.core.missing.missing_any(da, freq, src_timestep=None, **indexer)
Return whether there are missing days in the array.

Variables
• da (xr.DataArray) – Input array.

• freq (str) – Resampling frequency.

• src_timestep ({"D", "H", "M"}) – Expected input frequency.

• indexer ({dim: indexer, }, optional) – Time attribute and values over which to sub-
set the array. For example, use season=’DJF’ to select winter values, month=1 to select
January, or month=[6,7,8] to select summer months. If not indexer is given, all values are
considered.

Returns
xr.DataArray – A boolean array set to True if period has missing values.

xclim.core.missing.missing_from_context(da, freq, src_timestep=None, **indexer)
Return whether each element of the resampled da should be considered missing according to the currently set
options in xclim.set_options.

See also:
xclim.set_options, xclim.core.options.register_missing_method

xclim.core.missing.missing_pct(da, freq, tolerance, src_timestep=None, **indexer)
Return whether there are more missing days in the array than a given percentage.

Variables
• da (DataArray) – Input array.

• freq (str) – Resampling frequency.

• tolerance (float) – Fraction of missing values that are tolerated [0,1].

• src_timestep ({"D", "H"}) – Expected input frequency.

• indexer ({dim: indexer, }, optional) – Time attribute and values over which to sub-
set the array. For example, use season=’DJF’ to select winter values, month=1 to select
January, or month=[6,7,8] to select summer months. If not indexer is given, all values are
considered.

Returns
xr.DataArray – A boolean array set to True if period has missing values.

16.1. xclim package 647

xclim Documentation, Release 0.39.0

xclim.core.missing.missing_wmo(da, freq, nm=11, nc=5, src_timestep=None, **indexer)
Return whether a series fails WMO criteria for missing days.

The World Meteorological Organisation recommends that where monthly means are computed from daily values,
it should be considered missing if either of these two criteria are met:

– observations are missing for 11 or more days during the month; – observations are missing for a
period of 5 or more consecutive days during the month.

Stricter criteria are sometimes used in practice, with a tolerance of 5 missing values or 3 consecutive missing
values.

Variables
• da (DataArray) – Input array.

• freq (str) – Resampling frequency.

• nm (int) – Number of missing values per month that should not be exceeded.

• nc (int) – Number of consecutive missing values per month that should not be exceeded.

• src_timestep ({"D"}) – Expected input frequency. Only daily values are supported.

• indexer ({dim: indexer, }, optional) – Time attribute and values over which to sub-
set the array. For example, use season=’DJF’ to select winter Time attribute and values over
which to subset the array. For example, use season=’DJF’ to select winter values, month=1
to select January, or month=[6,7,8] to select summer months. If not indexer is given, all
values are considered.

Returns
xr.DataArray – A boolean array set to True if period has missing values.

Notes

If used at frequencies larger than a month, for example on an annual or seasonal basis, the function will return
True if any month within a period is missing.

xclim.core.missing.register_missing_method(name: str)→ Callable
Register missing method.

xclim.core.options module

Options submodule

Global or contextual options for xclim, similar to xarray.set_options.

xclim.core.options._run_check(func, option, *args, **kwargs)
Run function and customize exception handling based on option.

xclim.core.options._set_metadata_locales(locales)

xclim.core.options._set_missing_options(mopts)

xclim.core.options._valid_missing_options(mopts)

648 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.core.options.cfcheck(func: Callable)→ Callable
Decorate functions checking CF-compliance of DataArray attributes.

Functions should raise ValidationError exceptions whenever attributes are non-conformant.

xclim.core.options.datacheck(func: Callable)→ Callable
Decorate functions checking data inputs validity.

xclim.core.options.register_missing_method(name: str)→ Callable
Register missing method.

class xclim.core.options.set_options(**kwargs)
Bases: object

Set options for xclim in a controlled context.

Variables
• metadata_locales (list[Any]) – List of IETF language tags or tuples of language tags

and a translation dict, or tuples of language tags and a path to a json file defining translation
of attributes. Default: [].

• data_validation ({"log", "raise", "error"}) – Whether to “log”, “raise” an error
or ‘warn’ the user on inputs that fail the data checks in xclim.core.datachecks(). De-
fault: "raise".

• cf_compliance ({"log", "raise", "error"}) – Whether to “log”, “raise” an error or
“warn” the user on inputs that fail the CF compliance checks in xclim.core.cfchecks().
Default: "warn".

• check_missing ({"any", "wmo", "pct", "at_least_n", "skip"}) – How to check
for missing data and flag computed indicators. Available methods are “any”, “wmo”,
“pct”, “at_least_n” and “skip”. Missing method can be registered through the
xclim.core.options.register_missing_method decorator. Default: "any"

• missing_options (dict) – Dictionary of options to pass to the missing method. Keys must
the name of missing method and values must be mappings from option names to values.

• run_length_ufunc (str) – Whether to use the 1D ufunc version of run length algorithms
or the dask-ready broadcasting version. Default is "auto", which means the latter is used
for dask-backed and large arrays.

• sdba_extra_output (bool) – Whether to add diagnostic variables to outputs of sdba’s
train, adjust and processing operations. Details about these additional variables are given
in the object’s docstring. When activated, adjust will return a Dataset with scen and those
extra diagnostics For processing functions, see the doc, the output type might change, or not
depending on the algorithm. Default: False.

• sdba_encode_cf (bool) – Whether to encode cf coordinates in the map_blocks optimiza-
tion that most adjustment methods are based on. This should have no impact on the results,
but should run much faster in the graph creation phase.

• keep_attrs (bool or str) – Controls attributes handling in indicators. If True, attributes
from all inputs are merged using the drop_conflicts strategy and then updated with xclim-
provided attributes. If False, attributes from the inputs are ignored. If “xarray”, xclim will
use xarray’s keep_attrs option. Note that xarray’s “default” is equivalent to False. Default:
"xarray".

16.1. xclim package 649

xclim Documentation, Release 0.39.0

Examples

You can use set_options either as a context manager:

>>> import xclim
>>> ds = xr.open_dataset(path_to_tas_file).tas
>>> with xclim.set_options(metadata_locales=["fr"]):
... out = xclim.atmos.tg_mean(ds)
...

Or to set global options:

import xclim

xclim.set_options(missing_options={"pct": {"tolerance": 0.04}})

_update(kwargs)
Update values.

xclim.core.units module

Units handling submodule

Pint is used to define the units UnitRegistry and xclim.units.core defines most unit handling methods.

xclim.core.units.amount2rate(amount: DataArray, dim: str = 'time', out_units: Optional[str] = None)→
DataArray

Convert an amount variable to a rate by dividing by the sampling period length.

If the sampling period length cannot be inferred, the amount values are divided by the duration between their
time coordinate and the next one. The last period is estimated with the duration of the one just before.

This is the inverse operation of rate2amount().

Parameters
• amount (xr.DataArray) – “amount” variable. Ex: Precipitation amount in “mm”.

• dim (str) – The time dimension.

• out_units (str, optional) – Output units to convert to.

Returns
xr.DataArray

xclim.core.units.check_units(val: str | int | float | None, dim: str | None)→ None
Check units for appropriate convention compliance.

xclim.core.units.convert_units_to(source: Union[str, DataArray, Any], target: Union[str, DataArray, Any],
context: Optional[str] = None)→ Union[DataArray, float, int, str, Any]

Convert a mathematical expression into a value with the same units as a DataArray.

Parameters
• source (str or xr.DataArray or Any) – The value to be converted, e.g. ‘4C’ or ‘1 mm/d’.

• target (str or xr.DataArray or Any) – Target array of values to which units must conform.

• context (str, optional) – The unit definition context. Default: None.

650 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Returns
xr.DataArray or float or int or str or Any – The source value converted to target’s units.

xclim.core.units.declare_units(**units_by_name)→ Callable
Create a decorator to check units of function arguments.

The decorator checks that input and output values have units that are compatible with expected dimensions. It
also stores the input units as a ‘in_units’ attribute.

Parameters
units_by_name (Mapping[str, str]) – Mapping from the input parameter names to their units or
dimensionality (“[. . .]”).

Returns
Callable

Examples

In the following function definition:

@declare_units(tas=["temperature"])
def func(tas):

...

The decorator will check that tas has units of temperature (C, K, F).

xclim.core.units.infer_sampling_units(da: DataArray, deffreq: str | None = 'D', dim: str = 'time')→
tuple[int, str]

Infer a multiplier and the units corresponding to one sampling period.

Parameters
• da (xr.DataArray) – A DataArray from which to take coordinate dim.

• deffreq (str, optional) – If no frequency is inferred from da[dim], take this one.

• dim (str) – Dimension from which to infer the frequency.

Raises
ValueError – If the frequency has no exact corresponding units.

Returns
• int – The magnitude (number of base periods per period)

• str – Units as a string, understandable by pint.

xclim.core.units.pint2cfunits(value: Unit)→ str
Return a CF-compliant unit string from a pint unit.

Parameters
value (pint.Unit) – Input unit.

Returns
str – Units following CF-Convention, using symbols.

xclim.core.units.pint_multiply(da: DataArray, q: Any, out_units: Optional[str] = None)
Multiply xarray.DataArray by pint.Quantity.

Parameters
• da (xr.DataArray) – Input array.

16.1. xclim package 651

xclim Documentation, Release 0.39.0

• q (pint.Quantity) – Multiplicative factor.

• out_units (str, optional) – Units the output array should be converted into.

xclim.core.units.rate2amount(rate: DataArray, dim: str = 'time', out_units: Optional[str] = None)→
DataArray

Convert a rate variable to an amount by multiplying by the sampling period length.

If the sampling period length cannot be inferred, the rate values are multiplied by the duration between their time
coordinate and the next one. The last period is estimated with the duration of the one just before.

This is the inverse operation of amount2rate().

Parameters
• rate (xr.DataArray) – “Rate” variable, with units of “amount” per time. Ex: Precipitation

in “mm / d”.

• dim (str) – The time dimension.

• out_units (str, optional) – Output units to convert to.

Returns
xr.DataArray

Examples

The following converts a daily array of precipitation in mm/h to the daily amounts in mm:

>>> time = xr.cftime_range("2001-01-01", freq="D", periods=365)
>>> pr = xr.DataArray(
... [1] * 365, dims=("time",), coords={"time": time}, attrs={"units": "mm/h"}
...)
>>> pram = rate2amount(pr)
>>> pram.units
'mm'
>>> float(pram[0])
24.0

Also works if the time axis is irregular : the rates are assumed constant for the whole period starting on the values
timestamp to the next timestamp:

>>> time = time[[0, 9, 30]] # The time axis is Jan 1st, Jan 10th, Jan 31st
>>> pr = xr.DataArray(
... [1] * 3, dims=("time",), coords={"time": time}, attrs={"units": "mm/h"}
...)
>>> pram = rate2amount(pr)
>>> pram.values
array([216., 504., 504.])

Finally, we can force output units:

>>> pram = rate2amount(pr, out_units="pc") # Get rain amount in parsecs. Why not.
>>> pram.values
array([7.00008327e-18, 1.63335276e-17, 1.63335276e-17])

652 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.core.units.str2pint(val: str)→ Quantity
Convert a string to a pint.Quantity, splitting the magnitude and the units.

Parameters
val (str) – A quantity in the form “[{magnitude}]{units}”, where magnitude can be cast to a
float and units is understood by units2pint.

Returns
pint.Quantity – Magnitude is 1 if no magnitude was present in the string.

xclim.core.units.to_agg_units(out: DataArray, orig: DataArray, op: str, dim: str = 'time')→ DataArray
Set and convert units of an array after an aggregation operation along the sampling dimension (time).

Parameters
• out (xr.DataArray) – The output array of the aggregation operation, no units operation done

yet.

• orig (xr.DataArray) – The original array before the aggregation operation, used to infer the
sampling units and get the variable units.

• op ({‘count’, ‘prod’, ‘delta_prod’}) – The type of aggregation operation performed. The
special “delta_*” ops are used with temperature units needing conversion to their “delta”
counterparts (e.g. degree days)

• dim (str) – The time dimension along which the aggregation was performed.

Returns
xr.DataArray

Examples

Take a daily array of temperature and count number of days above a threshold. to_agg_units will infer the units
from the sampling rate along “time”, so we ensure the final units are correct:

>>> time = xr.cftime_range("2001-01-01", freq="D", periods=365)
>>> tas = xr.DataArray(
... np.arange(365),
... dims=("time",),
... coords={"time": time},
... attrs={"units": "degC"},
...)
>>> cond = tas > 100 # Which days are boiling
>>> Ndays = cond.sum("time") # Number of boiling days
>>> Ndays.attrs.get("units")
None
>>> Ndays = to_agg_units(Ndays, tas, op="count")
>>> Ndays.units
'd'

Similarly, here we compute the total heating degree-days, but we have weekly data:

>>> time = xr.cftime_range("2001-01-01", freq="7D", periods=52)
>>> tas = xr.DataArray(
... np.arange(52) + 10,
... dims=("time",),
... coords={"time": time},

(continues on next page)

16.1. xclim package 653

xclim Documentation, Release 0.39.0

(continued from previous page)

... attrs={"units": "degC"},

...)
>>> degdays = (
... (tas - 16).clip(0).sum("time")
...) # Integral of temperature above a threshold
>>> degdays = to_agg_units(degdays, tas, op="delta_prod")
>>> degdays.units
'week delta_degC'

Which we can always convert to the more common “K days”:

>>> degdays = convert_units_to(degdays, "K days")
>>> degdays.units
'K d'

xclim.core.units.units2pint(value: xarray.DataArray | str | pint.util.Quantity)→ Unit
Return the pint Unit for the DataArray units.

Parameters
value (xr.DataArray or str or pint.Quantity) – Input data array or string representing a unit (with
no magnitude).

Returns
pint.Unit – Units of the data array.

xclim.core.utils module

Miscellaneous indices utilities

Helper functions for the indices computations, indicator construction and other things.

xclim.core.utils.DateStr

Type annotation for strings representing full dates (YYYY-MM-DD), may include time.

alias of str

xclim.core.utils.DayOfYearStr

Type annotation for strings representing dates without a year (MM-DD).

alias of str

class xclim.core.utils.InputKind(value)
Bases: IntEnum

Constants for input parameter kinds.

For use by external parses to determine what kind of data the indicator expects. On the creation of an indicator,
the appropriate constant is stored in xclim.core.indicator.Indicator.parameters. The integer value is
what gets stored in the output of xclim.core.indicator.Indicator.json().

For developers : for each constant, the docstring specifies the annotation a parameter of an indice function
should use in order to be picked up by the indicator constructor. Notice that we are using the annotation format
as described in PEP604/py3.10, i.e. with | indicating an union and without import objects from typing.

654 Chapter 16. xclim

xclim Documentation, Release 0.39.0

BOOL = 9

A boolean flag.

Annotation : bool, may be optional.

DATASET = 70

An xarray dataset.

Developers : as indices only accept DataArrays, this should only be added on the indicator’s constructor.

DATE = 7

A date in the YYYY-MM-DD format, may include a time.

Annotation : xclim.core.utils.DateStr (may be optional).

DAY_OF_YEAR = 6

A date, but without a year, in the MM-DD format.

Annotation : xclim.core.utils.DayOfYearStr (may be optional).

FREQ_STR = 3

A string representing an “offset alias”, as defined by pandas.

See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases . Annotation
: str + freq as the parameter name.

KWARGS = 50

A mapping from argument name to value.

Developers : maps the **kwargs. Please use as little as possible.

NUMBER = 4

A number.

Annotation : int, float and unions thereof, potentially optional.

NUMBER_SEQUENCE = 8

A sequence of numbers

Annotation : Sequence[int], Sequence[float] and unions thereof, may include single int and float,
may be optional.

OPTIONAL_VARIABLE = 1

An optional data variable (DataArray or variable name).

Annotation : xr.DataArray | None. The default should be None.

OTHER_PARAMETER = 99

An object that fits None of the previous kinds.

Developers : This is the fallback kind, it will raise an error in xclim’s unit tests if used.

QUANTITY_STR = 2

A string representing a quantity with units.

Annotation : str + an entry in the xclim.core.units.declare_units() decorator.

STRING = 5

A simple string.

Annotation : str or str | None. In most cases, this kind of parameter makes sense with choices indicated
in the docstring’s version of the annotation with curly braces. See Defining new indices.

16.1. xclim package 655

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases

xclim Documentation, Release 0.39.0

VARIABLE = 0

A data variable (DataArray or variable name).

Annotation : xr.DataArray.

exception xclim.core.utils.MissingVariableError

Bases: ValueError

Error raised when a dataset is passed to an indicator but one of the needed variable is missing.

class xclim.core.utils.PercentileDataArray(data: ~typing.Any = <NA>, coords: ~typ-
ing.Optional[~typing.Union[~typing.Sequence[~typing.Union[~typing.Sequence[~typing.Any],
~pandas.core.indexes.base.Index, ~xarray.DataArray]],
~typing.Mapping[~typing.Any, ~typing.Any]]] = None,
dims: ~typing.Optional[~typing.Union[~typing.Hashable,
~typing.Sequence[~typing.Hashable]]] = None, name:
~typing.Optional[~typing.Hashable] = None, attrs:
~typing.Optional[~typing.Mapping] = None, indexes:
~typing.Optional[dict[typing.Hashable,
xarray.core.indexes.Index]] = None, fastpath: bool = False)

Bases: DataArray

Wrap xarray DataArray for percentiles values.

This class is used internally with its corresponding InputKind to recognize this sort of input and to retrieve from
it the attributes needed to build indicator metadata.

cumprod(dim=None, axis=None, skipna=None, **kwargs)
Apply cumprod along some dimension of PercentileDataArray.

Parameters
• dim (str or sequence of str, optional) – Dimension over which to apply cumprod.

• axis (int or sequence of int, optional) – Axis over which to apply cumprod. Only one of
the ‘dim’ and ‘axis’ arguments can be supplied.

• skipna (bool, optional) – If True, skip missing values (as marked by NaN). By default,
only skips missing values for float dtypes; other dtypes either do not have a sentinel missing
value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).

• keep_attrs (bool, optional) – If True, the attributes (attrs) will be copied from the original
object to the new one. If False (default), the new object will be returned without attributes.

• **kwargs (dict) – Additional keyword arguments passed on to cumprod.

Returns
cumvalue (PercentileDataArray) – New PercentileDataArray object with cumprod applied
to its data along the indicated dimension.

cumsum(dim=None, axis=None, skipna=None, **kwargs)
Apply cumsum along some dimension of PercentileDataArray.

Parameters
• dim (str or sequence of str, optional) – Dimension over which to apply cumsum.

• axis (int or sequence of int, optional) – Axis over which to apply cumsum. Only one of the
‘dim’ and ‘axis’ arguments can be supplied.

656 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• skipna (bool, optional) – If True, skip missing values (as marked by NaN). By default,
only skips missing values for float dtypes; other dtypes either do not have a sentinel missing
value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).

• keep_attrs (bool, optional) – If True, the attributes (attrs) will be copied from the original
object to the new one. If False (default), the new object will be returned without attributes.

• **kwargs (dict) – Additional keyword arguments passed on to cumsum.

Returns
cumvalue (PercentileDataArray) – New PercentileDataArray object with cumsum applied to
its data along the indicated dimension.

classmethod from_da(source: DataArray, climatology_bounds: Optional[list[str]] = None)→
PercentileDataArray

Create a PercentileDataArray from a xarray.DataArray.

Parameters
• source (xr.DataArray) – A DataArray with its content containing percentiles values. It

must also have a coordinate variable percentiles or quantile.

• climatology_bounds (list[str]) – Optional. A List of size two which contains the period on
which the percentiles were computed. See xclim.core.calendar.build_climatology_bounds
to build this list from a DataArray.

Returns
PercentileDataArray – The initial source DataArray but wrap by PercentileDataArray class.
The data is unchanged and only climatology_bounds attributes is overridden if q new value
is given in inputs.

classmethod is_compatible(source: DataArray)→ bool
Evaluate whether PecentileDataArray is conformant with expected fields.

A PercentileDataArray must have climatology_bounds attributes and either a quantile or percentiles coor-
dinate, the window is not mandatory.

item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args (Arguments (variable number and type)) –

• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which element
to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z (Standard Python scalar object) – A copy of the specified element of the array as a suitable
Python scalar

16.1. xclim package 657

xclim Documentation, Release 0.39.0

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array
using Python’s optimized math.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],

[1, 3, 6],
[1, 0, 1]])

>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1

searchsorted(v, side='left', sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted
equivalent function

exception xclim.core.utils.ValidationError

Bases: ValueError

Error raised when input data to an indicator fails the validation tests.

property msg

xclim.core.utils._compute_virtual_index(n: ndarray, quantiles: ndarray, alpha: float, beta: float)
Compute the floating point indexes of an array for the linear interpolation of quantiles.

Based on the approach used by Hyndman and Fan [1996].

Parameters
• n (array_like) – The sample sizes.

• quantiles (array_like) – The quantiles values.

• alpha (float) – A constant used to correct the index computed.

• beta (float) – A constant used to correct the index computed.

658 Chapter 16. xclim

https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html#numpy.searchsorted
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

Notes

alpha and beta values depend on the chosen method (see quantile documentation).

References

Hyndman and Fan [1996]

xclim.core.utils._get_gamma(virtual_indexes: ndarray, previous_indexes: ndarray)
Compute gamma (AKA ‘m’ or ‘weight’) for the linear interpolation of quantiles.

Parameters
• virtual_indexes (array_like) – The indexes where the percentile is supposed to be found in

the sorted sample.

• previous_indexes (array_like) – The floor values of virtual_indexes.

Notes

gamma is usually the fractional part of virtual_indexes but can be modified by the interpolation method.

xclim.core.utils._get_indexes(arr: ndarray, virtual_indexes: ndarray, valid_values_count: ndarray)→
tuple[numpy.ndarray, numpy.ndarray]

Get the valid indexes of arr neighbouring virtual_indexes.

Notes

This is a companion function to linear interpolation of quantiles.

Parameters
• arr (array-like)

• virtual_indexes (array-like)

• valid_values_count (array-like)

Returns
array-like, array-like – A tuple of virtual_indexes neighbouring indexes (previous and next)

xclim.core.utils._linear_interpolation(left: ndarray, right: ndarray, gamma: ndarray)→ ndarray
Compute the linear interpolation weighted by gamma on each point of two same shape arrays.

Parameters
• left (array_like) – Left bound.

• right (array_like) – Right bound.

• gamma (array_like) – The interpolation weight.

Returns
array_like

xclim.core.utils._nan_quantile(arr: ndarray, quantiles: ndarray, axis: int = 0, alpha: float = 1.0, beta:
float = 1.0)→ float | numpy.ndarray

Get the quantiles of the array for the given axis.

A linear interpolation is performed using alpha and beta.

16.1. xclim package 659

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

Notes

By default, alpha == beta == 1 which performs the 7th method of Hyndman and Fan [1996]. with alpha == beta
== 1/3 we get the 8th method.

xclim.core.utils.adapt_clix_meta_yaml(raw: os.PathLike | _io.StringIO | str, adapted: PathLike)
Read in a clix-meta yaml representation and refactor it to fit xclim’s yaml specifications.

xclim.core.utils.calc_perc(arr: ndarray, percentiles: Optional[Sequence[float]] = None, alpha: float = 1.0,
beta: float = 1.0, copy: bool = True)→ ndarray

Compute percentiles using nan_calc_percentiles and move the percentiles’ axis to the end.

xclim.core.utils.ensure_chunk_size(da: DataArray, **minchunks: Mapping[str, int])→ DataArray
Ensure that the input DataArray has chunks of at least the given size.

If only one chunk is too small, it is merged with an adjacent chunk. If many chunks are too small, they are
grouped together by merging adjacent chunks.

Parameters
• da (xr.DataArray) – The input DataArray, with or without the dask backend. Does nothing

when passed a non-dask array.

• **minchunks (Mapping[str, int]) – A kwarg mapping from dimension name to minimum
chunk size. Pass -1 to force a single chunk along that dimension.

Returns
xr.DataArray

xclim.core.utils.infer_kind_from_parameter(param: Parameter, has_units: bool = False)→ InputKind
Return the appropriate InputKind constant from an inspect.Parameter object.

The correspondence between parameters and kinds is documented in xclim.core.utils.InputKind . The
only information not inferable through the inspect object is whether the parameter has been assigned units through
the xclim.core.units.declare_units() decorator. That can be given with the has_units flag.

xclim.core.utils.load_module(path: PathLike, name: Optional[str] = None)
Load a python module from a python file, optionally changing its name.

Examples

Given a path to a module file (.py):

from pathlib import Path
import os

path = Path("path/to/example.py")

The two following imports are equivalent, the second uses this method.

os.chdir(path.parent)
import example as mod1 # noqa

os.chdir(previous_working_dir)
mod2 = load_module(path)
mod1 == mod2

660 Chapter 16. xclim

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

xclim.core.utils.nan_calc_percentiles(arr: ndarray, percentiles: Optional[Sequence[float]] = None,
axis=-1, alpha=1.0, beta=1.0, copy=True)→ ndarray

Convert the percentiles to quantiles and compute them using _nan_quantile.

xclim.core.utils.raise_warn_or_log(err: Exception, mode: str, msg: ~typing.Optional[str] = None,
err_type: type = <class 'ValueError'>, stacklevel: int = 1)

Raise, warn or log an error according.

Parameters
• err (Exception) – An error.

• mode ({‘ignore’, ‘log’, ‘warn’, ‘raise’}) – What to do with the error.

• msg (str, optional) – The string used when logging or warning. Defaults to the msg attr of
the error (if present) or to “Failed with <err>”.

• err_type (type) – The type of error/exception to raise.

• stacklevel (int) – Stacklevel when warning. Relative to the call of this function (1 is added).

xclim.core.utils.uses_dask(da: DataArray)→ bool
Evaluate whether dask is installed and array is loaded as a dask array.

Parameters
da (xr.DataArray)

Returns
bool

xclim.core.utils.walk_map(d: dict, func: Callable)→ dict
Apply a function recursively to values of dictionary.

Parameters
• d (dict) – Input dictionary, possibly nested.

• func (Callable) – Function to apply to dictionary values.

Returns
dict – Dictionary whose values are the output of the given function.

xclim.core.utils.wrapped_partial(func: Callable, suggested: Optional[dict] = None, **fixed)→ Callable
Wrap a function, updating its signature but keeping its docstring.

Parameters
• func (Callable) – The function to be wrapped

• suggested (dict, optional) – Keyword arguments that should have new default values but still
appear in the signature.

• **fixed – Keyword arguments that should be fixed by the wrapped and removed from the
signature.

Returns
Callable

16.1. xclim package 661

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

Examples

>>> from inspect import signature
>>> def func(a, b=1, c=1):
... print(a, b, c)
...
>>> newf = wrapped_partial(func, b=2)
>>> signature(newf)
<Signature (a, *, c=1)>
>>> newf(1)
1 2 1
>>> newf = wrapped_partial(func, suggested=dict(c=2), b=2)
>>> signature(newf)
<Signature (a, *, c=2)>
>>> newf(1)
1 2 2

xclim.data package

JSON and YAML definitions for virtual modules and internationalisation support.

xclim.ensembles package

Ensemble tools.

This submodule defines some useful methods for dealing with ensembles of climate simulations. In xclim, an “ensem-
ble” is a Dataset or a DataArray where multiple climate realizations or models are concatenated along the realization
dimension.

Submodules

xclim.ensembles._base module

Ensembles Creation and Statistics

xclim.ensembles._base._ens_align_datasets(datasets: list[xarray.Dataset | pathlib.Path | str |
list[pathlib.Path | str]] | str, mf_flag: bool = False,
resample_freq: Optional[str] = None, calendar: str =
'default', cal_kwargs: Optional[dict] = None, **xr_kwargs)
→ list[xarray.Dataset]

Create a list of aligned xarray Datasets for ensemble Dataset creation.

Parameters
• datasets (list[xr.Dataset | xr.DataArray | Path | str | list[Path | str]] or str) – List of netcdf

file paths or xarray Dataset/DataArray objects . If mf_flag is True, ‘datasets’ should be
a list of lists where each sublist contains input NetCDF files of a xarray multi-file Dataset.
DataArrays should have a name, so they can be converted to datasets. If a string, it is assumed
to be a glob pattern for finding datasets.

• mf_flag (bool) – If True climate simulations are treated as xarray multi-file datasets before
concatenation. Only applicable when ‘datasets’ is a sequence of file paths.

662 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• resample_freq (str, optional) – If the members of the ensemble have the same frequency
but not the same offset, they cannot be properly aligned. If resample_freq is set, the time
coordinate of each member will be modified to fit this frequency.

• calendar (str) – The calendar of the time coordinate of the ensemble. For conversions
involving ‘360_day’, the align_on=’date’ option is used. See xclim.core.calendar.
convert_calendar(). ‘default’ is the standard calendar using np.datetime64 objects.

• **xr_kwargs – Any keyword arguments to be given to xarray when opening the files.

Returns
list[xr.Dataset]

xclim.ensembles._base.create_ensemble(datasets: Any, mf_flag: bool = False, resample_freq: Optional[str]
= None, calendar: Optional[str] = None, realizations:
Optional[Sequence[Any]] = None, cal_kwargs: Optional[dict] =
None, **xr_kwargs)→ Dataset

Create an xarray dataset of an ensemble of climate simulation from a list of netcdf files.

Input data is concatenated along a newly created data dimension (‘realization’). Returns an xarray dataset object
containing input data from the list of netcdf files concatenated along a new dimension (name:’realization’). In the
case where input files have unequal time dimensions, the output ensemble Dataset is created for maximum time-
step interval of all input files. Before concatenation, datasets not covering the entire time span have their data
padded with NaN values. Dataset and variable attributes of the first dataset are copied to the resulting dataset.

Parameters
• datasets (list or dict or string) – List of netcdf file paths or xarray Dataset/DataArray objects

. If mf_flag is True, ncfiles should be a list of lists where each sublist contains input .nc files
of an xarray multifile Dataset. If DataArray objects are passed, they should have a name in
order to be transformed into Datasets. A dictionary can be passed instead of a list, in which
case the keys are used as coordinates along the new realization axis. If a string is passed, it
is assumed to be a glob pattern for finding datasets.

• mf_flag (bool) – If True, climate simulations are treated as xarray multifile Datasets before
concatenation. Only applicable when “datasets” is sequence of list of file paths.

• resample_freq (Optional[str]) – If the members of the ensemble have the same frequency
but not the same offset, they cannot be properly aligned. If resample_freq is set, the time
coordinate of each member will be modified to fit this frequency.

• calendar (str, optional) – The calendar of the time coordinate of the ensemble. By de-
fault, the smallest common calendar is chosen. For example, a mixed input of “noleap” and
“360_day” will default to “noleap”. ‘default’ is the standard calendar using np.datetime64
objects (xarray’s “standard” with use_cftime=False).

• realizations (sequence, optional) – The coordinate values for the new realization axis. If
None (default), the new axis has a simple integer coordinate. This argument shouldn’t be
used if datasets is a glob pattern as the dataset order is random.

• cal_kwargs (dict, optional) – Additionnal arguments to pass to
py:func:xclim.core.calendar.convert_calendar. For conversions involving ‘360_day’,
the align_on=’date’ option is used by default.

• **xr_kwargs – Any keyword arguments to be given to xr.open_dataset when opening the
files (or to xr.open_mfdataset if mf_flag is True)

Returns
xr.Dataset – Dataset containing concatenated data from all input files.

16.1. xclim package 663

xclim Documentation, Release 0.39.0

Notes

Input netcdf files require equal spatial dimension size (e.g. lon, lat dimensions). If input data contains multiple
cftime calendar types they must be at monthly or coarser frequency.

Examples

from pathlib import Path
from xclim.ensembles import create_ensemble

ens = create_ensemble(temperature_datasets)

Using multifile datasets, through glob patterns.
Simulation 1 is a list of .nc files (e.g. separated by time):
datasets = list(Path("/dir").glob("*.nc"))

Simulation 2 is also a list of .nc files:
datasets.extend(Path("/dir2").glob("*.nc"))
ens = create_ensemble(datasets, mf_flag=True)

xclim.ensembles._base.ensemble_mean_std_max_min(ens: Dataset, weights: Optional[DataArray] = None)
→ Dataset

Calculate ensemble statistics between a results from an ensemble of climate simulations.

Returns an xarray Dataset containing ensemble mean, standard-deviation, minimum and maximum for input
climate simulations.

Parameters
• ens (xr.Dataset) – Ensemble dataset (see xclim.ensembles.create_ensemble).

• weights (xr.DataArray) – Weights to apply along the ‘realization’ dimension. This array
cannot contain missing values.

Returns
xr.Dataset – Dataset with data variables of ensemble statistics.

Examples

from xclim.ensembles import create_ensemble, ensemble_mean_std_max_min

Create the ensemble dataset:
ens = create_ensemble(temperature_datasets)

Calculate ensemble statistics:
ens_mean_std = ensemble_mean_std_max_min(ens)

xclim.ensembles._base.ensemble_percentiles(ens: xarray.Dataset | xarray.DataArray, values:
Optional[Sequence[int]] = None, keep_chunk_size:
Optional[bool] = None, weights: Optional[DataArray] =
None, split: bool = True)→ xarray.DataArray |
xarray.Dataset

Calculate ensemble statistics between a results from an ensemble of climate simulations.

Returns a Dataset containing ensemble percentiles for input climate simulations.

664 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Parameters
• ens (xr.Dataset or xr.DataArray) – Ensemble dataset or dataarray (see

xclim.ensembles.create_ensemble).

• values (Sequence[int], optional) – Percentile values to calculate. Default: (10, 50, 90).

• keep_chunk_size (bool, optional) – For ensembles using dask arrays, all chunks along the
‘realization’ axis are merged. If True, the dataset is rechunked along the dimension with the
largest chunks, so that the chunks keep the same size (approximately). If False, no shrinking
is performed, resulting in much larger chunks. If not defined, the function decides which is
best.

• weights (xr.DataArray) – Weights to apply along the ‘realization’ dimension. This array
cannot contain missing values. When given, the function uses xarray’s quantile method
which is slower than xclim’s NaN-optimized algorithm.

• split (bool) – Whether to split each percentile into a new variable or concatenate the output
along a new “percentiles” dimension.

Returns
xr.Dataset or xr.DataArray – If split is True, same type as ens; dataset otherwise, containing data
variable(s) of requested ensemble statistics

Examples

from xclim.ensembles import create_ensemble, ensemble_percentiles

Create ensemble dataset:
ens = create_ensemble(temperature_datasets)

Calculate default ensemble percentiles:
ens_percs = ensemble_percentiles(ens)

Calculate non-default percentiles (25th and 75th)
ens_percs = ensemble_percentiles(ens, values=(25, 50, 75))

If the original array has many small chunks, it might be more efficient to do:
ens_percs = ensemble_percentiles(ens, keep_chunk_size=False)

xclim.ensembles._reduce module

Ensemble Reduction

Ensemble reduction is the process of selecting a subset of members from an ensemble in order to reduce the volume of
computation needed while still covering a good portion of the simulated climate variability.

xclim.ensembles._reduce._calc_rsq(z, method, make_graph, n_sim, random_state, sample_weights)
Sub-function to kmeans_reduce_ensemble. Calculates r-square profile (r-square versus number of clusters.

xclim.ensembles._reduce._get_nclust(method=None, n_sim=None, rsq=None, max_clusters=None)
Sub-function to kmeans_reduce_ensemble. Determine number of clusters to create depending on various meth-
ods.

16.1. xclim package 665

xclim Documentation, Release 0.39.0

xclim.ensembles._reduce.kkz_reduce_ensemble(data: DataArray, num_select: int, *, dist_method: str =
'euclidean', standardize: bool = True, **cdist_kwargs)→
list

Return a sample of ensemble members using KKZ selection.

The algorithm selects num_select ensemble members spanning the overall range of the ensemble. The selection
is ordered, smaller groups are always subsets of larger ones for given criteria. The first selected member is
the one nearest to the centroid of the ensemble, all subsequent members are selected in a way maximizing the
phase-space coverage of the group. Algorithm taken from Cannon [2015].

Parameters
• data (xr.DataArray) – Selection criteria data : 2-D xr.DataArray with dimensions ‘realiza-

tion’ (N) and ‘criteria’ (P). These are the values used for clustering. Realizations represent
the individual original ensemble members and criteria the variables/indicators used in the
grouping algorithm.

• num_select (int) – The number of members to select.

• dist_method (str) – Any distance metric name accepted by scipy.spatial.distance.cdist.

• standardize (bool) – Whether to standardize the input before running the selection or not.
Standardization consists in translation as to have a zero mean and scaling as to have a unit
standard deviation.

• **cdist_kwargs – All extra arguments are passed as-is to scipy.spatial.distance.cdist, see its
docs for more information.

Returns
list – Selected model indices along the realization dimension.

References

Cannon [2015], Katsavounidis, Jay Kuo, and Zhang [1994]

xclim.ensembles._reduce.kmeans_reduce_ensemble(data: DataArray, *, method: Optional[dict] = None,
make_graph: bool = True, max_clusters: Optional[int]
= None, variable_weights: Optional[ndarray] = None,
model_weights: Optional[ndarray] = None,
sample_weights: Optional[ndarray] = None,
random_state: Optional[Union[int, RandomState]] =
None)→ tuple[list, numpy.ndarray, dict]

Return a sample of ensemble members using k-means clustering.

The algorithm attempts to reduce the total number of ensemble members while maintaining adequate coverage
of the ensemble uncertainty in an N-dimensional data space. K-Means clustering is carried out on the input
selection criteria data-array in order to group individual ensemble members into a reduced number of similar
groups. Subsequently, a single representative simulation is retained from each group.

Parameters
• data (xr.DataArray) – Selecton criteria data : 2-D xr.DataArray with dimensions ‘realiza-

tion’ (N) and ‘criteria’ (P). These are the values used for clustering. Realizations represent
the individual original ensemble members and criteria the variables/indicators used in the
grouping algorithm.

• method (dict) – Dictionary defining selection method and associated value when required.
See Notes.

666 Chapter 16. xclim

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

• max_clusters (int, optional) – Maximum number of members to include in the output ensem-
ble selection. When using ‘rsq_optimize’ or ‘rsq_cutoff’ methods, limit the final selection
to a maximum number even if method results indicate a higher value. Defaults to N.

• variable_weights (np.ndarray, optional) – An array of size P. This weighting can be used to
influence of weight of the climate indices (criteria dimension) on the clustering itself.

• model_weights (np.ndarray, optional) – An array of size N. This weighting can be used
to influence which realization is selected from within each cluster. This parameter has no
influence on the clustering itself.

• sample_weights (np.ndarray, optional) – An array of size N. sklearn.cluster.KMeans() sam-
ple_weights parameter. This weighting can be used to influence of weight of simulations on
the clustering itself. See: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
KMeans.html

• random_state (int or np.random.RandomState, optional) – sklearn.cluster.KMeans() ran-
dom_state parameter. Determines random number generation for centroid initialization. Use
an int to make the randomness deterministic. See: https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html

• make_graph (bool) – output a dictionary of input for displays a plot of R2 vs. the number
of clusters. Defaults to True if matplotlib is installed in runtime environment.

Notes

Parameters for method in call must follow these conventions:

rsq_optimize
Calculate coefficient of variation (R2) of cluster results for n = 1 to N clusters and determine an optimal
number of clusters that balances cost/benefit tradeoffs. This is the default setting. See supporting informa-
tion S2 text in Casajus et al. [2016].

method={‘rsq_optimize’:None}

rsq_cutoff
Calculate Coefficient of variation (R2) of cluster results for n = 1 to N clusters and determine the minimum
numbers of clusters needed for R2 > val.

val : float between 0 and 1. R2 value that must be exceeded by clustering results.

method={‘rsq_cutoff’: val}

n_clusters
Create a user determined number of clusters.

val : integer between 1 and N

method={‘n_clusters’: val}

Returns
• list – Selected model indexes (positions)

• np.ndarray – KMeans clustering results

• dict – Dictionary of input data for creating R2 profile plot. ‘None’ when make_graph=False

16.1. xclim package 667

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

xclim Documentation, Release 0.39.0

References

Casajus, Périé, Logan, Lambert, Blois, and Berteaux [2016]

Examples

import xclim
from xclim.ensembles import create_ensemble, kmeans_reduce_ensemble
from xclim.indices import hot_spell_frequency

Start with ensemble datasets for temperature:

ensTas = create_ensemble(temperature_datasets)

Calculate selection criteria -- Use annual climate change fields between 2071-
→˓2100 and 1981-2010 normals.
First, average annual temperature:

tg = xclim.atmos.tg_mean(tas=ensTas.tas)
his_tg = tg.sel(time=slice("1990", "2019")).mean(dim="time")
fut_tg = tg.sel(time=slice("2020", "2050")).mean(dim="time")
dtg = fut_tg - his_tg

Then, hot spell frequency as second indicator:

hs = hot_spell_frequency(tasmax=ensTas.tas, window=2, thresh_tasmax="10 degC")
his_hs = hs.sel(time=slice("1990", "2019")).mean(dim="time")
fut_hs = hs.sel(time=slice("2020", "2050")).mean(dim="time")
dhs = fut_hs - his_hs

Create a selection criteria xr.DataArray:

from xarray import concat

crit = concat((dtg, dhs), dim="criteria")

Finally, create clusters and select realization ids of reduced ensemble:

ids, cluster, fig_data = kmeans_reduce_ensemble(
data=crit, method={"rsq_cutoff": 0.9}, random_state=42, make_graph=False

)
ids, cluster, fig_data = kmeans_reduce_ensemble(

data=crit, method={"rsq_optimize": None}, random_state=42, make_graph=True
)

xclim.ensembles._reduce.plot_rsqprofile(fig_data)
Create an R2 profile plot using kmeans_reduce_ensemble output.

The R2 plot allows evaluation of the proportion of total uncertainty in the original ensemble that is provided by
the reduced selected.

668 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Examples

>>> from xclim.ensembles import kmeans_reduce_ensemble, plot_rsqprofile
>>> is_matplotlib_installed()
>>> crit = xr.open_dataset(path_to_ensemble_file).data
>>> ids, cluster, fig_data = kmeans_reduce_ensemble(
... data=crit, method={"rsq_cutoff": 0.9}, random_state=42, make_graph=True
...)
>>> plot_rsqprofile(fig_data)

xclim.ensembles._robustness module

Ensemble Robustness metrics

Robustness metrics are used to estimate the confidence of the climate change signal of an ensemble. This submodule
is inspired by and tries to follow the guidelines of the IPCC, more specifically the 12th chapter of the Working Group
1’s contribution to the AR5 [Collins et al., 2013] (see box 12.1).

xclim.ensembles._robustness.change_significance(fut: xarray.DataArray | xarray.Dataset, ref:
Optional[Union[DataArray, Dataset]] = None, test:
str = 'ttest', weights: Optional[DataArray] = None,
**kwargs)→ tuple[xarray.DataArray | xarray.Dataset,
xarray.DataArray | xarray.Dataset]

Robustness statistics qualifying how the members of an ensemble agree on the existence of change and on its
sign.

Parameters
• fut (xr.DataArray or xr.Dataset) – Future period values along ‘realization’ and ‘time’ (. . . ,

nr, nt1) or if ref is None, Delta values along realization (. . . , nr).

• ref (Union[xr.DataArray, xr.Dataset], optional) – Reference period values along realization’
and ‘time’ (. . . , nt2, nr). The size of the ‘time’ axis does not need to match the one of fut.
But their ‘realization’ axes must be identical. If None (default), values of fut are assumed to
be deltas instead of a distribution across the future period. fut and ref must be of the same
type (Dataset or DataArray). If they are Dataset, they must have the same variables (name
and coords).

• test ({‘ttest’, ‘welch-ttest’, ‘threshold’, None}) – Name of the statistical test used to determine
if there was significant change. See notes.

• weights (xr.DataArray) – Weights to apply along the ‘realization’ dimension. This array
cannot contain missing values. Note: ‘ttest’ and ‘welch-ttest’ are not currently supported
with weighted arrays.

• **kwargs – Other arguments specific to the statistical test.

For ‘ttest’ and ‘welch-ttest’:
p_change

[float (default][0.05)] p-value threshold for rejecting the hypothesis of no significant
change.

For ‘threshold’: (Only one of those must be given.)
abs_thresh

[float (no default)] Threshold for the (absolute) change to be considered significative.

16.1. xclim package 669

xclim Documentation, Release 0.39.0

rel_thresh
[float (no default, in [0, 1])] Threshold for the relative change (in reference to ref) to be
significative. Only valid if ref is given.

Returns
• change_frac (xr.DataArray or xr.Dataset) – The fraction of members that show significant

change [0, 1]. Passing test=None yields change_frac = 1 everywhere. Same type as fut.

• pos_frac (xr.DataArray or xr.Dataset) – The fraction of members showing significant
change that show a positive change]0, 1]. Null values are returned where no members show
significant change.

The table below shows the coefficient needed to retrieve the number of members that
have the indicated characteristics, by multiplying it to the total number of members
(fut.realization.size).

Significant change Non-significant change
Any direction change_frac 1 - change_frac
Positive change pos_frac * change_frac N.A.
Negative change (1 - pos_frac) * change_frac

Notes

Available statistical tests are :

‘ttest’ :
Single sample T-test. Same test as used by Tebaldi et al. [2011]. The future values are compared
against the reference mean (over ‘time’). Change is qualified as ‘significant’ when the test’s p-
value is below the user-provided p_change value.

‘welch-ttest’ :
Two-sided T-test, without assuming equal population variance. Same significance criterion as
‘ttest’.

‘threshold’ :
Change is considered significative if the absolute delta exceeds a given threshold (absolute or
relative).

None :
Significant change is not tested and, thus, members showing no change are included in the
sign_frac output.

References

Tebaldi, Arblaster, and Knutti [2011]

670 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Example

This example computes the mean temperature in an ensemble and compares two time periods, qualifying signif-
icant change through a single sample T-test.

>>> from xclim import ensembles
>>> ens = ensembles.create_ensemble(temperature_datasets)
>>> tgmean = xclim.atmos.tg_mean(tas=ens.tas, freq="YS")
>>> fut = tgmean.sel(time=slice("2020", "2050"))
>>> ref = tgmean.sel(time=slice("1990", "2020"))
>>> chng_f, pos_f = ensembles.change_significance(fut, ref, test="ttest")

If the deltas were already computed beforehand, the ‘threshold’ test can still be used, here with a 2 K threshold.

>>> delta = fut.mean("time") - ref.mean("time")
>>> chng_f, pos_f = ensembles.change_significance(
... delta, test="threshold", abs_thresh=2
...)

xclim.ensembles._robustness.robustness_coefficient(fut: xarray.DataArray | xarray.Dataset, ref:
xarray.DataArray | xarray.Dataset)→
xarray.DataArray | xarray.Dataset

Robustness coefficient quantifying the robustness of a climate change signal in an ensemble.

Taken from Knutti and Sedlácek [2013].

The robustness metric is defined as R = 1 A1 / A2 , where A1 is defined as the integral of the squared area
between two cumulative density functions characterizing the individual model projections and the multimodel
mean projection and A2 is the integral of the squared area between two cumulative density functions character-
izing the multimodel mean projection and the historical climate. Description taken from Knutti and Sedlácek
[2013].

A value of R equal to one implies perfect model agreement. Higher model spread or smaller signal decreases
the value of R.

Parameters
• fut (Union[xr.DataArray, xr.Dataset]) – Future ensemble values along ‘realization’ and

‘time’ (nr, nt). Can be a dataset, in which case the coefficient is computed on each vari-
able.

• ref (Union[xr.DataArray, xr.Dataset]) – Reference period values along ‘time’ (nt). Same
type as fut.

Returns
xr.DataArray or xr.Dataset – The robustness coefficient,]-inf, 1], float. Same type as fut or ref.

16.1. xclim package 671

xclim Documentation, Release 0.39.0

References

Knutti and Sedlácek [2013]

xclim.indicators package

Indicators module

Indicators are the main tool xclim provides to compute climate indices. In contrast to the function defined in
xclim.indices, Indicators add a layer of health checks and metadata handling. Indicator objects are split into realms
: atmos, land and seaIce.

Virtual modules are also inserted here. A normal installation of xclim comes with three virtual modules:

• xclim.indicators.cf, Indicators defined in cf-index-meta.

• xclim.indicators.icclim, Indicators defined by ECAD, as found in python package Icclim.

• xclim.indicators.anuclim, Indicators of the Australian National University’s Fenner School of Environ-
ment and Society.

Subpackages

xclim.indicators.atmos package

Atmospheric indicators

While the indices module stores the computing functions, this module defines Indicator classes and instances that
include a number of functionalities, such as input validation, unit conversion, output meta-data handling, and missing
value masking.

The concept followed here is to define Indicator subclasses for each input variable, then create instances for each
indicator.

Submodules

xclim.indicators.atmos._conversion module

Atmospheric conversion definitions.

xclim.indicators.atmos._conversion.corn_heat_units(tasmin: Union[DataArray, str] = 'tasmin',
tasmax: Union[DataArray, str] = 'tasmax', *,
thresh_tasmin: str = '4.44 degC', thresh_tasmax:
str = '10 degC', ds: Dataset = None)→
DataArray

Corn heat units (realm: atmos)

A temperature-based index used to estimate the development of corn crops. Corn growth occurs when the daily
minimum and maximum temperatures exceed given thresholds.

This indicator will check for missing values according to the method “skip”. Based on indice
corn_heat_units().

Parameters

672 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required
units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The minimum temperature threshold needed
for corn growth. Default : 4.44 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The maximum temperature threshold needed
for corn growth. Default : 10 degC. [Required units : [temperature]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
chu (DataArray) – Corn heat units (Tmin > {thresh_tasmin} and Tmax > {thresh_tasmax}), with
additional attributes: description: Temperature-based index used to estimate the development
of corn crops. Corn growth occurs when the minimum and maximum daily temperatures both
exceed {thresh_tasmin} and {thresh_tasmax}, respectively.

Notes

Formula used in calculating the Corn Heat Units for the Agroclimatic Atlas of Quebec [Audet et al., 2012].

The thresholds of 4.44°C for minimum temperatures and 10°C for maximum temperatures were selected follow-
ing the assumption that no growth occurs below these values.

Let 𝑇𝑋𝑖 and 𝑇𝑁𝑖 be the daily maximum and minimum temperature at day 𝑖. Then the daily corn heat unit is:

𝐶𝐻𝑈𝑖 =
𝑌 𝑋𝑖 + 𝑌 𝑁𝑖

2

with

𝑌 𝑋𝑖 = 3.33(𝑇𝑋𝑖 − 10)− 0.084(𝑇𝑋𝑖 − 10)2, if 𝑇𝑋𝑖 > 10𝐶

𝑌 𝑁𝑖 = 1.8(𝑇𝑁𝑖 − 4.44), if 𝑇𝑁𝑖 > 4.44𝐶

where 𝑌 𝑋𝑖 and 𝑌 𝑁𝑖 is 0 when 𝑇𝑋𝑖 ≤ 10𝐶 and 𝑇𝑁𝑖 ≤ 4.44𝐶, respectively.

References

Audet, Côté, Bachand, and Mailhot [2012], Bootsma, Tremblay, and Filion [1999]

xclim.indicators.atmos._conversion.heat_index(tas: Union[DataArray, str] = 'tas', hurs:
Union[DataArray, str] = 'hurs', *, ds: Dataset = None)
→ DataArray

Heat index (realm: atmos)

The heat index is an estimate of the temperature felt by a person in the shade when relative humidity is taken into
account.

Based on indice heat_index().

Parameters
• tas (str or DataArray) – Temperature. The equation assumes an instantaneous value. Default

: ds.tas. [Required units : [temperature]]

• hurs (str or DataArray) – Relative humidity. The equation assumes an instantaneous value.
Default : ds.hurs. [Required units : []]

16.1. xclim package 673

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
heat_index (DataArray) – Heat index (air_temperature) [C], with additional attributes: descrip-
tion: Perceived temperature after relative humidity is taken into account.

Notes

While both the humidex and the heat index are calculated using dew point the humidex uses a dew point of 7 °C
(45 °F) as a base, whereas the heat index uses a dew point base of 14 °C (57 °F). Further, the heat index uses
heat balance equations which account for many variables other than vapour pressure, which is used exclusively
in the humidex calculation.

References

Blazejczyk, Epstein, Jendritzky, Staiger, and Tinz [2012]

xclim.indicators.atmos._conversion.humidex(tas: Union[DataArray, str] = 'tas', tdps:
Optional[Union[DataArray, str]] = None, hurs:
Optional[Union[DataArray, str]] = None, *, ds: Dataset =
None)→ DataArray

Humidex (realm: atmos)

The humidex describes the temperature felt by a person when relative humidity is taken into account. It can be
interpreted as the equivalent temperature felt when the air is dry.

Based on indice humidex().

Parameters
• tas (str or DataArray) – Air temperature. Default : ds.tas. [Required units : [temperature]]

• tdps (str or DataArray, optional) – Dewpoint temperature. [Required units : [temperature]]

• hurs (str or DataArray, optional) – Relative humidity. [Required units : []]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
humidex (DataArray) – Humidex index (air_temperature) [C], with additional attributes: de-
scription: Humidex index describing the temperature felt by the average person in response to
relative humidity.

Notes

The humidex is usually computed using hourly observations of dry bulb and dewpoint temperatures. It is com-
puted using the formula based on Masterton and Richardson [1979]:

𝑇 +
5

9
[𝑒− 10]

where 𝑇 is the dry bulb air temperature (°C). The term 𝑒 can be computed from the dewpoint temperature
𝑇𝑑𝑒𝑤𝑝𝑜𝑖𝑛𝑡 in °K:

𝑒 = 6.112× exp(5417.7530

(︂
1

273.16
− 1

𝑇dewpoint

)︂

674 Chapter 16. xclim

xclim Documentation, Release 0.39.0

where the constant 5417.753 reflects the molecular weight of water, latent heat of vaporization, and the universal
gas constant [Mekis et al., 2015]. Alternatively, the term 𝑒 can also be computed from the relative humidity h
expressed in percent using Sirangelo et al. [2020]:

𝑒 =
ℎ

100
× 6.112 * 107.5𝑇/(𝑇+237.7).

The humidex comfort scale [Canada, 2011] can be interpreted as follows:

• 20 to 29 : no discomfort;

• 30 to 39 : some discomfort;

• 40 to 45 : great discomfort, avoid exertion;

• 46 and over : dangerous, possible heat stroke;

Please note that while both the humidex and the heat index are calculated using dew point, the humidex uses a
dew point of 7 °C (45 °F) as a base, whereas the heat index uses a dew point base of 14 °C (57 °F). Further, the
heat index uses heat balance equations which account for many variables other than vapour pressure, which is
used exclusively in the humidex calculation.

References

Canada [2011], Masterton and Richardson [1979], Mekis, Vincent, Shephard, and Zhang [2015], Sirangelo,
Caloiero, Coscarelli, Ferrari, and Fusto [2020]

xclim.indicators.atmos._conversion.mean_radiant_temperature(rsds: Union[DataArray, str] = 'rsds',
rsus: Union[DataArray, str] = 'rsus',
rlds: Union[DataArray, str] = 'rlds',
rlus: Union[DataArray, str] = 'rlus',
*, stat: str = 'average', ds: Dataset =
None)→ DataArray

Mean radiant temperature (realm: atmos)

The average temperature of solar and thermal radiation incident on the body’s exterior.

Based on indice mean_radiant_temperature().

Parameters
• rsds (str or DataArray) – Surface Downwelling Shortwave Radiation Default : ds.rsds. [Re-

quired units : [radiation]]

• rsus (str or DataArray) – Surface Upwelling Shortwave Radiation Default : ds.rsus. [Re-
quired units : [radiation]]

• rlds (str or DataArray) – Surface Downwelling Longwave Radiation Default : ds.rlds. [Re-
quired units : [radiation]]

• rlus (str or DataArray) – Surface Upwelling Longwave Radiation Default : ds.rlus. [Re-
quired units : [radiation]]

• stat ({‘sunlit’, ‘average’, ‘instant’}) – Which statistic to apply. If “average”, the average of
the cosine of the solar zenith angle is calculated. If “instant”, the instantaneous cosine of the
solar zenith angle is calculated. If “sunlit”, the cosine of the solar zenith angle is calculated
during the sunlit period of each interval. If “instant”, the instantaneous cosine of the solar
zenith angle is calculated. This is necessary if mrt is not None. Default : average.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

16.1. xclim package 675

xclim Documentation, Release 0.39.0

Returns
mrt (DataArray) – Mean radiant temperature [K], with additional attributes: description: The
incidence of radiation on the body from all directions.

Notes

This code was inspired by the thermofeel package [Brimicombe et al., 2021].

References

Di Napoli, Hogan, and Pappenberger [2020]

xclim.indicators.atmos._conversion.potential_evapotranspiration(tasmin:
Optional[Union[DataArray,
str]] = None, tasmax:
Optional[Union[DataArray,
str]] = None, tas:
Optional[Union[DataArray,
str]] = None, lat:
Optional[Union[DataArray,
str]] = None, hurs:
Optional[Union[DataArray,
str]] = None, rsds:
Optional[Union[DataArray,
str]] = None, rsus:
Optional[Union[DataArray,
str]] = None, rlds:
Optional[Union[DataArray,
str]] = None, rlus:
Optional[Union[DataArray,
str]] = None, sfcwind:
Optional[Union[DataArray,
str]] = None, *, method: str =
'BR65', peta: float =
0.00516409319477, petb: float =
0.0874972822289, ds: Dataset =
None)→ DataArray

Potential evapotranspiration (realm: atmos)

The potential for water evaporation from soil and transpiration by plants if the water supply is sufficient, calculated
with a given method.

Based on indice potential_evapotranspiration().

Parameters
• tasmin (str or DataArray, optional) – Minimum daily temperature. [Required units : [tem-

perature]]

• tasmax (str or DataArray, optional) – Maximum daily temperature. [Required units : [tem-
perature]]

• tas (str or DataArray, optional) – Mean daily temperature. [Required units : [temperature]]

• lat (str or DataArray, optional) – Latitude. If not given, it is sought on tasmin or tas using
cf-xarray accessors. [Required units : []]

676 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• hurs (str or DataArray, optional) – Relative humidity. [Required units : []]

• rsds (str or DataArray, optional) – Surface Downwelling Shortwave Radiation [Required
units : [radiation]]

• rsus (str or DataArray, optional) – Surface Upwelling Shortwave Radiation [Required units
: [radiation]]

• rlds (str or DataArray, optional) – Surface Downwelling Longwave Radiation [Required
units : [radiation]]

• rlus (str or DataArray, optional) – Surface Upwelling Longwave Radiation [Required units
: [radiation]]

• sfcwind (str or DataArray, optional) – Surface wind velocity (at 10 m) [Required units :
[speed]]

• method ({‘FAO_PM98’, ‘mcguinnessbordne05’, ‘baierrobertson65’, ‘hargreaves85’,
‘BR65’, ‘HG85’, ‘TW48’, ‘thornthwaite48’, ‘MB05’, ‘allen98’}) – Which method to use,
see notes. Default : BR65.

• peta (number) – Used only with method MB05 as 𝑎 for calculation of PET, see Notes section.
Default value resulted from calibration of PET over the UK. Default : 0.00516409319477.

• petb (number) – Used only with method MB05 as 𝑏 for calculation of PET, see Notes section.
Default value resulted from calibration of PET over the UK. Default : 0.0874972822289.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
evspsblpot (DataArray) – Potential evapotranspiration (“{method}” method) (wa-
ter_potential_evapotranspiration_flux) [kg m-2 s-1], with additional attributes: description:
The potential for water evaporation from soil and transpiration by plants if the water supply is
sufficient, calculated with the {method} method.

Notes

Available methods are:

• “baierrobertson65” or “BR65”, based on Baier and Robertson [1965]. Requires tasmin and tasmax, daily
[D] freq.

• “hargreaves85” or “HG85”, based on George H. Hargreaves and Zohrab A. Samani [1985]. Requires tasmin
and tasmax, daily [D] freq. (optional: tas can be given in addition of tasmin and tasmax).

• “mcguinnessbordne05” or “MB05”, based on Tanguy et al. [2018]. Requires tas, daily [D] freq, with
latitudes ‘lat’.

• “thornthwaite48” or “TW48”, based on Thornthwaite [1948]. Requires tasmin and tasmax, monthly [MS]
or daily [D] freq. (optional: tas can be given instead of tasmin and tasmax).

• “allen98” or “FAO_PM98”, based on Allen et al. [1998]. Modification of Penman-Monteith method.
Requires tasmin and tasmax, relative humidity, radiation flux and wind speed (10 m wind will be converted
to 2 m).

The McGuinness-Bordne [McGuinness and Borone, 1972] equation is:

𝑃𝐸𝑇 [𝑚𝑚𝑑𝑎𝑦−1] = 𝑎 * 𝑆0

𝜆
𝑇𝑎 + 𝑏 * 𝑆0𝜆

where 𝑎 and 𝑏 are empirical parameters; 𝑆0 is the extraterrestrial radiation [MJ m-2 day-1], assuming a solar
constant of 1367 W m-2;

16.1. xclim package 677

xclim Documentation, Release 0.39.0

𝑙𝑎𝑚𝑏𝑑𝑎 is the latent heat of vaporisation [MJ kg-1] and 𝑇𝑎 is the air temperature [°C]. The equation was originally
derived for the USA, with 𝑎 = 0.0147 and 𝑏 = 0.07353. The default parameters used here are calibrated for the
UK, using the method described in Tanguy et al. [2018].

Methods “BR65”, “HG85” and “MB05” use an approximation of the extraterrestrial radiation. See
extraterrestrial_solar_radiation().

References

Allen, Pereira, Raes, and Smith [1998], Baier and Robertson [1965], McGuinness and Borone [1972], Tanguy,
Prudhomme, Smith, and Hannaford [2018], Thornthwaite [1948], George H. Hargreaves and Zohrab A. Samani
[1985]

xclim.indicators.atmos._conversion.rain_approximation(pr: Union[DataArray, str] = 'pr', tas:
Union[DataArray, str] = 'tas', *, thresh: str =
'0 degC', method: str = 'binary', ds: Dataset
= None)→ DataArray

Rainfall approximation (realm: atmos)

Liquid precipitation estimated from total precipitation and temperature with a given method and temperature
threshold.

Based on indice rain_approximation().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Mean, maximum, or minimum daily temperature. Default : ds.tas.
[Required units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature, used by method “binary”.
Default : 0 degC. [Required units : [temperature]]

• method ({‘auer’, ‘binary’, ‘brown’}) – Which method to use when approximating snowfall
from total precipitation. See notes. Default : binary.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
prlp (DataArray) – Liquid precipitation (“{method}” method with temperature at or above
{thresh}) (precipitation_flux) [kg m-2 s-1], with additional attributes: description: Liquid pre-
cipitation estimated from total precipitation and temperature with method {method} and thresh-
old temperature {thresh}.

Notes

This method computes the snowfall approximation and subtracts it from the total precipitation to estimate the
liquid rain precipitation.

xclim.indicators.atmos._conversion.relative_humidity(tas: Union[DataArray, str] = 'tas', huss:
Union[DataArray, str] = 'huss', ps:
Union[DataArray, str] = 'ps', *, ice_thresh: str
= None, method: str = 'sonntag90', ds: Dataset
= None)→ DataArray

Relative humidity from temperature, specific humidity, and pressure (realm: atmos)

678 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Calculation of relative humidity from temperature, specific humidity, and pressure using the saturation vapour
pressure.

Based on indice relative_humidity(). With injected parameters: tdps=None, invalid_values=mask.

Parameters
• tas (str or DataArray) – Temperature array Default : ds.tas. [Required units : [temperature]]

• huss (str or DataArray) – Specific humidity. Default : ds.huss. [Required units : []]

• ps (str or DataArray) – Air Pressure. Default : ds.ps. [Required units : [pressure]]

• ice_thresh (quantity (string with units)) – Threshold temperature under which to switch to
equations in reference to ice instead of water. If None (default) everything is computed with
reference to water. Does nothing if ‘method’ is “bohren98”. Default : None. [Required units
: [temperature]]

• method ({‘goffgratch46’, ‘sonntag90’, ‘wmo08’, ‘tetens30’, ‘bohren98’}) – Which method
to use, see notes of this function and of saturation_vapor_pressure(). Default : son-
ntag90.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
hurs (DataArray) – Relative Humidity (“{method}” method) (relative_humidity) [%], with ad-
ditional attributes: description: <Dynamically generated string>

Notes

In the following, let 𝑇 , 𝑇𝑑, 𝑞 and 𝑝 be the temperature, the dew point temperature, the specific humidity and the
air pressure.

For the “bohren98” method : This method does not use the saturation vapour pressure directly, but rather uses
an approximation of the ratio of 𝑒𝑠𝑎𝑡(𝑇𝑑)

𝑒𝑠𝑎𝑡(𝑇) . With 𝐿 the enthalpy of vaporization of water and 𝑅𝑤 the gas constant
for water vapour, the relative humidity is computed as:

𝑅𝐻 = 𝑒
−𝐿(𝑇−𝑇𝑑)

𝑅𝑤𝑇𝑇𝑑

From Bohren and Albrecht [1998], formula taken from Lawrence [2005]. 𝐿 = 2.5 × 10−6 J kg-1, exact for
𝑇 = 273.15 K, is used.

Other methods: With 𝑤, 𝑤𝑠𝑎𝑡, 𝑒𝑠𝑎𝑡 the mixing ratio, the saturation mixing ratio and the saturation vapour
pressure. If the dewpoint temperature is given, relative humidity is computed as:

𝑅𝐻 = 100
𝑒𝑠𝑎𝑡(𝑇𝑑)

𝑒𝑠𝑎𝑡(𝑇)

Otherwise, the specific humidity and the air pressure must be given so relative humidity can be computed as:

𝑅𝐻 = 100
𝑤

𝑤𝑠𝑎𝑡
𝑤 =

𝑞

1− 𝑞
𝑤𝑠𝑎𝑡 = 0.622

𝑒𝑠𝑎𝑡
𝑃 − 𝑒𝑠𝑎𝑡

The methods differ by how 𝑒𝑠𝑎𝑡 is computed. See the doc of xclim.core.utils.
saturation_vapor_pressure().

16.1. xclim package 679

xclim Documentation, Release 0.39.0

References

Bohren and Albrecht [1998], Lawrence [2005]

xclim.indicators.atmos._conversion.relative_humidity_from_dewpoint(tas: Union[DataArray, str] =
'tas', tdps: Union[DataArray,
str] = 'tdps', *, ice_thresh:
str = None, method: str =
'sonntag90', ds: Dataset =
None)→ DataArray

Relative humidity from temperature and dewpoint temperature (realm: atmos)

Calculation of relative humidity from temperature and dew point using the saturation vapour pressure.

Based on indice relative_humidity(). With injected parameters: huss=None, ps=None, in-
valid_values=mask.

Parameters
• tas (str or DataArray) – Temperature array Default : ds.tas. [Required units : [temperature]]

• tdps (str or DataArray) – Dewpoint temperature, if specified, overrides huss and ps. Default
: ds.tdps. [Required units : [temperature]]

• ice_thresh (quantity (string with units)) – Threshold temperature under which to switch to
equations in reference to ice instead of water. If None (default) everything is computed with
reference to water. Does nothing if ‘method’ is “bohren98”. Default : None. [Required units
: [temperature]]

• method ({‘goffgratch46’, ‘sonntag90’, ‘wmo08’, ‘tetens30’, ‘bohren98’}) – Which method
to use, see notes of this function and of saturation_vapor_pressure(). Default : son-
ntag90.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
hurs (DataArray) – Relative humidity (“{method}” method) (relative_humidity) [%], with ad-
ditional attributes: description: <Dynamically generated string>

Notes

In the following, let 𝑇 , 𝑇𝑑, 𝑞 and 𝑝 be the temperature, the dew point temperature, the specific humidity and the
air pressure.

For the “bohren98” method : This method does not use the saturation vapour pressure directly, but rather uses
an approximation of the ratio of 𝑒𝑠𝑎𝑡(𝑇𝑑)

𝑒𝑠𝑎𝑡(𝑇) . With 𝐿 the enthalpy of vaporization of water and 𝑅𝑤 the gas constant
for water vapour, the relative humidity is computed as:

𝑅𝐻 = 𝑒
−𝐿(𝑇−𝑇𝑑)

𝑅𝑤𝑇𝑇𝑑

From Bohren and Albrecht [1998], formula taken from Lawrence [2005]. 𝐿 = 2.5 × 10−6 J kg-1, exact for
𝑇 = 273.15 K, is used.

Other methods: With 𝑤, 𝑤𝑠𝑎𝑡, 𝑒𝑠𝑎𝑡 the mixing ratio, the saturation mixing ratio and the saturation vapour
pressure. If the dewpoint temperature is given, relative humidity is computed as:

𝑅𝐻 = 100
𝑒𝑠𝑎𝑡(𝑇𝑑)

𝑒𝑠𝑎𝑡(𝑇)

680 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Otherwise, the specific humidity and the air pressure must be given so relative humidity can be computed as:

𝑅𝐻 = 100
𝑤

𝑤𝑠𝑎𝑡
𝑤 =

𝑞

1− 𝑞
𝑤𝑠𝑎𝑡 = 0.622

𝑒𝑠𝑎𝑡
𝑃 − 𝑒𝑠𝑎𝑡

The methods differ by how 𝑒𝑠𝑎𝑡 is computed. See the doc of xclim.core.utils.
saturation_vapor_pressure().

References

Bohren and Albrecht [1998], Lawrence [2005]

xclim.indicators.atmos._conversion.saturation_vapor_pressure(tas: Union[DataArray, str] = 'tas', *,
ice_thresh: str = None, method: str
= 'sonntag90', ds: Dataset = None)
→ DataArray

Saturation vapour pressure (e_sat) (realm: atmos)

Calculation of the saturation vapour pressure from the temperature, according to a given method. If ice_thresh
is given, the calculation is done with reference to ice for temperatures below this threshold.

Based on indice saturation_vapor_pressure().

Parameters
• tas (str or DataArray) – Temperature array. Default : ds.tas. [Required units : [temperature]]

• ice_thresh (quantity (string with units)) – Threshold temperature under which to switch to
equations in reference to ice instead of water. If None (default) everything is computed with
reference to water. Default : None. [Required units : [temperature]]

• method ({‘goffgratch46’, ‘sonntag90’, ‘wmo08’, ‘tetens30’, ‘its90’}) – Which method to use,
see notes. Default : sonntag90.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
e_sat (DataArray) – Saturation vapour pressure (“{method}” method) [Pa], with additional at-
tributes: description: <Dynamically generated string>

Notes

In all cases implemented here 𝑙𝑜𝑔(𝑒𝑠𝑎𝑡) is an empirically fitted function (usually a polynomial) where coefficients
can be different when ice is taken as reference instead of water. Available methods are:

• “goffgratch46” or “GG46”, based on Goff and Gratch [1946], values and equation taken from Vömel [2016].

• “sonntag90” or “SO90”, taken from SONNTAG [1990].

• “tetens30” or “TE30”, based on Tetens [1930], values and equation taken from Vömel [2016].

• “wmo08” or “WMO08”, taken from World Meteorological Organization [2008].

• “its90” or “ITS90”, taken from Hardy [1998].

16.1. xclim package 681

xclim Documentation, Release 0.39.0

References

Goff and Gratch [1946], Hardy [1998], SONNTAG [1990], Tetens [1930], Vömel [2016], World Meteorological
Organization [2008]

xclim.indicators.atmos._conversion.snowfall_approximation(pr: Union[DataArray, str] = 'pr', tas:
Union[DataArray, str] = 'tas', *, thresh:
str = '0 degC', method: str = 'binary', ds:
Dataset = None)→ DataArray

Snowfall approximation (realm: atmos)

Solid precipitation estimated from total precipitation and temperature with a given method and temperature
threshold.

Based on indice snowfall_approximation().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Mean, maximum, or minimum daily temperature. Default : ds.tas.
[Required units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature, used by method “binary”.
Default : 0 degC. [Required units : [temperature]]

• method ({‘auer’, ‘binary’, ‘brown’}) – Which method to use when approximating snowfall
from total precipitation. See notes. Default : binary.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
prsn (DataArray) – Solid precipitation (“{method}” method with temperature at or below
{thresh}) (solid_precipitation_flux) [kg m-2 s-1], with additional attributes: description: Solid
precipitation estimated from total precipitation and temperature with method {method} and
threshold temperature {thresh}.

Notes

The following methods are available to approximate snowfall and are drawn from the Canadian Land Surface
Scheme [Melton, 2019, Verseghy, 2009].

• 'binary' : When the temperature is under the freezing threshold, precipitation is assumed to be solid.
The method is agnostic to the type of temperature used (mean, maximum or minimum).

• 'brown' : The phase between the freezing threshold goes from solid to liquid linearly over a range of 2°C
over the freezing point.

• 'auer' : The phase between the freezing threshold goes from solid to liquid as a degree six polynomial
over a range of 6°C over the freezing point.

682 Chapter 16. xclim

xclim Documentation, Release 0.39.0

References

Melton [2019], Verseghy [2009]

xclim.indicators.atmos._conversion.specific_humidity(tas: Union[DataArray, str] = 'tas', hurs:
Union[DataArray, str] = 'hurs', ps:
Union[DataArray, str] = 'ps', *, ice_thresh: str
= None, method: str = 'sonntag90', ds: Dataset
= None)→ DataArray

Specific humidity from temperature, relative humidity, and pressure (realm: atmos)

Calculation of specific humidity from temperature, relative humidity, and pressure using the saturation vapour
pressure.

Based on indice specific_humidity(). With injected parameters: invalid_values=mask.

Parameters
• tas (str or DataArray) – Temperature array Default : ds.tas. [Required units : [temperature]]

• hurs (str or DataArray) – Relative Humidity. Default : ds.hurs. [Required units : []]

• ps (str or DataArray) – Air Pressure. Default : ds.ps. [Required units : [pressure]]

• ice_thresh (quantity (string with units)) – Threshold temperature under which to switch to
equations in reference to ice instead of water. If None (default) everything is computed with
reference to water. Default : None. [Required units : [temperature]]

• method ({‘wmo08’, ‘goffgratch46’, ‘tetens30’, ‘sonntag90’}) – Which method to use, see
notes of this function and of saturation_vapor_pressure(). Default : sonntag90.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
huss (DataArray) – Specific Humidity (“{method}” method) (specific_humidity), with addi-
tional attributes: description: <Dynamically generated string>

Notes

In the following, let 𝑇 , ℎ𝑢𝑟𝑠 (in %) and 𝑝 be the temperature, the relative humidity and the air pressure. With
𝑤, 𝑤𝑠𝑎𝑡, 𝑒𝑠𝑎𝑡 the mixing ratio, the saturation mixing ratio and the saturation vapour pressure, specific humidity
𝑞 is computed as:

𝑤𝑠𝑎𝑡 = 0.622
𝑒𝑠𝑎𝑡

𝑃 − 𝑒𝑠𝑎𝑡
𝑤 = 𝑤𝑠𝑎𝑡 * ℎ𝑢𝑟𝑠/100𝑞 = 𝑤/(1 + 𝑤)

The methods differ by how 𝑒𝑠𝑎𝑡 is computed. See xclim.core.utils.saturation_vapor_pressure().

If invalid_values is not None, the saturation specific humidity 𝑞𝑠𝑎𝑡 is computed as:

𝑞𝑠𝑎𝑡 = 𝑤𝑠𝑎𝑡/(1 + 𝑤𝑠𝑎𝑡)

16.1. xclim package 683

xclim Documentation, Release 0.39.0

References

World Meteorological Organization [2008]

xclim.indicators.atmos._conversion.specific_humidity_from_dewpoint(tdps: Union[DataArray, str]
= 'tdps', ps:
Union[DataArray, str] = 'ps',
*, method: str = 'sonntag90',
ds: Dataset = None)→
DataArray

Specific humidity from dew point temperature and pressure (realm: atmos)

Calculation of the specific humidity from dew point temperature and pressure using the saturation vapour pres-
sure.

Based on indice specific_humidity_from_dewpoint().

Parameters
• tdps (str or DataArray) – Dewpoint temperature array. Default : ds.tdps. [Required units :

[temperature]]

• ps (str or DataArray) – Air pressure array. Default : ds.ps. [Required units : [pressure]]

• method ({‘wmo08’, ‘goffgratch46’, ‘tetens30’, ‘sonntag90’}) – Method to compute the sat-
uration vapour pressure. Default : sonntag90.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
huss_fromdewpoint (DataArray) – Specific humidity (“{method}” method) (spe-
cific_humidity), with additional attributes: description: Computed from dewpoint temperature
and pressure through the saturation vapor pressure, which was calculated according to the
{method} method.

Notes

If 𝑒 is the water vapour pressure, and 𝑝 the total air pressure, then specific humidity is given by

𝑞 = 𝑚𝑤𝑒/(𝑚𝑎(𝑝− 𝑒) +𝑚𝑤𝑒)

where 𝑚𝑤 and 𝑚𝑎 are the molecular weights of water and dry air respectively. This formula is often written with
= 𝑚𝑤/𝑚𝑎, which simplifies to 𝑞 = 𝑒/(𝑝− 𝑒(1−)).

References

World Meteorological Organization [2008]

xclim.indicators.atmos._conversion.tg(tasmin: Union[DataArray, str] = 'tasmin', tasmax:
Union[DataArray, str] = 'tasmax', *, ds: Dataset = None)→
DataArray

Mean temperature (realm: atmos)

The average daily temperature assuming a symmetrical temperature distribution (Tg = (Tx + Tn) / 2).

Based on indice tas().

Parameters

684 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• tasmin (str or DataArray) – Minimum (daily) temperature Default : ds.tasmin. [Required
units : [temperature]]

• tasmax (str or DataArray) – Maximum (daily) temperature Default : ds.tasmax. [Required
units : [temperature]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
tg (DataArray) – Daily mean temperature (air_temperature) [K], with additional attributes:
cell_methods: time: mean within days; description: Estimated mean temperature from maxi-
mum and minimum temperatures.

xclim.indicators.atmos._conversion.universal_thermal_climate_index(tas: Union[DataArray, str]
= 'tas', hurs:
Union[DataArray, str] =
'hurs', sfcWind:
Union[DataArray, str] =
'sfcWind', mrt:
Optional[Union[DataArray,
str]] = None, rsds:
Optional[Union[DataArray,
str]] = None, rsus:
Optional[Union[DataArray,
str]] = None, rlds:
Optional[Union[DataArray,
str]] = None, rlus:
Optional[Union[DataArray,
str]] = None, *, stat: str =
'average', mask_invalid: bool
= True, ds: Dataset = None)
→ DataArray

Universal Thermal Climate Index (UTCI) (realm: atmos)

UTCI is the equivalent temperature for the environment derived from a reference environment and is used to
evaluate heat stress in outdoor spaces.

Based on indice universal_thermal_climate_index().

Parameters
• tas (str or DataArray) – Mean temperature Default : ds.tas. [Required units : [temperature]]

• hurs (str or DataArray) – Relative Humidity Default : ds.hurs. [Required units : []]

• sfcWind (str or DataArray) – Wind velocity Default : ds.sfcWind. [Required units : [speed]]

• mrt (str or DataArray, optional) – Mean radiant temperature [Required units : [tempera-
ture]]

• rsds (str or DataArray, optional) – Surface Downwelling Shortwave Radiation This is nec-
essary if mrt is not None. [Required units : [radiation]]

• rsus (str or DataArray, optional) – Surface Upwelling Shortwave Radiation This is necessary
if mrt is not None. [Required units : [radiation]]

• rlds (str or DataArray, optional) – Surface Downwelling Longwave Radiation This is nec-
essary if mrt is not None. [Required units : [radiation]]

• rlus (str or DataArray, optional) – Surface Upwelling Longwave Radiation This is necessary
if mrt is not None. [Required units : [radiation]]

16.1. xclim package 685

xclim Documentation, Release 0.39.0

• stat ({‘sunlit’, ‘average’, ‘instant’}) – Which statistic to apply. If “average”, the average of
the cosine of the solar zenith angle is calculated. If “instant”, the instantaneous cosine of the
solar zenith angle is calculated. If “sunlit”, the cosine of the solar zenith angle is calculated
during the sunlit period of each interval. If “instant”, the instantaneous cosine of the solar
zenith angle is calculated. This is necessary if mrt is not None. Default : average.

• mask_invalid (boolean) – If True (default), UTCI values are NaN where any of the inputs
are outside their validity ranges : -50°C < tas < 50°C, -30°C < tas - mrt < 30°C and 0.5 m/s
< sfcWind < 17.0 m/s. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
utci (DataArray) – Universal Thermal Climate Index (UTCI) [K], with additional attributes:
description: UTCI is the equivalent temperature for the environment derived from a reference
environment and is used to evaluate heat stress in outdoor spaces.

Notes

See: http://www.utci.org/utcineu/utcineu.php

References

Bröde [2009], Błażejczyk, Jendritzky, Bröde, Fiala, Havenith, Epstein, Psikuta, and Kampmann [2013]

xclim.indicators.atmos._conversion.water_budget(pr: Union[DataArray, str] = 'pr', evspsblpot:
Optional[Union[DataArray, str]] = None, tasmin:
Optional[Union[DataArray, str]] = None, tasmax:
Optional[Union[DataArray, str]] = None, tas:
Optional[Union[DataArray, str]] = None, lat:
Optional[Union[DataArray, str]] = None, hurs:
Optional[Union[DataArray, str]] = None, rsds:
Optional[Union[DataArray, str]] = None, rsus:
Optional[Union[DataArray, str]] = None, rlds:
Optional[Union[DataArray, str]] = None, rlus:
Optional[Union[DataArray, str]] = None, sfcwind:
Optional[Union[DataArray, str]] = None, *, ds:
Dataset = None)→ DataArray

Water budget (realm: atmos)

Precipitation minus potential evapotranspiration as a measure of an approximated surface water budget.

Based on indice water_budget(). With injected parameters: method=dummy.

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• evspsblpot (str or DataArray, optional) – Potential evapotranspiration [Required units : [pre-
cipitation]]

• tasmin (str or DataArray, optional) – Minimum daily temperature. [Required units : [tem-
perature]]

• tasmax (str or DataArray, optional) – Maximum daily temperature. [Required units : [tem-
perature]]

• tas (str or DataArray, optional) – Mean daily temperature. [Required units : [temperature]]

686 Chapter 16. xclim

http://www.utci.org/utcineu/utcineu.php

xclim Documentation, Release 0.39.0

• lat (str or DataArray, optional) – Latitude coordinate, needed if evspsblpot is not given. If
None, a CF-conformant “latitude” field must be available within the pr DataArray. [Required
units : []]

• hurs (str or DataArray, optional) – Relative humidity. [Required units : []]

• rsds (str or DataArray, optional) – Surface Downwelling Shortwave Radiation [Required
units : [radiation]]

• rsus (str or DataArray, optional) – Surface Upwelling Shortwave Radiation [Required units
: [radiation]]

• rlds (str or DataArray, optional) – Surface Downwelling Longwave Radiation [Required
units : [radiation]]

• rlus (str or DataArray, optional) – Surface Upwelling Longwave Radiation [Required units
: [radiation]]

• sfcwind (str or DataArray, optional) – Surface wind velocity (at 10 m) [Required units :
[speed]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
water_budget (DataArray) – Water budget [kg m-2 s-1], with additional attributes: description:
Precipitation minus potential evapotranspiration as a measure of an approximated surface water
budget.

xclim.indicators.atmos._conversion.water_budget_from_tas(pr: Union[DataArray, str] = 'pr',
evspsblpot: Optional[Union[DataArray,
str]] = None, tasmin:
Optional[Union[DataArray, str]] = None,
tasmax: Optional[Union[DataArray, str]]
= None, tas: Optional[Union[DataArray,
str]] = None, lat:
Optional[Union[DataArray, str]] = None,
hurs: Optional[Union[DataArray, str]] =
None, rsds: Optional[Union[DataArray,
str]] = None, rsus:
Optional[Union[DataArray, str]] = None,
rlds: Optional[Union[DataArray, str]] =
None, rlus: Optional[Union[DataArray,
str]] = None, sfcwind:
Optional[Union[DataArray, str]] = None,
*, method: str = 'BR65', ds: Dataset =
None)→ DataArray

Water budget (realm: atmos)

Precipitation minus potential evapotranspiration as a measure of an approximated surface water budget, where
the potential evapotranspiration is calculated with a given method.

Based on indice water_budget().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• evspsblpot (str or DataArray, optional) – Potential evapotranspiration [Required units : [pre-
cipitation]]

16.1. xclim package 687

xclim Documentation, Release 0.39.0

• tasmin (str or DataArray, optional) – Minimum daily temperature. [Required units : [tem-
perature]]

• tasmax (str or DataArray, optional) – Maximum daily temperature. [Required units : [tem-
perature]]

• tas (str or DataArray, optional) – Mean daily temperature. [Required units : [temperature]]

• lat (str or DataArray, optional) – Latitude coordinate, needed if evspsblpot is not given. If
None, a CF-conformant “latitude” field must be available within the pr DataArray. [Required
units : []]

• hurs (str or DataArray, optional) – Relative humidity. [Required units : []]

• rsds (str or DataArray, optional) – Surface Downwelling Shortwave Radiation [Required
units : [radiation]]

• rsus (str or DataArray, optional) – Surface Upwelling Shortwave Radiation [Required units
: [radiation]]

• rlds (str or DataArray, optional) – Surface Downwelling Longwave Radiation [Required
units : [radiation]]

• rlus (str or DataArray, optional) – Surface Upwelling Longwave Radiation [Required units
: [radiation]]

• sfcwind (str or DataArray, optional) – Surface wind velocity (at 10 m) [Required units :
[speed]]

• method (str) – Method to use to calculate the potential evapotranspiration. Default : BR65.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
water_budget_from_tas (DataArray) – Water budget (“{method}” method) [kg m-2 s-1], with
additional attributes: description: Precipitation minus potential evapotranspiration as a measure
of an approximated surface water budget, where the potential evapotranspiration is calculated
with the {method} method.

xclim.indicators.atmos._conversion.wind_chill_index(tas: Union[DataArray, str] = 'tas', sfcWind:
Union[DataArray, str] = 'sfcWind', *, method:
str = 'CAN', ds: Dataset = None)→ DataArray

Wind chill (realm: atmos)

Wind chill factor is an index that equates to how cold an average person feels. It is calculated from the temperature
and the wind speed at 10 m. As defined by Environment and Climate Change Canada, a second formula is used
for light winds. The standard formula is otherwise the same as used in the United States.

Based on indice wind_chill_index(). With injected parameters: mask_invalid=True.

Parameters
• tas (str or DataArray) – Surface air temperature. Default : ds.tas. [Required units : [tem-

perature]]

• sfcWind (str or DataArray) – Surface wind speed (10 m). Default : ds.sfcWind. [Required
units : [speed]]

• method ({‘US’, ‘CAN’}) – If “CAN” (default), a “slow wind” equation is used where winds
are slower than 5 km/h, see Notes. Default : CAN.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

688 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Returns
wind_chill (DataArray) – Wind chill factor [degC], with additional attributes: description:
<Dynamically generated string>

Notes

Following the calculations of Environment and Climate Change Canada, this function switches from the stan-
dardized index to another one for slow winds. The standard index is the same as used by the National Weather
Service of the USA [US Department of Commerce, n.d.]. Given a temperature at surface 𝑇 (in °C) and 10-m
wind speed 𝑉 (in km/h), the Wind Chill Index 𝑊 (dimensionless) is computed as:

𝑊 = 13.12 + 0.6125 * 𝑇 − 11.37 * 𝑉 0.16 + 0.3965 * 𝑇 * 𝑉 0.16

Under slow winds (𝑉 < 5 km/h), and using the canadian method, it becomes:

𝑊 = 𝑇 +
−1.59 + 0.1345 * 𝑇

5
* 𝑉

Both equations are invalid for temperature over 0°C in the canadian method.

The american Wind Chill Temperature index (WCT), as defined by USA’s National Weather Service, is computed
when method=’US’. In that case, the maximal valid temperature is 50°F (10 °C) and minimal wind speed is 3
mph (4.8 km/h).

For more information, see:

• National Weather Service FAQ: [US Department of Commerce, n.d.].

• The New Wind Chill Equivalent Temperature Chart: [Osczevski and Bluestein, 2005].

References

Mekis, Vincent, Shephard, and Zhang [2015], US Department of Commerce [n.d.]

xclim.indicators.atmos._conversion.wind_speed_from_vector(uas: Union[DataArray, str] = 'uas', vas:
Union[DataArray, str] = 'vas', *,
calm_wind_thresh: str = '0.5 m/s', ds:
Dataset = None)→ Tuple[DataArray,
DataArray]

Wind speed and direction from vector (realm: atmos)

Calculation of the magnitude and direction of the wind speed from the two components west-east and south-north.

Based on indice uas_vas_2_sfcwind().

Parameters
• uas (str or DataArray) – Eastward wind velocity Default : ds.uas. [Required units : [speed]]

• vas (str or DataArray) – Northward wind velocity Default : ds.vas. [Required units : [speed]]

• calm_wind_thresh (quantity (string with units)) – The threshold under which winds are
considered “calm” and for which the direction is set to 0. On the Beaufort scale, calm winds
are defined as < 0.5 m/s. Default : 0.5 m/s. [Required units : [speed]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

16.1. xclim package 689

xclim Documentation, Release 0.39.0

Returns
sfcWind (DataArray) – Near-surface wind speed (wind_speed) [m s-1], with additional at-
tributes: description: Wind speed computed as the magnitude of the (uas, vas) vec-
tor.sfcWindfromdir : DataArray Near-surface wind from direction (wind_from_direction) [de-
gree], with additional attributes: description: Wind direction computed as the angle of the (uas,
vas) vector. A direction of 0° is attributed to winds with a speed under {calm_wind_thresh}.

Notes

Winds with a velocity less than calm_wind_thresh are given a wind direction of 0°, while stronger northerly
winds are set to 360°.

xclim.indicators.atmos._conversion.wind_vector_from_speed(sfcWind: Union[DataArray, str] =
'sfcWind', sfcWindfromdir:
Union[DataArray, str] =
'sfcWindfromdir', *, ds: Dataset =
None)→ Tuple[DataArray, DataArray]

Wind vector from speed and direction (realm: atmos)

Calculation of the two components (west-east and north-south) of the wind from the magnitude of its speed and
direction of origin.

Based on indice sfcwind_2_uas_vas().

Parameters
• sfcWind (str or DataArray) – Wind velocity Default : ds.sfcWind. [Required units : [speed]]

• sfcWindfromdir (str or DataArray) – Direction from which the wind blows, following the
meteorological convention where 360 stands for North. Default : ds.sfcWindfromdir. [Re-
quired units : []]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
uas (DataArray) – Near-surface eastward wind (eastward_wind) [m s-1], with additional at-
tributes: description: Eastward wind speed computed from the magnitude of its speed and di-
rection of origin.vas : DataArray Near-surface northward wind (northward_wind) [m s-1], with
additional attributes: description: Northward wind speed computed from magnitude of its speed
and direction of origin.

xclim.indicators.atmos._precip module

Precipitation indicator definitions.

690 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indicators.atmos._precip.cffwis_indices(tas: Union[DataArray, str] = 'tas', pr:
Union[DataArray, str] = 'pr', sfcWind:
Union[DataArray, str] = 'sfcWind', hurs:
Union[DataArray, str] = 'hurs', lat: Union[DataArray,
str] = 'lat', snd: Optional[Union[DataArray, str]] =
None, ffmc0: Optional[Union[DataArray, str]] = None,
dmc0: Optional[Union[DataArray, str]] = None, dc0:
Optional[Union[DataArray, str]] = None, season_mask:
Optional[Union[DataArray, str]] = None, *,
season_method: str | None = None, overwintering: bool
= False, dry_start: str | None = None, initial_start_up:
bool = True, ds: Dataset = None, **params)→
Tuple[DataArray, DataArray, DataArray, DataArray,
DataArray, DataArray]

Canadian Fire Weather Index System indices. (realm: atmos)

Computes the 6 fire weather indexes as defined by the Canadian Forest Service: the Drought Code, the Duff-
Moisture Code, the Fine Fuel Moisture Code, the Initial Spread Index, the Build Up Index and the Fire Weather
Index.

This indicator will check for missing values according to the method “skip”. Based on indice
cffwis_indices().

Parameters
• tas (str or DataArray) – Noon temperature. Default : ds.tas. [Required units : [temperature]]

• pr (str or DataArray) – Rain fall in open over previous 24 hours, at noon. Default : ds.pr.
[Required units : [precipitation]]

• sfcWind (str or DataArray) – Noon wind speed. Default : ds.sfcWind. [Required units :
[speed]]

• hurs (str or DataArray) – Noon relative humidity. Default : ds.hurs. [Required units : []]

• lat (str or DataArray) – Latitude coordinate Default : ds.lat. [Required units : []]

• snd (str or DataArray, optional) – Noon snow depth, only used if season_method=’LA08’
is passed. [Required units : [length]]

• ffmc0 (str or DataArray, optional) – Initial values of the fine fuel moisture code. [Required
units : []]

• dmc0 (str or DataArray, optional) – Initial values of the Duff moisture code. [Required units
: []]

• dc0 (str or DataArray, optional) – Initial values of the drought code. [Required units : []]

• season_mask (str or DataArray, optional) – Boolean mask, True where/when the fire season
is active. [Required units : []]

• season_method ({‘LA08’, ‘GFWED’, None, ‘WF93’}) – How to compute the start-up and
shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar to
the R fire function. Ignored if season_mask is given. Default : None.

• overwintering (boolean) – Whether to activate DC overwintering or not. If True, either
season_method or season_mask must be given. Default : False.

• dry_start ({‘CFS’, ‘GFWED’, None}) – Whether to activate the DC and DMC “dry start”
mechanism or not, see fire_weather_ufunc(). Default : None.

16.1. xclim package 691

xclim Documentation, Release 0.39.0

• initial_start_up (boolean) – If True (default), gridpoints where the fire season is active on
the first timestep go through a start_up phase for that time step. Otherwise, previous codes
must be given as a continuing fire season is assumed for those points. Any other keyword pa-
rameters as defined in fire_weather_ufunc() and in default_params. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• params – Default : None.

Returns
dc (DataArray) – Drought Code (drought_code), with additional attributes: description: Nu-
meric rating of the average moisture content of deep, compact organic layers.dmc : DataArray
Duff Moisture Code (duff_moisture_code), with additional attributes: description: Numeric rat-
ing of the average moisture content of loosely compacted organic layers of moderate depth.ffmc
: DataArray Fine Fuel Moisture Code (fine_fuel_moisture_code), with additional attributes: de-
scription: Numeric rating of the average moisture content of litter and other cured fine fuels.isi
: DataArray Initial Spread Index (initial_spread_index), with additional attributes: description:
Numeric rating of the expected rate of fire spread.bui : DataArray Buildup Index (buildup_index),
with additional attributes: description: Numeric rating of the total amount of fuel available for
combustion.fwi : DataArray Fire Weather Index (fire_weather_index), with additional attributes:
description: Numeric rating of fire intensity.

Notes

See Natural Resources Canada [n.d.], the xclim.indices.fire module documentation, and the docstring of
fire_weather_ufunc() for more information.

References

Wang, Anderson, and Suddaby [2015]

xclim.indicators.atmos._precip.cold_and_dry_days(tas: Union[DataArray, str] = 'tas', pr:
Union[DataArray, str] = 'pr', tas_per:
Union[DataArray, str] = 'tas_per', pr_per:
Union[DataArray, str] = 'pr_per', *, freq: str = 'YS',
ds: Dataset = None, **indexer)→ DataArray

Cold and dry days (realm: atmos)

Number of days with temperature below a given percentile and precipitation below a given percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_and_dry_days().

Parameters
• tas (str or DataArray) – Mean daily temperature values Default : ds.tas. [Required units :

[temperature]]

• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• tas_per (str or DataArray) – First quartile of daily mean temperature computed by month.
Default : ds.tas_per. [Required units : [temperature]]

• pr_per (str or DataArray) – First quartile of daily total precipitation computed by month. ..
warning:: Before computing the percentiles, all the precipitation below 1mm must be filtered
out! Otherwise, the percentiles will include non-wet days. Default : ds.pr_per. [Required
units : [precipitation]]

692 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
cold_and_dry_days (DataArray) – Number of days where temperature is below
{tas_per_thresh}th percentile and precipitation is below {pr_per_thresh}th percentile [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number
of days where temperature is below {tas_per_thresh}th percentile and precipitation is below
{pr_per_thresh}th percentile.

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indicators.atmos._precip.cold_and_wet_days(tas: Union[DataArray, str] = 'tas', pr:
Union[DataArray, str] = 'pr', tas_per:
Union[DataArray, str] = 'tas_per', pr_per:
Union[DataArray, str] = 'pr_per', *, freq: str = 'YS',
ds: Dataset = None, **indexer)→ DataArray

Cold and wet days (realm: atmos)

Number of days with temperature below a given percentile and precipitation above a given percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_and_wet_days().

Parameters
• tas (str or DataArray) – Mean daily temperature values Default : ds.tas. [Required units :

[temperature]]

• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• tas_per (str or DataArray) – First quartile of daily mean temperature computed by month.
Default : ds.tas_per. [Required units : [temperature]]

• pr_per (str or DataArray) – Third quartile of daily total precipitation computed by month.
Default : ds.pr_per. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

16.1. xclim package 693

xclim Documentation, Release 0.39.0

Returns
cold_and_wet_days (DataArray) – Number of days where temperature is below
{tas_per_thresh}th percentile and precipitation is above {pr_per_thresh}th percentile [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number
of days where temperature is below {tas_per_thresh}th percentile and precipitation is above
{pr_per_thresh}th percentile.

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indicators.atmos._precip.daily_pr_intensity(pr: Union[DataArray, str] = 'pr', *, thresh: str = '1
mm/day', freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Simple Daily Intensity Index (realm: atmos)

Average precipitation for days with daily precipitation above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
daily_pr_intensity().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
sdii (DataArray) – Average precipitation during days with daily precipitation over {thresh} (Sim-
ple Daily Intensity Index: SDII) (lwe_thickness_of_precipitation_amount) [mm d-1], with ad-
ditional attributes: description: {freq} Simple Daily Intensity Index (SDII) or {freq} average
precipitation for days with daily precipitation over {thresh}.

694 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let p = 𝑝0, 𝑝1, . . . , 𝑝𝑛 be the daily precipitation and 𝑡ℎ𝑟𝑒𝑠ℎ be the precipitation threshold defining wet days.
Then the daily precipitation intensity is defined as:∑︀𝑛

𝑖=0 𝑝𝑖[𝑝𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ]∑︀𝑛
𝑖=0[𝑝𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

xclim.indicators.atmos._precip.days_over_precip_doy_thresh(pr: Union[DataArray, str] = 'pr',
pr_per: Union[DataArray, str] =
'pr_per', *, thresh: str = '1 mm/day',
freq: str = 'YS', bootstrap: bool =
False, op: str = '>', ds: Dataset =
None, **indexer)→ DataArray

Number of days with precipitation above a given daily percentile (realm: atmos)

Number of days in a period where precipitation is above a given daily percentile and a fixed threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
days_over_precip_thresh().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – Percentile of wet day precipitation flux. Either computed daily
(one value per day of year) or computed over a period (one value per spatial point). Default
: ds.pr_per. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
days_over_precip_doy_thresh (DataArray) – Number of days with daily pre-
cipitation flux above the {pr_per_thresh}th percentile of {pr_per_period} (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_above_daily_threshold) [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number of
days with precipitation above the {pr_per_thresh}th daily percentile. Only days with at least
{thresh} are counted. A {pr_per_window} day(s) window, centered on each calendar day in the
{pr_per_period} period, is used to compute the {pr_per_thresh}th percentile(s).

16.1. xclim package 695

xclim Documentation, Release 0.39.0

xclim.indicators.atmos._precip.days_over_precip_thresh(pr: Union[DataArray, str] = 'pr', pr_per:
Union[DataArray, str] = 'pr_per', *, thresh:
str = '1 mm/day', freq: str = 'YS', bootstrap:
bool = False, op: str = '>', ds: Dataset =
None, **indexer)→ DataArray

Number of days with precipitation above a given percentile (realm: atmos)

Number of days in a period where precipitation is above a given percentile, calculated over a given period and a
fixed threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
days_over_precip_thresh().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – Percentile of wet day precipitation flux. Either computed daily
(one value per day of year) or computed over a period (one value per spatial point). Default
: ds.pr_per. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
days_over_precip_thresh (DataArray) – Number of days with precipita-
tion flux above the {pr_per_thresh}th percentile of {pr_per_period} (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_above_threshold) [days], with
additional attributes: cell_methods: time: sum over days; description: {freq} number of days
with precipitation above the {pr_per_thresh}th percentile of {pr_per_period} period. Only days
with at least {thresh} are counted.

xclim.indicators.atmos._precip.days_with_snow(prsn: Union[DataArray, str] = 'prsn', *, low: str = '0 kg
m-2 s-1', high: str = '1E6 kg m-2 s-1', freq: str =
'AS-JUL', ds: Dataset = None, **indexer)→ DataArray

Days with snowfall (realm: atmos)

Number of days with snow between a lower and upper limit.

This indicator will check for missing values according to the method “from_context”. Based on indice
days_with_snow().

Parameters

696 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• prsn (str or DataArray) – Solid precipitation flux. Default : ds.prsn. [Required units :
[precipitation]]

• low (quantity (string with units)) – Minimum threshold solid precipitation flux. Default : 0
kg m-2 s-1. [Required units : [precipitation]]

• high (quantity (string with units)) – Maximum threshold solid precipitation flux. Default :
1E6 kg m-2 s-1. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
days_with_snow (DataArray) – Number of days with solid precipitation flux between {low}
and {high} thresholds [days], with additional attributes: description: {freq} number of days
with solid precipitation flux larger than {low} and smaller or equal to {high}.

References

Matthews, Andrey, and Picketts [2017]

xclim.indicators.atmos._precip.drought_code(tas: Union[DataArray, str] = 'tas', pr: Union[DataArray,
str] = 'pr', lat: Union[DataArray, str] = 'lat', snd:
Optional[Union[DataArray, str]] = None, dc0:
Optional[Union[DataArray, str]] = None, season_mask:
Optional[Union[DataArray, str]] = None, *,
season_method: str | None = None, overwintering: bool =
False, dry_start: str | None = None, initial_start_up: bool
= True, ds: Dataset = None, **params)→ DataArray

Daily drought code (realm: atmos)

The Drought Index is part of the Canadian Forest-Weather Index system. It is a numerical code that estimates
the average moisture content of organic layers.

This indicator will check for missing values according to the method “skip”. Based on indice drought_code().

Parameters
• tas (str or DataArray) – Noon temperature. Default : ds.tas. [Required units : [temperature]]

• pr (str or DataArray) – Rain fall in open over previous 24 hours, at noon. Default : ds.pr.
[Required units : [precipitation]]

• lat (str or DataArray) – Latitude coordinate Default : ds.lat. [Required units : []]

• snd (str or DataArray, optional) – Noon snow depth. [Required units : [length]]

• dc0 (str or DataArray, optional) – Initial values of the drought code. [Required units : []]

• season_mask (str or DataArray, optional) – Boolean mask, True where/when the fire season
is active. [Required units : []]

16.1. xclim package 697

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

• season_method ({‘LA08’, ‘GFWED’, None, ‘WF93’}) – How to compute the start-up and
shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar to
the R fire function. Ignored if season_mask is given. Default : None.

• overwintering (boolean) – Whether to activate DC overwintering or not. If True, either
season_method or season_mask must be given. Default : False.

• dry_start ({‘CFS’, ‘GFWED’, None}) – Whether to activate the DC and DMC “dry start”
mechanism and which method to use. See fire_weather_ufunc(). Default : None.

• initial_start_up (boolean) – If True (default), grid points where the fire season is active on
the first timestep go through a start_up phase for that time step. Otherwise, previous codes
must be given as a continuing fire season is assumed for those points. Any other keyword pa-
rameters as defined in xclim.indices.fire.fire_weather_ufunc and in default_params. De-
fault : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• params – Default : None.

Returns
dc (DataArray) – Drought Code (drought_code), with additional attributes: description: Nu-
merical code estimating the average moisture content of organic layers.

Notes

See Natural Resources Canada [n.d.], the xclim.indices.fire module documentation, and the docstring of
fire_weather_ufunc() for more information.

References

Wang, Anderson, and Suddaby [2015]

xclim.indicators.atmos._precip.dry_days(pr: Union[DataArray, str] = 'pr', *, thresh: str = '0.2 mm/d',
freq: str = 'YS', op: str = '<', ds: Dataset = None, **indexer)
→ DataArray

Number of dry days (realm: atmos)

The number of days with daily precipitation under a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
dry_days().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0.2 mm/d. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

698 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Returns
dry_days (DataArray) – Number of dry days (number_of_days_with_lwe_thickness_of_precipitation_amount_below_threshold)
[days], with additional attributes: cell_methods: time: sum over days; description: {freq}
number of days with daily precipitation under {thresh}.

Notes

Let 𝑃𝑅𝑖𝑗 be the daily precipitation at day 𝑖 of period 𝑗. Then counted is the number of days where:∑︁
𝑃𝑅𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑚/𝑑𝑎𝑦]

xclim.indicators.atmos._precip.dry_spell_frequency(pr: Union[DataArray, str] = 'pr', *, thresh: str =
'1.0 mm', window: int = 3, freq: str = 'YS',
resample_before_rl: bool = True, op: str = 'sum',
ds: Dataset = None)→ DataArray

Dry spell frequency (realm: atmos)

The frequency of dry periods of N days or more, during which the accumulated or maximum precipitation over
a given time window of days is below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
dry_spell_frequency().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation amount under which a period is consid-
ered dry. The value against which the threshold is compared depends on op . Default : 1.0
mm. [Required units : [length]]

• window (number) – Minimum length of the spells. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• op ({‘sum’, ‘max’}) – Operation to perform on the window. Default is “sum”, which checks
that the sum of accumulated precipitation over the whole window is less than the threshold.
“max” checks that the maximal daily precipitation amount within the window is less than
the threshold. This is the same as verifying that each individual day is below the threshold.
Default : sum.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
dry_spell_frequency (DataArray) – Number of dry periods of {window} day(s) or more, during
which the {op} precipitation on a window of {window} day(s) is below {thresh}., with additional
attributes: description: The {freq} number of dry periods of {window} day(s) or more, during
which the {op} precipitation on a window of {window} day(s) is below {thresh}.

xclim.indicators.atmos._precip.dry_spell_total_length(pr: Union[DataArray, str] = 'pr', *, thresh:
str = '1.0 mm', window: int = 3, op: str =
'sum', freq: str = 'YS', resample_before_rl:
bool = True, ds: Dataset = None, **indexer)
→ DataArray

16.1. xclim package 699

xclim Documentation, Release 0.39.0

Dry spell total length (realm: atmos)

The total length of dry periods of N days or more, during which the accumulated or maximum precipitation over
a given time window of days is below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
dry_spell_total_length().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Accumulated precipitation value under which a period
is considered dry. Default : 1.0 mm. [Required units : [length]]

• window (number) – Number of days when the maximum or accumulated precipitation is
under threshold. Default : 3.

• op ({‘sum’, ‘max’}) – Reduce operation. Default : sum.

• freq (offset alias (string)) – Resampling frequency. Indexing parameters to compute the in-
dicator on a temporal subset of the data. It accepts the same arguments as xclim.indices.
generic.select_time(). Indexing is done after finding the dry days, but before finding
the spells. Default : YS.

• resample_before_rl (boolean) – Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Default : None.

Returns
dry_spell_total_length (DataArray) – Number of days in dry periods of {window} day(s) or
more, during which the {op} precipitation within windows of {window} day(s) is under {thresh}.
[days], with additional attributes: description: The {freq} number of days in dry periods of
{window} day(s) or more, during which the {op} precipitation within windows of {window}
day(s) is under {thresh}.

Notes

The algorithm assumes days before and after the timeseries are “wet”, meaning that the condition for being
considered part of a dry spell is stricter on the edges. For example, with window=3 and op=’sum’, the first day
of the series is considered part of a dry spell only if the accumulated precipitation within the first three days is
under the threshold. In comparison, a day in the middle of the series is considered part of a dry spell if any of the
three 3-day periods of which it is part are considered dry (so a total of five days are included in the computation,
compared to only three).

700 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indicators.atmos._precip.fire_weather_indexes(tas: Union[DataArray, str] = 'tas', pr:
Union[DataArray, str] = 'pr', sfcWind:
Union[DataArray, str] = 'sfcWind', hurs:
Union[DataArray, str] = 'hurs', lat:
Union[DataArray, str] = 'lat', snd:
Optional[Union[DataArray, str]] = None, ffmc0:
Optional[Union[DataArray, str]] = None, dmc0:
Optional[Union[DataArray, str]] = None, dc0:
Optional[Union[DataArray, str]] = None,
season_mask: Optional[Union[DataArray, str]]
= None, *, season_method: str | None = None,
overwintering: bool = False, dry_start: str |
None = None, initial_start_up: bool = True, ds:
Dataset = None, **params)→
Tuple[DataArray, DataArray, DataArray,
DataArray, DataArray, DataArray]

Fire weather indexes (realm: atmos)

Computes the 6 fire weather indexes as defined by the Canadian Forest Service: the Drought Code, the Duff-
Moisture Code, the Fine Fuel Moisture Code, the Initial Spread Index, the Build Up Index and the Fire Weather
Index.

This indicator will check for missing values according to the method “skip”. Based on indice
cffwis_indices().

Parameters
• tas (str or DataArray) – Noon temperature. Default : ds.tas. [Required units : [temperature]]

• pr (str or DataArray) – Rain fall in open over previous 24 hours, at noon. Default : ds.pr.
[Required units : [precipitation]]

• sfcWind (str or DataArray) – Noon wind speed. Default : ds.sfcWind. [Required units :
[speed]]

• hurs (str or DataArray) – Noon relative humidity. Default : ds.hurs. [Required units : []]

• lat (str or DataArray) – Latitude coordinate Default : ds.lat. [Required units : []]

• snd (str or DataArray, optional) – Noon snow depth, only used if season_method=’LA08’
is passed. [Required units : [length]]

• ffmc0 (str or DataArray, optional) – Initial values of the fine fuel moisture code. [Required
units : []]

• dmc0 (str or DataArray, optional) – Initial values of the Duff moisture code. [Required units
: []]

• dc0 (str or DataArray, optional) – Initial values of the drought code. [Required units : []]

• season_mask (str or DataArray, optional) – Boolean mask, True where/when the fire season
is active. [Required units : []]

• season_method ({‘LA08’, ‘GFWED’, None, ‘WF93’}) – How to compute the start-up and
shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar to
the R fire function. Ignored if season_mask is given. Default : None.

• overwintering (boolean) – Whether to activate DC overwintering or not. If True, either
season_method or season_mask must be given. Default : False.

• dry_start ({‘CFS’, ‘GFWED’, None}) – Whether to activate the DC and DMC “dry start”
mechanism or not, see fire_weather_ufunc(). Default : None.

16.1. xclim package 701

xclim Documentation, Release 0.39.0

• initial_start_up (boolean) – If True (default), gridpoints where the fire season is active on
the first timestep go through a start_up phase for that time step. Otherwise, previous codes
must be given as a continuing fire season is assumed for those points. Any other keyword pa-
rameters as defined in fire_weather_ufunc() and in default_params. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• params – Default : None.

Returns
dc (DataArray) – Drought code (drought_code), with additional attributes: description: Nu-
meric rating of the average moisture content of deep, compact organic layers.dmc : DataArray
Duff moisture code (duff_moisture_code), with additional attributes: description: Numeric rat-
ing of the average moisture content of loosely compacted organic layers of moderate depth.ffmc
: DataArray Fine fuel moisture code (fine_fuel_moisture_code), with additional attributes: de-
scription: Numeric rating of the average moisture content of litter and other cured fine fuels.isi
: DataArray Initial spread index (initial_spread_index), with additional attributes: description:
Numeric rating of the expected rate of fire spread.bui : DataArray Buildup index (buildup_index),
with additional attributes: description: Numeric rating of the total amount of fuel available for
combustion.fwi : DataArray Fire weather index (fire_weather_index), with additional attributes:
description: Numeric rating of fire intensity.

Notes

See Natural Resources Canada [n.d.], the xclim.indices.fire module documentation, and the docstring of
fire_weather_ufunc() for more information.

References

Wang, Anderson, and Suddaby [2015]

xclim.indicators.atmos._precip.first_snowfall(prsn: Union[DataArray, str] = 'prsn', *, thresh: str =
'0.5 mm/day', freq: str = 'AS-JUL', ds: Dataset = None,
**indexer)→ DataArray

First day where solid precipitation flux exceeded a given threshold (realm: atmos)

The first day where the solid precipitation flux exceeded a given threshold during a time period.

This indicator will check for missing values according to the method “from_context”. Based on indice
first_snowfall().

Parameters
• prsn (str or DataArray) – Solid precipitation flux. Default : ds.prsn. [Required units :

[precipitation]]

• thresh (quantity (string with units)) – Threshold precipitation flux on which to base evalua-
tion. Default : 0.5 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

702 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Returns
first_snowfall (DataArray) – Date of first day where the solid precipitation flux exceeded
{thresh} (day_of_year), with additional attributes: description: {freq} first day where the solid
precipitation flux exceeded {thresh}.

References

CBCL [2020].

xclim.indicators.atmos._precip.fraction_over_precip_doy_thresh(pr: Union[DataArray, str] = 'pr',
pr_per: Union[DataArray, str] =
'pr_per', *, thresh: str = '1
mm/day', freq: str = 'YS',
bootstrap: bool = False, op: str =
'>', ds: Dataset = None,
**indexer)→ DataArray

(realm: atmos)

Percentage of the total precipitation over period occurring in days when the precipitation is above a threshold
defining wet days and above a given percentile for that day.

This indicator will check for missing values according to the method “from_context”. Based on indice
fraction_over_precip_thresh().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – Percentile of wet day precipitation flux. Either computed daily
(one value per day of year) or computed over a period (one value per spatial point). Default
: ds.pr_per. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
fraction_over_precip_doy_thresh (DataArray) – Fraction of precipitation due to days with
daily precipitation above {pr_per_thresh}th daily percentile, with additional attributes: descrip-
tion: {freq} fraction of total precipitation due to days with precipitation above {pr_per_thresh}th
daily percentile. Only days with at least {thresh} are included in the total. A {pr_per_window}

16.1. xclim package 703

xclim Documentation, Release 0.39.0

day(s) window, centered on each calendar day in the {pr_per_period} period, is used to compute
the {pr_per_thresh}th percentile(s).

xclim.indicators.atmos._precip.fraction_over_precip_thresh(pr: Union[DataArray, str] = 'pr',
pr_per: Union[DataArray, str] =
'pr_per', *, thresh: str = '1 mm/day',
freq: str = 'YS', bootstrap: bool =
False, op: str = '>', ds: Dataset =
None, **indexer)→ DataArray

Fraction of precipitation due to wet days with daily precipitation over a given percentile. (realm: atmos)

Percentage of the total precipitation over period occurring in days when the precipitation is above a threshold
defining wet days and above a given percentile for that day.

This indicator will check for missing values according to the method “from_context”. Based on indice
fraction_over_precip_thresh().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• pr_per (str or DataArray) – Percentile of wet day precipitation flux. Either computed daily
(one value per day of year) or computed over a period (one value per spatial point). Default
: ds.pr_per. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
fraction_over_precip_thresh (DataArray) – Fraction of precipitation due to days with precipi-
tation above {pr_per_thresh}th daily percentile, with additional attributes: description: {freq}
fraction of total precipitation due to days with precipitation above {pr_per_thresh}th percentile
of {pr_per_period} period. Only days with at least {thresh} are included in the total.

xclim.indicators.atmos._precip.griffiths_drought_factor(pr: Union[DataArray, str] = 'pr', smd:
Union[DataArray, str] = 'smd', *,
limiting_func: str = 'xlim', ds: Dataset =
None)→ DataArray

Griffiths drought factor based on the soil moisture deficit. (realm: atmos)

The drought factor is a numeric indicator of the forest fire fuel availability in the deep litter bed. It is often used
in the calculation of the McArthur Forest Fire Danger Index. The method implemented here follows Finkele et
al. [2006].

704 Chapter 16. xclim

xclim Documentation, Release 0.39.0

This indicator will check for missing values according to the method “skip”. Based on indice
griffiths_drought_factor().

Parameters
• pr (str or DataArray) – Total rainfall over previous 24 hours [mm/day]. Default : ds.pr.

[Required units : [precipitation]]

• smd (str or DataArray) – Daily soil moisture deficit (often KBDI) [mm/day]. Default :
ds.smd. [Required units : [precipitation]]

• limiting_func ({‘xlim’, ‘discrete’}) – How to limit the values of the drought factor. If “xlim”
(default), use equation (14) in Finkele et al. [2006]. If “discrete”, use equation Eq (13) in
Finkele et al. [2006], but with the lower limit of each category bound adjusted to match the
upper limit of the previous bound. Default : xlim.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
df (DataArray) – Griffiths Drought Factor (griffiths_drought_factor), with additional attributes:
description: Numeric indicator of the forest fire fuel availability in the deep litter bed

Notes

Calculation of the Griffiths drought factor depends on the rainfall over the previous 20 days. Thus, the first
non-NaN time point in the drought factor returned by this function corresponds to the 20th day of the input data.

References

Finkele, Mills, Beard, and Jones [2006], Griffiths [1999], Holgate, Van DIjk, Cary, and Yebra [2017]

xclim.indicators.atmos._precip.high_precip_low_temp(pr: Union[DataArray, str] = 'pr', tas:
Union[DataArray, str] = 'tas', *, pr_thresh: str
= '0.4 mm/d', tas_thresh: str = '-0.2 degC', freq:
str = 'YS', ds: Dataset = None, **indexer)→
DataArray

Days with precipitation and cold temperature (realm: atmos)

Number of days with precipitation above a given threshold and temperature below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
high_precip_low_temp().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Daily mean, minimum or maximum temperature. Default : ds.tas.
[Required units : [temperature]]

• pr_thresh (quantity (string with units)) – Precipitation threshold to exceed. Default : 0.4
mm/d. [Required units : [precipitation]]

• tas_thresh (quantity (string with units)) – Temperature threshold not to exceed. Default :
-0.2 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

16.1. xclim package 705

xclim Documentation, Release 0.39.0

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
high_precip_low_temp (DataArray) – Days with precipitation at or above {pr_thresh} and tem-
perature below {tas_thresh} [days], with additional attributes: cell_methods: time: sum over
days; description: {freq} number of days with precipitation at or above {pr_thresh} and temper-
ature below {tas_thresh}.

xclim.indicators.atmos._precip.keetch_byram_drought_index(pr: Union[DataArray, str] = 'pr',
tasmax: Union[DataArray, str] =
'tasmax', pr_annual: Union[DataArray,
str] = 'pr_annual', kbdi0:
Optional[Union[DataArray, str]] =
None, *, ds: Dataset = None)→
DataArray

Keetch-Byram drought index (KBDI) for soil moisture deficit. (realm: atmos)

The KBDI indicates the amount of water necessary to bring the soil moisture content back to field capacity. It is
often used in the calculation of the McArthur Forest Fire Danger Index. The method implemented here follows
Finkele et al. [2006] but limits the maximum KBDI to 203.2 mm, rather than 200 mm, in order to align best with
the majority of the literature.

This indicator will check for missing values according to the method “skip”. Based on indice
keetch_byram_drought_index().

Parameters
• pr (str or DataArray) – Total rainfall over previous 24 hours [mm/day]. Default : ds.pr.

[Required units : [precipitation]]

• tasmax (str or DataArray) – Maximum temperature near the surface over previous 24 hours
[degC]. Default : ds.tasmax. [Required units : [temperature]]

• pr_annual (str or DataArray) – Mean (over years) annual accumulated rainfall [mm/year].
Default : ds.pr_annual. [Required units : [precipitation]]

• kbdi0 (str or DataArray, optional) – Previous KBDI values used to initialise the KBDI
calculation [mm/day]. Defaults to 0. [Required units : [precipitation]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
kbdi (DataArray) – Keetch-Byran Drought Index (keetch_byram_drought_index) [mm/day],
with additional attributes: description: Amount of water necessary to bring the soil moisture
content back to field capacity

Notes

This method implements the method described in Finkele et al. [2006] (section 2.1.1) for calculating the KBDI
with one small difference: in Finkele et al. [2006] the maximum KBDI is limited to 200 mm to represent the
maximum field capacity of the soil (8 inches according to Keetch and Byram [1968]). However, it is more
common in the literature to limit the KBDI to 203.2 mm which is a more accurate conversion from inches to
mm. In this function, the KBDI is limited to 203.2 mm.

706 Chapter 16. xclim

xclim Documentation, Release 0.39.0

References

Dolling, Chu, and Fujioka [2005], Finkele, Mills, Beard, and Jones [2006], Holgate, Van DIjk, Cary, and Yebra
[2017], Keetch and Byram [1968]

xclim.indicators.atmos._precip.last_snowfall(prsn: Union[DataArray, str] = 'prsn', *, thresh: str = '0.5
mm/day', freq: str = 'AS-JUL', ds: Dataset = None,
**indexer)→ DataArray

Last day where solid precipitation flux exceeded a given threshold (realm: atmos)

The last day where the solid precipitation flux exceeded a given threshold during a time period.

This indicator will check for missing values according to the method “from_context”. Based on indice
last_snowfall().

Parameters
• prsn (str or DataArray) – Solid precipitation flux. Default : ds.prsn. [Required units :

[precipitation]]

• thresh (quantity (string with units)) – Threshold precipitation flux on which to base evalua-
tion. Default : 0.5 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
last_snowfall (DataArray) – Date of last day where the solid precipitation flux exceeded {thresh}
(day_of_year), with additional attributes: description: {freq} last day where the solid precipita-
tion flux exceeded {thresh}.

References

CBCL [2020].

xclim.indicators.atmos._precip.liquid_precip_accumulation(pr: Union[DataArray, str] = 'pr', tas:
Union[DataArray, str] = 'tas', *, thresh:
str = '0 degC', freq: str = 'YS', ds:
Dataset = None, **indexer)→
DataArray

Total accumulated liquid precipitation. (realm: atmos)

Total accumulated liquid precipitation. Precipitation is considered liquid when the average daily temperature is
above 0°C.

This indicator will check for missing values according to the method “from_context”. Based on indice
precip_accumulation(). With injected parameters: phase=liquid.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Mean, maximum or minimum daily temperature. Default : ds.tas.
[Required units : [temperature]]

16.1. xclim package 707

xclim Documentation, Release 0.39.0

• thresh (quantity (string with units)) – Threshold of tas over which the precipication is as-
sumed to be liquid rain. Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
liquidprcptot (DataArray) – Total accumulated precipitation when temperature is above
{thresh} (lwe_thickness_of_liquid_precipitation_amount) [mm], with additional attributes:
cell_methods: time: sum over days; description: {freq} total {phase} precipitation, estimated
as precipitation when temperature is above {thresh}.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

If tas and phase are given, the corresponding phase precipitation is estimated before computing the accumulation,
using one of snowfall_approximation or rain_approximation with the binary method.

xclim.indicators.atmos._precip.liquid_precip_ratio(pr: Union[DataArray, str] = 'pr', tas:
Union[DataArray, str] = 'tas', *, thresh: str = '0
degC', freq: str = 'QS-DEC', ds: Dataset = None,
**indexer)→ DataArray

Fraction of liquid to total precipitation (realm: atmos)

The ratio of total liquid precipitation over the total precipitation. Liquid precipitation is approximated from total
precipitation on days where temperature is above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
liquid_precip_ratio(). With injected parameters: prsn=None.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-
perature]]

• thresh (quantity (string with units)) – Threshold temperature under which precipitation is
assumed to be solid. Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : QS-DEC.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
liquid_precip_ratio (DataArray) – Fraction of liquid to total precipitation (temperature above

708 Chapter 16. xclim

xclim Documentation, Release 0.39.0

{thresh}), with additional attributes: description: The {freq} ratio of rainfall to total precipita-
tion. Rainfall is estimated as precipitation on days where temperature is above {thresh}.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

𝑃𝑅𝑤𝑒𝑡𝑖𝑗

xclim.indicators.atmos._precip.max_1day_precipitation_amount(pr: Union[DataArray, str] = 'pr', *,
freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Maximum 1-day total precipitation (realm: atmos)

Maximum total daily precipitation for a given period.

This indicator will check for missing values according to the method “from_context”. Based on indice
max_1day_precipitation_amount().

Parameters
• pr (str or DataArray) – Daily precipitation values. Default : ds.pr. [Required units : [pre-

cipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
rx1day (DataArray) – Maximum 1-day total precipitation
(lwe_thickness_of_precipitation_amount) [mm/day], with additional attributes: cell_methods:
time: maximum over days; description: {freq} maximum 1-day total precipitation

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day i, then for a period j:

𝑃𝑅𝑥𝑖𝑗 = 𝑚𝑎𝑥(𝑃𝑅𝑖𝑗)

xclim.indicators.atmos._precip.max_n_day_precipitation_amount(pr: Union[DataArray, str] = 'pr', *,
window: int = 1, freq: str = 'YS',
ds: Dataset = None)→ DataArray

maximum n-day total precipitation (realm: atmos)

Maximum of the moving sum of daily precipitation for a given period.

This indicator will check for missing values according to the method “from_context”. Based on indice
max_n_day_precipitation_amount().

Parameters

16.1. xclim package 709

xclim Documentation, Release 0.39.0

• pr (str or DataArray) – Daily precipitation values. Default : ds.pr. [Required units : [pre-
cipitation]]

• window (number) – Window size in days. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
rx{window}day (DataArray) – maximum {window}-day total precipitation amount
(lwe_thickness_of_precipitation_amount) [mm], with additional attributes: cell_methods:
time: maximum over days; description: {freq} maximum {window}-day total precipitation
amount.

xclim.indicators.atmos._precip.max_pr_intensity(pr: Union[DataArray, str] = 'pr', *, window: int = 1,
freq: str = 'YS', ds: Dataset = None)→ DataArray

Maximum precipitation intensity over time window (realm: atmos)

Maximum precipitation intensity over a given rolling time window.

This indicator will check for missing values according to the method “from_context”. Based on indice
max_pr_intensity(). Keywords : IDF curves.

Parameters
• pr (str or DataArray) – Hourly precipitation values. Default : ds.pr. [Required units :

[precipitation]]

• window (number) – Window size in hours. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
max_pr_intensity (DataArray) – Maximum precipitation intensity over rolling {window}h time
window (precipitation) [mm h-1], with additional attributes: cell_methods: time: max; descrip-
tion: {freq} maximum precipitation intensity over rolling {window}h time window.

xclim.indicators.atmos._precip.maximum_consecutive_dry_days(pr: Union[DataArray, str] = 'pr', *,
thresh: str = '1 mm/day', freq: str =
'YS', ds: Dataset = None)→
DataArray

Maximum consecutive dry days (realm: atmos)

The longest number of consecutive days where daily precipitation below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_dry_days().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• thresh (quantity (string with units)) – Threshold precipitation on which to base evaluation.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

710 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Returns
cdd (DataArray) – Maximum consecutive days with daily precipitation below {thresh} (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_below_threshold) [days], with addi-
tional attributes: cell_methods: time: sum over days; description: {freq} maximum number of
consecutive days with daily precipitation below {thresh}.

Notes

Let p = 𝑝0, 𝑝1, . . . , 𝑝𝑛 be a daily precipitation series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold under which a day is considered
dry. Then let s be the sorted vector of indices 𝑖 where [𝑝𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑝𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where
the precipitation crosses the threshold. Then the maximum number of consecutive dry days is given by

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑝𝑠𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indicators.atmos._precip.maximum_consecutive_wet_days(pr: Union[DataArray, str] = 'pr', *,
thresh: str = '1 mm/day', freq: str =
'YS', resample_before_rl: bool = True,
ds: Dataset = None)→ DataArray

Maximum consecutive wet days (realm: atmos)

The longest number of consecutive days where daily precipitation is at or above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_wet_days().

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• thresh (quantity (string with units)) – Threshold precipitation on which to base evaluation.
Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
cwd (DataArray) – Maximum consecutive days with daily precipitation at or above {thresh}
(number_of_days_with_lwe_thickness_of_precipitation_amount_at_or_above_threshold)
[days], with additional attributes: cell_methods: time: sum over days; description: {freq}
maximum number of consecutive days with daily precipitation at or above {thresh}.

16.1. xclim package 711

xclim Documentation, Release 0.39.0

Notes

Let x = 𝑥0, 𝑥1, . . . , 𝑥𝑛 be a daily precipitation series and s be the sorted vector of indices 𝑖 where [𝑝𝑖 >
𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑝𝑖+1 > 𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where the precipitation crosses the wet day threshold. Then the
maximum number of consecutive wet days is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑥𝑠𝑗 > 0∘𝐶]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indicators.atmos._precip.mcarthur_forest_fire_danger_index(drought_factor:
Union[DataArray, str] =
'drought_factor', tasmax:
Union[DataArray, str] =
'tasmax', hurs:
Union[DataArray, str] = 'hurs',
sfcWind: Union[DataArray,
str] = 'sfcWind', *, ds: Dataset
= None)→ DataArray

McArthur forest fire danger index (FFDI) Mark 5. (realm: atmos)

The FFDI is a numeric indicator of the potential danger of a forest fire.

This indicator will check for missing values according to the method “skip”. Based on indice
mcarthur_forest_fire_danger_index().

Parameters
• drought_factor (str or DataArray) – The drought factor, often the daily Griffiths drought

factor (see griffiths_drought_factor()). Default : ds.drought_factor. [Required units
: []]

• tasmax (str or DataArray) – The daily maximum temperature near the surface, or similar.
Different applications have used different inputs here, including the previous/current day’s
maximum daily temperature at a height of 2m, and the daily mean temperature at a height of
2m. Default : ds.tasmax. [Required units : [temperature]]

• hurs (str or DataArray) – The relative humidity near the surface and near the time of the
maximum daily temperature, or similar. Different applications have used different inputs
here, including the mid-afternoon relative humidity at a height of 2m, and the daily mean
relative humidity at a height of 2m. Default : ds.hurs. [Required units : []]

• sfcWind (str or DataArray) – The wind speed near the surface and near the time of the
maximum daily temperature, or similar. Different applications have used different inputs
here, including the mid-afternoon wind speed at a height of 10m, and the daily mean wind
speed at a height of 10m. Default : ds.sfcWind. [Required units : [speed]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ffdi (DataArray) – McArthur Forest Fire Danger Index (mcarthur_forest_fire_danger_index),
with additional attributes: description: Numeric rating of the potential danger of a forest fire

712 Chapter 16. xclim

xclim Documentation, Release 0.39.0

References

Dowdy [2018], Holgate, Van DIjk, Cary, and Yebra [2017], Noble, Gill, and Bary [1980]

xclim.indicators.atmos._precip.precip_accumulation(pr: Union[DataArray, str] = 'pr', *, thresh: str =
'0 degC', freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Total accumulated precipitation (solid and liquid) (realm: atmos)

Total accumulated precipitation. If the average daily temperature is given, the phase parameter can be used to
restrict the calculation to precipitation of only one phase (liquid or solid). Precipitation is considered solid if the
average daily temperature is below 0°C (and vice versa).

This indicator will check for missing values according to the method “from_context”. Based on indice
precip_accumulation(). With injected parameters: tas=None, phase=None.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• thresh (quantity (string with units)) – Threshold of tas over which the precipication is as-
sumed to be liquid rain. Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
prcptot (DataArray) – Total accumulated precipitation (lwe_thickness_of_precipitation_amount)
[mm], with additional attributes: cell_methods: time: sum over days; description: {freq} total
precipitation.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

If tas and phase are given, the corresponding phase precipitation is estimated before computing the accumulation,
using one of snowfall_approximation or rain_approximation with the binary method.

xclim.indicators.atmos._precip.rain_on_frozen_ground_days(pr: Union[DataArray, str] = 'pr', tas:
Union[DataArray, str] = 'tas', *, thresh:
str = '1 mm/d', freq: str = 'YS', ds:
Dataset = None, **indexer)→
DataArray

Number of rain on frozen ground days (realm: atmos)

The number of days with rain above a given threshold after a series of seven days with average daily temperature
below 0°C. Precipitation is assumed to be rain when the daily average temperature is above 0°C.

This indicator will check for missing values according to the method “from_context”. Based on indice
rain_on_frozen_ground_days().

16.1. xclim package 713

xclim Documentation, Release 0.39.0

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-
perature]]

• thresh (quantity (string with units)) – Precipitation threshold to consider a day as a rain
event. Default : 1 mm/d. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
rain_frzgr (DataArray) – Number of rain on frozen ground days
(mean daily temperature > 0℃ and precipitation > {thresh}) (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_above_threshold) [days], with
additional attributes: description: {freq} number of days with rain above {thresh} after a series
of seven days with average daily temperature below 0℃. Precipitation is assumed to be rain
when the daily average temperature is above 0℃.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation and 𝑇𝐺𝑖 be the mean daily temperature of day 𝑖. Then for a period 𝑗,
rain on frozen grounds days are counted where:

𝑃𝑅𝑖 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑚]

and where

𝑇𝐺𝑖0

is true for continuous periods where 𝑖7

xclim.indicators.atmos._precip.rprctot(pr: Union[DataArray, str] = 'pr', prc: Union[DataArray, str] =
'prc', *, thresh: str = '1.0 mm/day', freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Proportion of accumulated precipitation arising from convective processes (realm: atmos)

The proportion of total precipitation due to convective processes. Only days with surpassing a minimum precip-
itation flux are considered.

This indicator will check for missing values according to the method “from_context”. Based on indice
rprctot().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• prc (str or DataArray) – Daily convective precipitation. Default : ds.prc. [Required units :
[precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1.0 mm/day. [Required units : [precipitation]]

714 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
rprctot (DataArray) – Proportion of accumulated precipitation arising from convective process-
eswith precipitation of at least {thresh}, with additional attributes: cell_methods: time: sum;
description: {freq} proportion of accumulated precipitation arising from convective processes
with precipitation of at least {thresh}.

xclim.indicators.atmos._precip.solid_precip_accumulation(pr: Union[DataArray, str] = 'pr', tas:
Union[DataArray, str] = 'tas', *, thresh:
str = '0 degC', freq: str = 'YS', ds: Dataset
= None, **indexer)→ DataArray

Total accumulated solid precipitation. (realm: atmos)

Total accumulated solid precipitation. Precipitation is considered solid when the average daily temperature is at
or below 0°C.

This indicator will check for missing values according to the method “from_context”. Based on indice
precip_accumulation(). With injected parameters: phase=solid.

Parameters
• pr (str or DataArray) – Mean daily precipitation flux. Default : ds.pr. [Required units :

[precipitation]]

• tas (str or DataArray) – Mean, maximum or minimum daily temperature. Default : ds.tas.
[Required units : [temperature]]

• thresh (quantity (string with units)) – Threshold of tas over which the precipication is as-
sumed to be liquid rain. Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
solidprcptot (DataArray) – Total accumulated solid precipitation
(lwe_thickness_of_snowfall_amount) [mm], with additional attributes: cell_methods: time:
sum over days; description: {freq} total solid precipitation, estimated as precipitation when
temperature at or below {thresh}.

16.1. xclim package 715

xclim Documentation, Release 0.39.0

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

If tas and phase are given, the corresponding phase precipitation is estimated before computing the accumulation,
using one of snowfall_approximation or rain_approximation with the binary method.

xclim.indicators.atmos._precip.standardized_precipitation_evapotranspiration_index(wb:
Union[DataArray,
str] =
'wb',
wb_cal:
Union[DataArray,
str] =
'wb_cal',
*, freq:
str =
'MS',
window:
int = 1,
dist: str
=
'gamma',
method:
str =
'APP',
ds:
Dataset
=
None)
→
DataArray

Standardized Precipitation Evapotranspiration Index (SPEI) (realm: atmos)

Water budget (precipitation - evapotranspiration) over a moving window, normalized such that the SPEI averages
to 0 for the calibration data. The window unit X is the minimal time period defined by the resampling frequency.

This indicator will check for missing values according to the method “from_context”. Based on indice
standardized_precipitation_evapotranspiration_index().

Parameters
• wb (str or DataArray) – Daily water budget (pr - pet). Default : ds.wb. [Required units :

[precipitation]]

• wb_cal (str or DataArray) – Daily water budget used for calibration. Default : ds.wb_cal.
[Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. A monthly or daily frequency is expected.
Default : MS.

• window (number) – Averaging window length relative to the resampling frequency. For
example, if freq=”MS”, i.e. a monthly resampling, the window is an integer number of
months. Default : 1.

716 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• dist ({‘gamma’, ‘fisk’}) – Name of the univariate distribution. (see scipy.stats). Default
: gamma.

• method ({‘APP’, ‘ML’}) – Name of the fitting method, such as ML (maximum likelihood),
APP (approximate). The approximate method uses a deterministic function that doesn’t
involve any optimization. Available methods vary with the distribution: ‘gamma’:{‘APP’,
‘ML’}, ‘fisk’:{‘ML’} Default : APP.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
spei (DataArray) – Standardized precipitation evapotranspiration index (SPEI) (spei), with ad-
ditional attributes: description: Water budget (precipitation minus evapotranspiration) over a
moving {window}-X window, normalized such that SPEI averages to 0 for calibration data. The
window unit X is the minimal time period defined by the resampling frequency {freq}.

Notes

See Standardized Precipitation Index (SPI) for more details on usage.

xclim.indicators.atmos._precip.standardized_precipitation_index(pr: Union[DataArray, str] = 'pr',
pr_cal: Union[DataArray, str] =
'pr_cal', *, freq: str = 'MS',
window: int = 1, dist: str =
'gamma', method: str = 'APP',
ds: Dataset = None)→
DataArray

Standardized Precipitation Index (SPI) (realm: atmos)

Precipitation over a moving window, normalized such that SPI averages to 0 for the calibration data. The window
unit X is the minimal time period defined by the resampling frequency.

This indicator will check for missing values according to the method “from_context”. Based on indice
standardized_precipitation_index().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• pr_cal (str or DataArray) – Daily precipitation used for calibration. Usually this is a tem-
poral subset of pr over some reference period. Default : ds.pr_cal. [Required units : [pre-
cipitation]]

• freq (offset alias (string)) – Resampling frequency. A monthly or daily frequency is expected.
Default : MS.

• window (number) – Averaging window length relative to the resampling frequency. For
example, if freq=”MS”, i.e. a monthly resampling, the window is an integer number of
months. Default : 1.

• dist ({‘gamma’, ‘fisk’}) – Name of the univariate distribution. (see scipy.stats). Default
: gamma.

• method ({‘APP’, ‘ML’}) – Name of the fitting method, such as ML (maximum likelihood),
APP (approximate). The approximate method uses a deterministic function that doesn’t in-
volve any optimization. Default : APP.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

16.1. xclim package 717

https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats
https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

xclim Documentation, Release 0.39.0

Returns
spi (DataArray) – Standardized Precipitation Index (SPI) (spi), with additional attributes: de-
scription: Precipitations over a moving {window}-X window, normalized such that SPI averages
to 0 for calibration data. The window unit X is the minimal time period defined by resampling
frequency {freq}.

Notes

The length N of the N-month SPI is determined by choosing the window = N. Supported statistical distributions
are: [“gamma”]

References

McKee, Doesken, and Kleist [1993]

xclim.indicators.atmos._precip.warm_and_dry_days(tas: Union[DataArray, str] = 'tas', pr:
Union[DataArray, str] = 'pr', tas_per:
Union[DataArray, str] = 'tas_per', pr_per:
Union[DataArray, str] = 'pr_per', *, freq: str = 'YS',
ds: Dataset = None, **indexer)→ DataArray

Warm and dry days (realm: atmos)

Number of days with temperature above a given percentile and precipitation below a given percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice
warm_and_dry_days().

Parameters
• tas (str or DataArray) – Mean daily temperature values Default : ds.tas. [Required units :

[temperature]]

• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• tas_per (str or DataArray) – Third quartile of daily mean temperature computed by month.
Default : ds.tas_per. [Required units : [temperature]]

• pr_per (str or DataArray) – First quartile of daily total precipitation computed by month. ..
warning:: Before computing the percentiles, all the precipitation below 1mm must be filtered
out! Otherwise, the percentiles will include non-wet days. Default : ds.pr_per. [Required
units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
warm_and_dry_days (DataArray) – Number of days where temperature is above
{tas_per_thresh}th percentile and precipitation is below {pr_per_thresh}th percentile [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number
of days where temperature is above {tas_per_thresh}th percentile and precipitation is below
{pr_per_thresh}th percentile.

718 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indicators.atmos._precip.warm_and_wet_days(tas: Union[DataArray, str] = 'tas', pr:
Union[DataArray, str] = 'pr', tas_per:
Union[DataArray, str] = 'tas_per', pr_per:
Union[DataArray, str] = 'pr_per', *, freq: str = 'YS',
ds: Dataset = None, **indexer)→ DataArray

Warm and wet days (realm: atmos)

Number of days with temperature above a given percentile and precipitation above a given percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice
warm_and_wet_days().

Parameters
• tas (str or DataArray) – Mean daily temperature values Default : ds.tas. [Required units :

[temperature]]

• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• tas_per (str or DataArray) – Third quartile of daily mean temperature computed by month.
Default : ds.tas_per. [Required units : [temperature]]

• pr_per (str or DataArray) – Third quartile of daily total precipitation computed by month. ..
warning:: Before computing the percentiles, all the precipitation below 1mm must be filtered
out! Otherwise, the percentiles will include non-wet days. Default : ds.pr_per. [Required
units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
warm_and_wet_days (DataArray) – Number of days where temperature above
{tas_per_thresh}th percentile and precipitation above {pr_per_thresh}th percentile [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number
of days where temperature is above {tas_per_thresh}th percentile and precipitation is above
{pr_per_thresh}th percentile.

16.1. xclim package 719

xclim Documentation, Release 0.39.0

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indicators.atmos._precip.wet_precip_accumulation(pr: Union[DataArray, str] = 'pr', *, thresh:
str = '1 mm/day', freq: str = 'YS', ds: Dataset
= None, **indexer)→ DataArray

Total accumulated precipitation (solid and liquid) during wet days (realm: atmos)

Total accumulated precipitation on days with precipitation. A day is considered to have precipitation if the
precipitation is greater than or equal to a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
prcptot().

Parameters
• pr (str or DataArray) – Total precipitation flux [mm d-1], [mm week-1], [mm month-1] or

similar. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Threshold over which precipitation starts being cumu-
lated. Default : 1 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
wet_prcptot (DataArray) – Total accumulated precipitation over days where precipitation
exceeds {thresh} (lwe_thickness_of_precipitation_amount) [mm], with additional attributes:
cell_methods: time: sum over days; description: {freq} total precipitation over wet days, de-
fined as days where precipitation exceeds {thresh}.

xclim.indicators.atmos._precip.wetdays(pr: Union[DataArray, str] = 'pr', *, thresh: str = '1.0 mm/day',
freq: str = 'YS', op: str = '>=', ds: Dataset = None, **indexer)
→ DataArray

Number of wet days (realm: atmos)

The number of days with daily precipitation at or above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
wetdays().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1.0 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

720 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>=”. Default : >=.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
wetdays (DataArray) – Number of days with daily precipitation at or above {thresh} (num-
ber_of_days_with_lwe_thickness_of_precipitation_amount_at_or_above_threshold) [days],
with additional attributes: cell_methods: time: sum over days; description: {freq} number of
days with daily precipitation at or above {thresh}.

xclim.indicators.atmos._precip.wetdays_prop(pr: Union[DataArray, str] = 'pr', *, thresh: str = '1.0
mm/day', freq: str = 'YS', op: str = '>=', ds: Dataset =
None, **indexer)→ DataArray

Proportion of wet days (realm: atmos)

The proportion of days with daily precipitation at or above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
wetdays_prop().

Parameters
• pr (str or DataArray) – Daily precipitation. Default : ds.pr. [Required units : [precipitation]]

• thresh (quantity (string with units)) – Precipitation value over which a day is considered wet.
Default : 1.0 mm/day. [Required units : [precipitation]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>=”. Default : >=.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
wetdays_prop (DataArray) – Proportion of days with precipitation at or above {thresh} [1],
with additional attributes: cell_methods: time: sum over days; description: {freq} proportion
of days with precipitation at or above {thresh}.

xclim.indicators.atmos._synoptic module

Synoptic indicator definitions.

xclim.indicators.atmos._synoptic.jetstream_metric_woollings(ua: Union[DataArray, str] = 'ua', *,
ds: Dataset = None)→
Tuple[DataArray, DataArray]

Strength and latitude of jetstream (realm: atmos)

Identify latitude and strength of maximum smoothed zonal wind speed in the region from 15 to 75°N and -60 to
0°E, using the formula outlined in [Woollings et al., 2010]. Wind is smoothened using a Lanczos filter approach.

Based on indice jetstream_metric_woollings().

Parameters

16.1. xclim package 721

xclim Documentation, Release 0.39.0

• ua (str or DataArray) – Eastward wind component (u) at between 750 and 950 hPa. Default
: ds.ua. [Required units : [speed]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
jetlat (DataArray) – Latitude of maximum smoothed zonal wind speed [degrees_North], with
additional attributes: description: Daily latitude of maximum Lanczos smoothed zonal wind
speed.jetstr : DataArray Maximum strength of smoothed zonal wind speed [m s-1], with addi-
tional attributes: description: Daily maximum strength of Lanczos smoothed zonal wind speed.

References

Woollings, Hannachi, and Hoskins [2010]

xclim.indicators.atmos._temperature module

Temperature indicator definitions.

xclim.indicators.atmos._temperature.biologically_effective_degree_days(tasmin:
Union[DataArray, str]
= 'tasmin', tasmax:
Union[DataArray, str]
= 'tasmax', lat:
Union[DataArray, str]
= 'lat', *,
thresh_tasmin: str = '10
degC', method: str =
'gladstones', low_dtr:
str = '10 degC',
high_dtr: str = '13
degC',
max_daily_degree_days:
str = '9 degC',
start_date:
DayOfYearStr =
'04-01', end_date:
DayOfYearStr =
'11-01', freq: str = 'YS',
ds: Dataset = None)→
DataArray

Biologically effective degree days (realm: atmos)

Considers daily minimum and maximum temperature with a given base threshold between 1 April and 31 Octo-
ber, with a maximum daily value for cumulative degree days (typically 9°C), and integrates modification coeffi-
cients for latitudes between 40°N and 50°N as well as for swings in daily temperature range. Metric originally
published in Gladstones (1992).

This indicator will check for missing values according to the method “from_context”. Based on indice
biologically_effective_degree_days().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

722 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• lat (str or DataArray) – Latitude coordinate. If None and method in [“gladstones”, “icclim”],
a CF-conformant “latitude” field must be available within the passed DataArray. Default :
ds.lat. [Required units : []]

• thresh_tasmin (quantity (string with units)) – The minimum temperature threshold. Default
: 10 degC. [Required units : [temperature]]

• method ({‘icclim’, ‘jones’, ‘gladstones’}) – The formula to use for the calculation. The
“gladstones” integrates a daily temperature range and latitude coefficient. End_date should
be “11-01”. The “icclim” method ignores daily temperature range and latitude coefficient.
End date should be “10-01”. The “jones” method integrates axial tilt, latitude, and day-of-
year on coefficient. End_date should be “11-01”. Default : gladstones.

• low_dtr (quantity (string with units)) – The lower bound for daily temperature range adjust-
ment (default: 10°C). Default : 10 degC. [Required units : [temperature]]

• high_dtr (quantity (string with units)) – The higher bound for daily temperature range ad-
justment (default: 13°C). Default : 13 degC. [Required units : [temperature]]

• max_daily_degree_days (quantity (string with units)) – The maximum amount of biologi-
cally effective degrees days that can be summed daily. Default : 9 degC. [Required units :
[temperature]]

• start_date (date (string, MM-DD)) – The hemisphere-based start date to consider (north =
April, south = October). Default : 04-01.

• end_date (date (string, MM-DD)) – The hemisphere-based start date to consider (north =
October, south = April). This date is non-inclusive. Default : 11-01.

• freq (offset alias (string)) – Resampling frequency (default: “YS”; For Southern Hemi-
sphere, should be “AS-JUL”). Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
bedd (DataArray) – Integral of mean daily temperature above {thresh_tasmin}, with maximum
value of {max_daily_degree_days}, multiplied by day-length coefficient and temperature range
modifier based on {method} method for days between {start_date} and {end_date} [K days],
with additional attributes: description: Heat-summation index for agroclimatic suitability esti-
mation, developed specifically for viticulture. Computed with {method} formula (Summation
of min((max((Tn + Tx)/2 - {thresh_tasmin}, 0) * k) + TR_adj, Dmax), where coefficient k is a
latitude-based day-length for days between {start_date} and {end_date}), coefficient TR_adj is
a modifier accounting for large temperature swings, and Dmax is the maximum possibleamount
of degree days that can be gained within a day ({max_daily_degree_days}).

Notes

The tasmax ceiling of 19°C is assumed to be the max temperature beyond which no further gains from daily
temperature occur. Indice originally published in Gladstones [1992].

Let 𝑇𝑋𝑖 and 𝑇𝑁𝑖 be the daily maximum and minimum temperature at day 𝑖, 𝑙𝑎𝑡 the latitude of the point of
interest, 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥 the maximum amount of degrees that can be summed per day (typically, 9). Then the sum
of daily biologically effective growing degree day (BEDD) units between 1 April and 31 October is:

𝐵𝐸𝐷𝐷𝑖 =

October 31∑︁
𝑖=April 1

𝑚𝑖𝑛

(︂(︂
𝑚𝑎𝑥

(︂
𝑇𝑋𝑖 + 𝑇𝑁𝑖)

2
− 10, 0

)︂
* 𝑘

)︂
+ 𝑇𝑅𝑎𝑑𝑗 , 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥

)︂

16.1. xclim package 723

xclim Documentation, Release 0.39.0

𝑇𝑅𝑎𝑑𝑗 = 𝑓(𝑇𝑋𝑖, 𝑇𝑁𝑖) =

⎧⎪⎨⎪⎩
0.25(𝑇𝑋𝑖 − 𝑇𝑁𝑖 − 13), if (𝑇𝑋𝑖 − 𝑇𝑁𝑖) > 13

0, if 10 < (𝑇𝑋𝑖 − 𝑇𝑁𝑖) < 13

0.25(𝑇𝑋𝑖 − 𝑇𝑁𝑖 − 10), if (𝑇𝑋𝑖 − 𝑇𝑁𝑖) < 10

𝑘 = 𝑓(𝑙𝑎𝑡) = 1 +

(︂
|𝑙𝑎𝑡|
50

* 0.06, if 40 < |𝑙𝑎𝑡| < 50, else 0
)︂

A second version of the BEDD (method=”icclim”) does not consider 𝑇𝑅𝑎𝑑𝑗 and 𝑘 and employs a different end
date (30 September) [Project team ECA&D and KNMI, 2013]. The simplified formula is as follows:

𝐵𝐸𝐷𝐷𝑖 =

September 30∑︁
𝑖=April 1

𝑚𝑖𝑛

(︂
𝑚𝑎𝑥

(︂
𝑇𝑋𝑖 + 𝑇𝑁𝑖)

2
− 10, 0

)︂
, 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥

)︂

References

Gladstones [1992], Project team ECA&D and KNMI [2013]

xclim.indicators.atmos._temperature.cold_spell_days(tas: Union[DataArray, str] = 'tas', *, thresh: str
= '-10 degC', window: int = 5, freq: str =
'AS-JUL', op: str = '<', resample_before_rl:
bool = True, ds: Dataset = None)→ DataArray

Cold spell days (realm: atmos)

The number of days that are part of a cold spell. A cold spell is defined as a minimum number of consecutive
days with mean daily temperature below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_spell_days().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature below which a cold spell be-
gins. Default : -10 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature below threshold to qualify
as a cold spell. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
cold_spell_days (DataArray) – Total number of days constituting events of at least {window}
consecutive days where the mean daily temperature is below {thresh} (cold_spell_days) [days],
with additional attributes: description: {freq} number of days that are part of a cold spell. A
cold spell is defined as {window} or more consecutive days with mean daily temperature below
{thresh}.

724 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑖 be the mean daily temperature on day 𝑖, the number of cold spell days during period 𝜑 is given by:

∑︁
𝑖∈𝜑

𝑖+5∏︁
𝑗=𝑖

[𝑇𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

xclim.indicators.atmos._temperature.cold_spell_duration_index(tasmin: Union[DataArray, str] =
'tasmin', tasmin_per:
Union[DataArray, str] =
'tasmin_per', *, window: int = 6,
freq: str = 'YS',
resample_before_rl: bool = True,
bootstrap: bool = False, op: str =
'<', ds: Dataset = None)→
DataArray

Cold Spell Duration Index (CSDI) (realm: atmos)

Number of days part of a percentile-defined cold spell. A cold spell occurs when the daily minimum temperature
is below a given percentile for a given number of consecutive days.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_spell_duration_index().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmin_per (str or DataArray) – nth percentile of daily minimum temperature with day-
ofyear coordinate. Default : ds.tasmin_per. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature below threshold to qualify
as a cold spell. Default : 6.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
csdi_{window} (DataArray) – Total number of days constituting events of at least {window}
consecutive days where the daily minimum temperature is below the {tasmin_per_thresh}th
percentile (cold_spell_duration_index) [days], with additional attributes: description: {freq}
number of days with at least {window} consecutive days where the daily minimum tempera-
ture is below the {tasmin_per_thresh}th percentile. A {tasmin_per_window} day(s) window,

16.1. xclim package 725

xclim Documentation, Release 0.39.0

centred on each calendar day in the {tasmin_per_period} period, is used to compute the {tas-
min_per_thresh}th percentile(s).

Notes

Let 𝑇𝑁𝑖 be the minimum daily temperature for the day of the year 𝑖 and 𝑇𝑁10𝑖 the 10th percentile of the
minimum daily temperature over the 1961-1990 period for day of the year 𝑖, the cold spell duration index over
period 𝜑 is defined as:

∑︁
𝑖∈𝜑

𝑖+6∏︁
𝑗=𝑖

[𝑇𝑁𝑗 < 𝑇𝑁10𝑗]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

References

From the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI; [Zhang et al., 2011]).

xclim.indicators.atmos._temperature.cold_spell_frequency(tas: Union[DataArray, str] = 'tas', *,
thresh: str = '-10 degC', window: int = 5,
freq: str = 'AS-JUL', op: str = '<',
resample_before_rl: bool = True, ds:
Dataset = None)→ DataArray

Cold spell frequency (realm: atmos)

The number of cold spell events. A cold spell is defined as a minimum number of consecutive days with mean
daily temperature below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
cold_spell_frequency().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature below which a cold spell be-
gins. Default : -10 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature below threshold to qualify
as a cold spell. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
cold_spell_frequency (DataArray) – Total number of series of at least {window} consecutive
days where the mean daily temperature is below {thresh} (cold_spell_frequency), with additional
attributes: description: {freq} number cold spell events. A cold spell is defined as a minimum
number of consecutive days with mean daily temperature below {thresh}.

726 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indicators.atmos._temperature.consecutive_frost_days(tasmin: Union[DataArray, str] =
'tasmin', *, thresh: str = '0 degC', freq:
str = 'AS-JUL', ds: Dataset = None)→
DataArray

Consecutive frost days (realm: atmos)

Maximum number of consecutive days where the daily minimum temperature is below 0°C

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_frost_days().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature. Default : 0 degC. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
consecutive_frost_days (DataArray) – Maximum number of con-
secutive days where minimum daily temperature is below {thresh}
(spell_length_of_days_with_air_temperature_below_threshold) [days], with additional at-
tributes: cell_methods: time: maximum over days; description: {freq} maximum number of
consecutive days where minimum daily temperature is below {thresh}.

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a minimum daily temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold below which a day is
considered a frost day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that is,
the days where the temperature crosses the threshold. Then the maximum number of consecutive frost days is
given by

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indicators.atmos._temperature.cool_night_index(tasmin: Union[DataArray, str] = 'tasmin', lat:
Optional[Union[DataArray, str]] = None, *,
freq: str = 'YS', ds: Dataset = None)→
DataArray

Cool night index (realm: atmos)

A night coolness variable which takes into account the mean minimum night temperatures during the month
when ripening usually occurs beyond the ripening period.

This indicator will check for missing values according to the method “from_context”. Based on indice
cool_night_index().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

16.1. xclim package 727

xclim Documentation, Release 0.39.0

• lat ({‘north’, ‘south’}) – Latitude coordinate as an array, float or string. If None, a CF-
conformant “latitude” field must be available within the passed DataArray.

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
cool_night_index (DataArray) – Cool night index [degC], with additional attributes:
cell_methods: time: mean over days; description: Mean minimum temperature for Septem-
ber (northern hemisphere) or March (southern hemisphere).

Notes

Given that this indice only examines September and March months, it is possible to send in DataArrays containing
only these timesteps. Users should be aware that due to the missing values checks in wrapped Indicators, datasets
that are missing several months will be flagged as invalid. This check can be ignored by setting the following
context:

References

Tonietto and Carbonneau [2004]

xclim.indicators.atmos._temperature.cooling_degree_days(tas: Union[DataArray, str] = 'tas', *,
thresh: str = '18.0 degC', freq: str = 'YS',
ds: Dataset = None, **indexer)→
DataArray

Cooling degree days (realm: atmos)

The cumulative degree days for days when the mean daily temperature is above a given threshold and buildings
must be air conditioned.

This indicator will check for missing values according to the method “from_context”. Based on indice
cooling_degree_days().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Temperature threshold above which air is cooled. De-
fault : 18.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
cooling_degree_days (DataArray) – Cumulative sum of temperature degrees for mean daily
temperature above {thresh} (integral_of_air_temperature_excess_wrt_time) [K days], with ad-
ditional attributes: cell_methods: time: sum over days; description: {freq} cumulative cooling
degree days (mean temperature above {thresh}).

728 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let 𝑥𝑖 be the daily mean temperature at day 𝑖. Then the cooling degree days above temperature threshold 𝑡ℎ𝑟𝑒𝑠ℎ
over period 𝜑 is given by: ∑︁

𝑖∈𝜑

(𝑥𝑖 − 𝑡ℎ𝑟𝑒𝑠ℎ[𝑥𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

xclim.indicators.atmos._temperature.daily_freezethaw_cycles(tasmin: Union[DataArray, str] =
'tasmin', tasmax: Union[DataArray,
str] = 'tasmax', *, thresh_tasmin: str
= '0 degC', thresh_tasmax: str = '0
degC', op_tasmin: str = '<=',
op_tasmax: str = '>', freq: str = 'YS',
resample_before_rl: bool = True, ds:
Dataset = None, **indexer)→
DataArray

Daily freeze-thaw cycles (realm: atmos)

The number of days with a freeze-thaw cycle. A freeze-thaw cycle is defined as a day where maximum daily
temperature is above a given threshold and minimum daily temperature is at or below a given threshold, usually
0°C for both.

This indicator will check for missing values according to the method “from_context”. Based on indice
multiday_temperature_swing(). With injected parameters: window=1, op=sum.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The temperature threshold needed to trigger
a freeze event. Default : 0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The temperature threshold needed to trigger
a thaw event. Default : 0 degC. [Required units : [temperature]]

• op_tasmin ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation for tasmin. Default: “<=”. De-
fault : <=.

• op_tasmax ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation for tasmax. Default: “>”. De-
fault : >.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
dlyfrzthw (DataArray) – Number of days where maximum daily temperatures are above
{thresh_tasmax} and minimum daily temperatures are at or below {thresh_tasmin} [days], with

16.1. xclim package 729

xclim Documentation, Release 0.39.0

additional attributes: description: {freq} number of days with a diurnal freeze-thaw cycle, where
maximum daily temperatures are above {thresh_tasmax} and minimum daily temperatures are
at or below {thresh_tasmin}.

Notes

Let 𝑇𝑋𝑖 be the maximum temperature at day 𝑖 and 𝑇𝑁𝑖 be the daily minimum temperature at day 𝑖. Then freeze
thaw spells during a given period are consecutive days where:

𝑇𝑋𝑖 > 0 ∧ 𝑇𝑁𝑖 < 0

This indice returns a given statistic of the found lengths, optionally dropping those shorter than the window
argument. For example, window=1 and op=’sum’ returns the same value as daily_freezethaw_cycles().

xclim.indicators.atmos._temperature.daily_temperature_range(tasmin: Union[DataArray, str] =
'tasmin', tasmax: Union[DataArray,
str] = 'tasmax', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→
DataArray

Mean of daily temperature range (realm: atmos)

The average difference between the daily maximum and minimum temperatures.

This indicator will check for missing values according to the method “from_context”. Based on indice
daily_temperature_range(). With injected parameters: op=mean.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
dtr (DataArray) – Mean diurnal temperature range (air_temperature) [K], with additional at-
tributes: cell_methods: time range within days time: mean over days; description: {freq} mean
diurnal temperature range.

Notes

For a default calculation using op=’mean’ :

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the mean diurnal
temperature range in period 𝑗 is:

𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=1(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)

𝐼

730 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indicators.atmos._temperature.daily_temperature_range_variability(tasmin:
Union[DataArray, str]
= 'tasmin', tasmax:
Union[DataArray, str]
= 'tasmax', *, freq: str
= 'YS', ds: Dataset =
None, **indexer)→
DataArray

Variability of daily temperature range (realm: atmos)

The average day-to-day variation in daily temperature range.

This indicator will check for missing values according to the method “from_context”. Based on indice
daily_temperature_range_variability().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
dtrvar (DataArray) – Mean diurnal temperature range variability (air_temperature) [K], with
additional attributes: cell_methods: time range within days time: difference over days time:
mean over days; description: {freq} mean diurnal temperature range variability, defined as the
average day-to-day variation in daily temperature range for the given time period.

Notes

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then calculated is
the absolute day-to-day differences in period 𝑗 is:

𝑣𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=2 |(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)− (𝑇𝑋𝑖−1,𝑗 − 𝑇𝑁𝑖−1,𝑗)|

𝐼

xclim.indicators.atmos._temperature.degree_days_exceedance_date(tas: Union[DataArray, str] =
'tas', *, thresh: str = '0 degC',
sum_thresh: str = '25 K days',
op: str = '>', after_date:
DayOfYearStr = None, freq: str
= 'YS', ds: Dataset = None)→
DataArray

Degree day exceedance date (realm: atmos)

The day of the year when the sum of degree days exceeds a threshold, occurring after a given date. Degree days
are calculated above or below a given temperature threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
degree_days_exceedance_date().

16.1. xclim package 731

xclim Documentation, Release 0.39.0

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base degree-days
evaluation. Default : 0 degC. [Required units : [temperature]]

• sum_thresh (quantity (string with units)) – Threshold of the degree days sum. Default : 25
K days. [Required units : K days]

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’, ‘lt’, ‘<=’, ‘<’, ‘le’}) – If equivalent to ‘>’, degree days are computed
as tas - thresh and if equivalent to ‘<’, they are computed as thresh - tas. Default : >.

• after_date (date (string, MM-DD)) – Date at which to start the cumulative sum. In “mm-dd”
format, defaults to the start of the sampling period. Default : None.

• freq (offset alias (string)) – Resampling frequency. If after_date is given, freq should be
annual. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
degree_days_exceedance_date (DataArray) – Day of year when the integral of mean daily tem-
perature {op} {thresh} exceeds {sum_thresh} (day_of_year), with additional attributes: descrip-
tion: <Dynamically generated string>

Notes

Let 𝑇𝐺𝑖𝑗 be the daily mean temperature at day 𝑖 of period 𝑗, 𝑇 is the reference threshold and 𝑆𝑇 is the sum
threshold. Then, starting at day :math:i_0:, the degree days exceedance date is the first day 𝑘 such that{︃

𝑆𝑇 <
∑︀𝑘

𝑖=𝑖0
max(𝑇𝐺𝑖𝑗 − 𝑇, 0) if 𝑜𝑝 is ’>’

𝑆𝑇 <
∑︀𝑘

𝑖=𝑖0
max(𝑇 − 𝑇𝐺𝑖𝑗 , 0) if 𝑜𝑝 is ’<’

The resulting 𝑘 is expressed as a day of year.

Cumulated degree days have numerous applications including plant and insect phenology. See https://en.
wikipedia.org/wiki/Growing_degree-day for examples (Wikipedia Contributors [2021]).

xclim.indicators.atmos._temperature.extreme_temperature_range(tasmin: Union[DataArray, str] =
'tasmin', tasmax:
Union[DataArray, str] = 'tasmax',
*, freq: str = 'YS', ds: Dataset =
None, **indexer)→ DataArray

Extreme temperature range (realm: atmos)

The maximum of the maximum temperature minus the minimum of the minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
extreme_temperature_range().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

732 Chapter 16. xclim

https://en.wikipedia.org/wiki/Growing_degree-day
https://en.wikipedia.org/wiki/Growing_degree-day

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
etr (DataArray) – Intra-period extreme temperature range (air_temperature) [K], with additional
attributes: description: {freq} range between the maximum of daily maximum temperature and
the minimum of dailyminimum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the extreme
temperature range in period 𝑗 is:

𝐸𝑇𝑅𝑗 = 𝑚𝑎𝑥(𝑇𝑋𝑖𝑗)−𝑚𝑖𝑛(𝑇𝑁𝑖𝑗)

xclim.indicators.atmos._temperature.fire_season(tas: Union[DataArray, str] = 'tas', snd:
Optional[Union[DataArray, str]] = None, *, method:
str = 'WF93', freq: str | None = None,
temp_start_thresh: str = '12 degC', temp_end_thresh:
str = '5 degC', temp_condition_days: int = 3,
snow_condition_days: int = 3, snow_thresh: str =
'0.01 m', ds: Dataset = None)→ DataArray

Fire season mask. (realm: atmos)

Binary mask of the active fire season, defined by conditions on consecutive daily temperatures and, optionally,
snow depths.

Based on indice fire_season().

Parameters
• tas (str or DataArray) – Daily surface temperature, cffdrs recommends using maximum daily

temperature. Default : ds.tas. [Required units : [temperature]]

• snd (str or DataArray, optional) – Snow depth, used with method == ‘LA08’. [Required
units : [length]]

• method ({‘LA08’, ‘GFWED’, ‘WF93’}) – Which method to use. “LA08” and “GFWED”
need the snow depth. Default : WF93.

• freq (offset alias (string)) – If given only the longest fire season for each period defined by
this frequency, Every “seasons” are returned if None, including the short shoulder seasons.
Default : None.

• temp_start_thresh (quantity (string with units)) – Minimal temperature needed to start the
season. Default : 12 degC. [Required units : [temperature]]

• temp_end_thresh (quantity (string with units)) – Maximal temperature needed to end the
season. Default : 5 degC. [Required units : [temperature]]

• temp_condition_days (number) – Number of days with temperature above or below the
thresholds to trigger a start or an end of the fire season. Default : 3.

• snow_condition_days (number) – Parameters for the fire season determination. See
fire_season(). Temperature is in degC, snow in m. The snow_thresh parameters is also
used when dry_start is set to “GFWED”. Default : 3.

16.1. xclim package 733

xclim Documentation, Release 0.39.0

• snow_thresh (quantity (string with units)) – Minimal snow depth level to end a fire season,
only used with method “LA08”. Default : 0.01 m. [Required units : [length]]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
fire_season (DataArray) – Fire season mask, with additional attributes: description: Fire season
mask, computed with method {method}.

References

Lawson and Armitage [2008], Wotton and Flannigan [1993]

xclim.indicators.atmos._temperature.first_day_above(tasmin: Union[DataArray, str] = 'tasmin', *,
thresh: str = '0 degC', op: str = '>', after_date:
DayOfYearStr = '07-01', window: int = 1, freq:
str = 'YS', ds: Dataset = None)→ DataArray

First day above (realm: atmos)

Calculates the first day of a period when the temperature is higher than a certain threshold during a given number
of days, after a given calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_above().

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_above (DataArray) – First day of year with temperature above threshold (day_of_year),
with additional attributes: description: First day of year with temperature above {thresh} for at
least {window} days after {after_date}.

734 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let 𝑥𝑖 be the daily mean|max|min temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366.
The first day above temperature threshold is given by the smallest index 𝑖 for which

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be exceeded, and [𝑃] is 1 if 𝑃 is true,
and 0 if false.

xclim.indicators.atmos._temperature.first_day_below(tasmin: Union[DataArray, str] = 'tasmin', *,
thresh: str = '0 degC', op: str = '<', after_date:
DayOfYearStr = '07-01', window: int = 1, freq:
str = 'YS', ds: Dataset = None)→ DataArray

First day below (realm: atmos)

Calculates the first day of a period when the temperature is lower than a certain threshold during a given number
of days, after a given calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_below().

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “>”. Default : <.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_below (DataArray) – First day of year with temperature below threshold
(day_of_year), with additional attributes: description: First day of year with temperature be-
low {thresh} for at least {window} days after {after_date}.

xclim.indicators.atmos._temperature.first_day_tg_above(tas: Union[DataArray, str] = 'tas', *, thresh:
str = '0 degC', op: str = '>', after_date:
DayOfYearStr = '01-01', window: int = 1,
freq: str = 'YS', ds: Dataset = None)→
DataArray

First day of temperatures superior to a given temperature threshold. (realm: atmos)

Returns first day of period where temperature is superior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: January 1).

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_above().

16.1. xclim package 735

xclim Documentation, Release 0.39.0

Parameters
• tas (str or DataArray) – Daily temperature. Default : ds.tas. [Required units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 01-01.

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_tg_above (DataArray) – First day of year with a period of at least {window} days of
mean temperature above {thresh} (day_of_year), with additional attributes: description: First
day of year with mean temperature above {thresh} for at least {window} days.

Notes

Let 𝑥𝑖 be the daily mean|max|min temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366.
The first day above temperature threshold is given by the smallest index 𝑖 for which

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be exceeded, and [𝑃] is 1 if 𝑃 is true,
and 0 if false.

xclim.indicators.atmos._temperature.first_day_tg_below(tas: Union[DataArray, str] = 'tas', *, thresh:
str = '0 degC', op: str = '<', after_date:
DayOfYearStr = '07-01', window: int = 1,
freq: str = 'YS', ds: Dataset = None)→
DataArray

First day of temperatures inferior to a given temperature threshold. (realm: atmos)

Returns first day of period where temperature is inferior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: July 1).

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_below().

Parameters
• tas (str or DataArray) – Daily temperature. Default : ds.tas. [Required units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “>”. Default : <.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 1.

736 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_tg_below (DataArray) – First day of year with a period of at least {window} days of
mean temperature below {thresh} (day_of_year), with additional attributes: description: First
day of year with mean temperature below {thresh} for at least {window} days.

xclim.indicators.atmos._temperature.first_day_tn_above(tasmin: Union[DataArray, str] = 'tasmin', *,
thresh: str = '0 degC', op: str = '>',
after_date: DayOfYearStr = '01-01',
window: int = 1, freq: str = 'YS', ds: Dataset
= None)→ DataArray

First day of temperatures superior to a given temperature threshold. (realm: atmos)

Returns first day of period where temperature is superior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: January 1).

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_above().

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 01-01.

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_tn_above (DataArray) – First day of year with a period of at least {window} days
of minimum temperature above {thresh} (day_of_year), with additional attributes: description:
First day of year with minimum temperature above {thresh} for at least {window} days.

Notes

Let 𝑥𝑖 be the daily mean|max|min temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366.
The first day above temperature threshold is given by the smallest index 𝑖 for which

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be exceeded, and [𝑃] is 1 if 𝑃 is true,
and 0 if false.

16.1. xclim package 737

xclim Documentation, Release 0.39.0

xclim.indicators.atmos._temperature.first_day_tn_below(tasmin: Union[DataArray, str] = 'tasmin', *,
thresh: str = '0 degC', op: str = '<',
after_date: DayOfYearStr = '07-01',
window: int = 1, freq: str = 'YS', ds: Dataset
= None)→ DataArray

First day of temperatures inferior to a given temperature threshold. (realm: atmos)

Returns first day of period where temperature is inferior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: July 1).

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_below().

Parameters
• tasmin (str or DataArray) – Minimum surface temperature. Default : ds.tasmin. [Required

units : K]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “>”. Default : <.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_tn_below (DataArray) – First day of year with a period of at least {window} days
of minimum temperature below {thresh} (day_of_year), with additional attributes: description:
First day of year with minimum temperature below {thresh} for at least {window} days.

xclim.indicators.atmos._temperature.first_day_tx_above(tasmax: Union[DataArray, str] = 'tasmax',
*, thresh: str = '0 degC', op: str = '>',
after_date: DayOfYearStr = '01-01',
window: int = 1, freq: str = 'YS', ds: Dataset
= None)→ DataArray

First day of temperatures superior to a given temperature threshold. (realm: atmos)

Returns first day of period where temperature is superior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: January 1).

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_above().

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 01-01.

738 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_tx_above (DataArray) – First day of year with a period of at least {window} days of
maximum temperature above {thresh} (day_of_year), with additional attributes: description:
First day of year with maximum temperature above {thresh} for at least {window} days.

Notes

Let 𝑥𝑖 be the daily mean|max|min temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366.
The first day above temperature threshold is given by the smallest index 𝑖 for which

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be exceeded, and [𝑃] is 1 if 𝑃 is true,
and 0 if false.

xclim.indicators.atmos._temperature.first_day_tx_below(tasmax: Union[DataArray, str] = 'tasmax',
*, thresh: str = '0 degC', op: str = '<',
after_date: DayOfYearStr = '07-01',
window: int = 1, freq: str = 'YS', ds: Dataset
= None)→ DataArray

First day of temperatures inferior to a given temperature threshold. (realm: atmos)

Returns first day of period where temperature is inferior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: July 1).

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_below().

Parameters
• tasmax (str or DataArray) – Maximum surface temperature. Default : ds.tasmax. [Required

units : K]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “>”. Default : <.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_day_tx_below (DataArray) – First day of year with a period of at least {window} days of
maximum temperature below {thresh} (day_of_year), with additional attributes: description:
First day of year with maximum temperature below {thresh} for at least {window} days.

16.1. xclim package 739

xclim Documentation, Release 0.39.0

xclim.indicators.atmos._temperature.freezethaw_spell_frequency(tasmin: Union[DataArray, str] =
'tasmin', tasmax:
Union[DataArray, str] = 'tasmax',
*, thresh_tasmin: str = '0 degC',
thresh_tasmax: str = '0 degC',
window: int = 1, op_tasmin: str =
'<=', op_tasmax: str = '>', freq:
str = 'YS', resample_before_rl:
bool = True, ds: Dataset = None)
→ DataArray

Freeze-thaw spell frequency (realm: atmos)

Frequency of daily freeze-thaw spells. A freeze-thaw spell is defined as a number of consecutive days where
maximum daily temperatures are above a given threshold and minimum daily temperatures are at or below a
given threshold, usually 0°C for both.

This indicator will check for missing values according to the method “from_context”. Based on indice
multiday_temperature_swing(). With injected parameters: op=count.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The temperature threshold needed to trigger
a freeze event. Default : 0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The temperature threshold needed to trigger
a thaw event. Default : 0 degC. [Required units : [temperature]]

• window (number) – The minimal length of spells to be included in the statistics. Default :
1.

• op_tasmin ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation for tasmin. Default: “<=”. De-
fault : <=.

• op_tasmax ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation for tasmax. Default: “>”. De-
fault : >.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
freezethaw_spell_frequency (DataArray) – Frequency of events where maximum daily tem-
peratures are above {thresh_tasmax} and minimum daily temperatures are at or below
{thresh_tasmin} for at least {window} consecutive day(s). [days], with additional attributes: de-
scription: {freq} number of freeze-thaw spells, where maximum daily temperatures are above
{thresh_tasmax} and minimum daily temperatures are at or below {thresh_tasmin} for at least
{window} consecutive day(s).

740 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖 be the maximum temperature at day 𝑖 and 𝑇𝑁𝑖 be the daily minimum temperature at day 𝑖. Then freeze
thaw spells during a given period are consecutive days where:

𝑇𝑋𝑖 > 0 ∧ 𝑇𝑁𝑖 < 0

This indice returns a given statistic of the found lengths, optionally dropping those shorter than the window
argument. For example, window=1 and op=’sum’ returns the same value as daily_freezethaw_cycles().

xclim.indicators.atmos._temperature.freezethaw_spell_max_length(tasmin: Union[DataArray, str] =
'tasmin', tasmax:
Union[DataArray, str] =
'tasmax', *, thresh_tasmin: str =
'0 degC', thresh_tasmax: str = '0
degC', window: int = 1,
op_tasmin: str = '<=',
op_tasmax: str = '>', freq: str =
'YS', resample_before_rl: bool =
True, ds: Dataset = None)→
DataArray

Maximal length of freeze-thaw spells (realm: atmos)

Maximal length of daily freeze-thaw spells. A freeze-thaw spell is defined as a number of consecutive days where
maximum daily temperatures are above a given threshold and minimum daily temperatures are at or below a
threshold, usually 0°C for both.

This indicator will check for missing values according to the method “from_context”. Based on indice
multiday_temperature_swing(). With injected parameters: op=max.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The temperature threshold needed to trigger
a freeze event. Default : 0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The temperature threshold needed to trigger
a thaw event. Default : 0 degC. [Required units : [temperature]]

• window (number) – The minimal length of spells to be included in the statistics. Default :
1.

• op_tasmin ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation for tasmin. Default: “<=”. De-
fault : <=.

• op_tasmax ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation for tasmax. Default: “>”. De-
fault : >.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

16.1. xclim package 741

xclim Documentation, Release 0.39.0

Returns
freezethaw_spell_max_length (DataArray) – Maximal length of events where maximum daily
temperatures are above {thresh_tasmax} and minimum daily temperatures are at or below
{thresh_tasmin} for at least {window} consecutive day(s). [days], with additional attributes:
description: {freq} maximal length of freeze-thaw spells, where maximum daily temperatures
are above {thresh_tasmax} and minimum daily temperatures are at or below {thresh_tasmin} for
at least {window} consecutive day(s).

Notes

Let 𝑇𝑋𝑖 be the maximum temperature at day 𝑖 and 𝑇𝑁𝑖 be the daily minimum temperature at day 𝑖. Then freeze
thaw spells during a given period are consecutive days where:

𝑇𝑋𝑖 > 0 ∧ 𝑇𝑁𝑖 < 0

This indice returns a given statistic of the found lengths, optionally dropping those shorter than the window
argument. For example, window=1 and op=’sum’ returns the same value as daily_freezethaw_cycles().

xclim.indicators.atmos._temperature.freezethaw_spell_mean_length(tasmin: Union[DataArray, str]
= 'tasmin', tasmax:
Union[DataArray, str] =
'tasmax', *, thresh_tasmin: str
= '0 degC', thresh_tasmax: str
= '0 degC', window: int = 1,
freq: str = 'YS',
resample_before_rl: bool =
True, ds: Dataset = None)→
DataArray

Freeze-thaw spell mean length (realm: atmos)

Average length of daily freeze-thaw spells. A freeze-thaw spell is defined as a number of consecutive days where
maximum daily temperatures are above a given threshold and minimum daily temperatures are at or below a
given threshold, usually 0°C for both.

This indicator will check for missing values according to the method “from_context”. Based on indice
multiday_temperature_swing(). With injected parameters: op=mean, op_tasmin=<=, op_tasmax=>.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The temperature threshold needed to trigger
a freeze event. Default : 0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The temperature threshold needed to trigger
a thaw event. Default : 0 degC. [Required units : [temperature]]

• window (number) – The minimal length of spells to be included in the statistics. Default :
1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

742 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
freezethaw_spell_mean_length (DataArray) – Average length of events where maximum daily
temperatures are above {thresh_tasmax} and minimum daily temperatures are at or below
{thresh_tasmin} for at least {window} consecutive day(s). [days], with additional attributes:
description: {freq} average length of freeze-thaw spells, where maximum daily temperatures
are above {thresh_tasmax} and minimum daily temperatures are at or below {thresh_tasmin} for
at least {window} consecutive day(s).

Notes

Let 𝑇𝑋𝑖 be the maximum temperature at day 𝑖 and 𝑇𝑁𝑖 be the daily minimum temperature at day 𝑖. Then freeze
thaw spells during a given period are consecutive days where:

𝑇𝑋𝑖 > 0 ∧ 𝑇𝑁𝑖 < 0

This indice returns a given statistic of the found lengths, optionally dropping those shorter than the window
argument. For example, window=1 and op=’sum’ returns the same value as daily_freezethaw_cycles().

xclim.indicators.atmos._temperature.freezing_degree_days(tas: Union[DataArray, str] = 'tas', *,
thresh: str = '0 degC', freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Freezing degree days (realm: atmos)

The cumulative degree days for days when the average temperature is below a given threshold, typically 0°C.

This indicator will check for missing values according to the method “from_context”. Based on indice
heating_degree_days().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
freezing_degree_days (DataArray) – Cumulative sum of temperature degrees for mean daily
temperature below {thresh} (integral_of_air_temperature_deficit_wrt_time) [K days], with ad-
ditional attributes: cell_methods: time: sum over days; description: {freq} freezing degree
days (mean temperature below {thresh}).

16.1. xclim package 743

xclim Documentation, Release 0.39.0

Notes

This index intentionally differs from its ECA&D [Project team ECA&D and KNMI, 2013] equivalent: HD17.
In HD17, values below zero are not clipped before the sum. The present definition should provide a better
representation of the energy demand for heating buildings to the given threshold.

Let 𝑇𝐺𝑖𝑗 be the daily mean temperature at day 𝑖 of period 𝑗. Then the heating degree days are:

𝐻𝐷17𝑗 =

𝐼∑︁
𝑖=1

(17− 𝑇𝐺𝑖𝑗)|𝑇𝐺𝑖𝑗 < 17)

xclim.indicators.atmos._temperature.freshet_start(tas: Union[DataArray, str] = 'tas', *, thresh: str =
'0 degC', op: str = '>', after_date: DayOfYearStr =
'01-01', window: int = 5, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Day of year of spring freshet start (realm: atmos)

Day of year of the spring freshet start, defined as the first day when the temperature exceeds a certain threshold
for a given number of consecutive days.

This indicator will check for missing values according to the method “from_context”. Based on indice
first_day_temperature_above().

Parameters
• tas (str or DataArray) – Daily temperature. Default : ds.tas. [Required units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• after_date (date (string, MM-DD)) – Date of the year after which to look for the first event.
Should have the format ‘%m-%d’. Default : 01-01.

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
freshet_start (DataArray) – First day where temperature threshold of {thresh} is exceeded for at
least {window} days (day_of_year), with additional attributes: description: Day of year of the
spring freshet start, defined as the first day a temperature threshold of {thresh} is exceeded for at
least {window} days.

Notes

Let 𝑥𝑖 be the daily mean|max|min temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366.
The first day above temperature threshold is given by the smallest index 𝑖 for which

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be exceeded, and [𝑃] is 1 if 𝑃 is true,
and 0 if false.

744 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indicators.atmos._temperature.frost_days(tasmin: Union[DataArray, str] = 'tasmin', *, thresh: str
= '0 degC', freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Frost days (realm: atmos)

Number of days where the daily minimum temperature is below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
frost_days().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Freezing temperature. Default : 0 degC. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
frost_days (DataArray) – Number of days where the daily minimum temperature is be-
low {thresh} (days_with_air_temperature_below_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where the daily mini-
mum temperature is below {thresh}.

Notes

Let 𝑇𝑁𝑖𝑗 be the daily minimum temperature at day 𝑖 of period 𝑗 and :math`TT` the threshold. Then counted is
the number of days where:

𝑇𝑁𝑖𝑗 < 𝑇𝑇

xclim.indicators.atmos._temperature.frost_free_season_end(tasmin: Union[DataArray, str] =
'tasmin', *, thresh: str = '0 degC',
mid_date: DayOfYearStr = '07-01',
window: int = 5, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Frost free season end (realm: atmos)

First day when the temperature is below a given threshold for a given number of consecutive days after a median
calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
frost_free_season_end().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

16.1. xclim package 745

xclim Documentation, Release 0.39.0

• mid_date (date (string, MM-DD)) – Date of the year after which to look for the end of the
season. Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
frost_free_season_end (DataArray) – First day, after {mid_date}, following a period of {win-
dow} days with minimum daily temperature below {thresh} (day_of_year), with additional at-
tributes: description: Day of the year of the end of the frost-free season, defined as the inter-
val between the first set of {window} days when the minimum daily temperature is at or above
{thresh} and the first set (after {mid_date}) of {window} days when it is below {thresh}.

xclim.indicators.atmos._temperature.frost_free_season_length(tasmin: Union[DataArray, str] =
'tasmin', *, window: int = 5,
mid_date: DayOfYearStr | None =
'07-01', thresh: str = '0 degC', freq:
str = 'YS', ds: Dataset = None)→
DataArray

Frost free season length (realm: atmos)

Duration of the frost free season, defined as the period when the minimum daily temperature is above 0°C without
a freezing window of N days, with freezing occurring after a median calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
frost_free_season_length().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• window (number) – Minimum number of days with temperature above threshold to mark
the beginning and end of frost free season. Default : 5.

• mid_date (date (string, MM-DD)) – Date the must be included in the season. It is the earliest
the end of the season can be. If None, there is no limit. Default : 07-01.

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
frost_free_season_length (DataArray) – Number of days between the first occurrence of at
least {window} consecutive days with minimum daily temperature at or above {thresh} and the
first occurrence of at least {window} consecutive days with minimum daily temperature below
{thresh} after {mid_date} (days_with_air_temperature_above_threshold) [days], with additional
attributes: cell_methods: time: sum over days; description: {freq} number of days between the
first occurrence of at least {window} consecutive days with minimum daily temperature at or
above {thresh} and the first occurrence of at least {window} consecutive days with minimum
daily temperature below {thresh} after {mid_date}.

746 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the
first occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 >= 0

and the first subsequent occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 < 0

xclim.indicators.atmos._temperature.frost_free_season_start(tasmin: Union[DataArray, str] =
'tasmin', *, thresh: str = '0 degC',
window: int = 5, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Frost free season start (realm: atmos)

First day when minimum daily temperature exceeds a given threshold for a given number of consecutive days

This indicator will check for missing values according to the method “from_context”. Based on indice
frost_free_season_start().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
frost_free_season_start (DataArray) – First day following a period of {window} days with min-
imum daily temperature at or above {thresh} (day_of_year), with additional attributes: descrip-
tion: Day of the year of the beginning of the frost-free season, defined as the {window}th con-
secutive day when minimum daily temperature exceeds {thresh}.

Notes

Let 𝑥𝑖 be the daily mean temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366. The start
date of the start of growing season is given by the smallest index 𝑖 for which:

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 >= 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be met or exceeded, and [𝑃] is 1 if 𝑃 is
true, and 0 if false.

xclim.indicators.atmos._temperature.frost_season_length(tasmin: Union[DataArray, str] = 'tasmin',
*, window: int = 5, mid_date:
DayOfYearStr | None = '01-01', thresh: str
= '0 degC', freq: str = 'AS-JUL', ds:
Dataset = None)→ DataArray

16.1. xclim package 747

xclim Documentation, Release 0.39.0

Frost season length (realm: atmos)

Duration of the freezing season, defined as the period when the daily minimum temperature is below 0°C without
a thawing window of days, with the thaw occurring after a median calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
frost_season_length().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• window (number) – Minimum number of days with temperature below threshold to mark
the beginning and end of frost season. Default : 5.

• mid_date (date (string, MM-DD)) – Date the must be included in the season. It is the earliest
the end of the season can be. If None, there is no limit. Default : 01-01.

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
frost_season_length (DataArray) – Number of days between the first occurrence of at least {win-
dow} consecutive days with minimum daily temperature below {thresh} and the first occurrence
of at least {window} consecutive days with minimum daily temperature at or above {thresh} af-
ter {mid_date} (days_with_air_temperature_below_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days between the first oc-
currence of at least {window} consecutive days with minimum daily temperature below {thresh}
and the first occurrence of at least {window} consecutive days with minimum daily temperature
at or above {thresh} after {mid_date}.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the
first occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 > 0

and the first subsequent occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 < 0

xclim.indicators.atmos._temperature.growing_degree_days(tas: Union[DataArray, str] = 'tas', *,
thresh: str = '4.0 degC', freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Growing degree days (realm: atmos)

The cumulative degree days for days when the average temperature is above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
growing_degree_days().

Parameters

748 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-
perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 4.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
growing_degree_days (DataArray) – Cumulative sum of temperature degrees for mean daily
temperature above {thresh} (integral_of_air_temperature_excess_wrt_time) [K days], with ad-
ditional attributes: cell_methods: time: sum over days; description: {freq} growing degree
days (mean temperature above {thresh}).

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then the growing degree days are:

𝐺𝐷4𝑗 =

𝐼∑︁
𝑖=1

(𝑇𝐺𝑖𝑗 − 4|𝑇𝐺𝑖𝑗 > 4)

xclim.indicators.atmos._temperature.growing_season_end(tas: Union[DataArray, str] = 'tas', *, thresh:
str = '5.0 degC', mid_date: DayOfYearStr =
'07-01', window: int = 5, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Growing season end (realm: atmos)

The first day when the temperature is below a certain threshold for a certain number of consecutive days after a
given calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
growing_season_end().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 5.0 degC. [Required units : [temperature]]

• mid_date (date (string, MM-DD)) – Date of the year after which to look for the end of the
season. Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
growing_season_end (DataArray) – First day of the first series of {window} days with mean

16.1. xclim package 749

xclim Documentation, Release 0.39.0

daily temperature below {thresh}, occurring after {mid_date} (day_of_year), with additional at-
tributes: description: Day of year of end of growing season, defined as the first day of consistent
inferior threshold temperature of {thresh} after a run of {window} days superior to threshold
temperature, occurring after {mid_date}.

xclim.indicators.atmos._temperature.growing_season_length(tas: Union[DataArray, str] = 'tas', *,
thresh: str = '5.0 degC', window: int = 6,
mid_date: DayOfYearStr = '07-01', freq:
str = 'YS', ds: Dataset = None)→
DataArray

Growing season length (realm: atmos)

Number of days between the first occurrence of a series of days with a daily average temperature above a threshold
and the first occurrence of a series of days with a daily average temperature below that same threshold, occurring
after a given calendar date.

This indicator will check for missing values according to the method “from_context”. Based on indice
growing_season_length().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 5.0 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature above threshold to mark
the beginning and end of growing season. Default : 6.

• mid_date (date (string, MM-DD)) – Date of the year after which to look for the end of the
season. Should have the format ‘%m-%d’. Default : 07-01.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
growing_season_length (DataArray) – Number of days between the first occurrence of at least
{window} consecutive days with mean daily temperature over {thresh} and the first occurrence
of at least {window} consecutive days with mean daily temperature below {thresh}, occurring af-
ter {mid_date} (growing_season_length) [days], with additional attributes: description: {freq}
number of days between the first occurrence of at least {window} consecutive days with mean
daily temperature over {thresh} and the first occurrence of at least {window} consecutive days
with mean daily temperature below {thresh}, occurring after {mid_date}.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the first
occurrence of at least 6 consecutive days with:

𝑇𝐺𝑖𝑗 > 5

and the first occurrence after 1 July of at least 6 consecutive days with:

𝑇𝐺𝑖𝑗 < 5

750 Chapter 16. xclim

xclim Documentation, Release 0.39.0

References

Project team ECA&D and KNMI [2013]

xclim.indicators.atmos._temperature.growing_season_start(tas: Union[DataArray, str] = 'tas', *,
thresh: str = '5.0 degC', window: int = 5,
freq: str = 'YS', ds: Dataset = None)→
DataArray

Growing season start (realm: atmos)

The first day when the temperature exceeds a certain threshold for a given number of consecutive days.

This indicator will check for missing values according to the method “from_context”. Based on indice
growing_season_start().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 5.0 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature above threshold needed for
evaluation. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
growing_season_start (DataArray) – First day of the first series of {window} days with mean
daily temperature above or equal to {thresh} (day_of_year), with additional attributes: descrip-
tion: Day of the year marking the beginning of the growing season, defined as the first day of the
first series of {window} days with mean daily temperature above or equal to {thresh}.

Notes

Let 𝑥𝑖 be the daily mean temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366. The start
date of the start of growing season is given by the smallest index 𝑖 for which:

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 >= 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be met or exceeded, and [𝑃] is 1 if 𝑃 is
true, and 0 if false.

xclim.indicators.atmos._temperature.heat_wave_frequency(tasmin: Union[DataArray, str] = 'tasmin',
tasmax: Union[DataArray, str] = 'tasmax',
*, thresh_tasmin: str = '22.0 degC',
thresh_tasmax: str = '30 degC', window:
int = 3, freq: str = 'YS', op: str = '>',
resample_before_rl: bool = True, ds:
Dataset = None)→ DataArray

Heat wave frequency (realm: atmos)

Number of heat waves. A heat wave occurs when daily minimum and maximum temperatures exceed given
thresholds for a number of days.

16.1. xclim package 751

xclim Documentation, Release 0.39.0

This indicator will check for missing values according to the method “from_context”. Based on indice
heat_wave_frequency(). Keywords : health,.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The minimum temperature threshold needed
to trigger a heatwave event. Default : 22.0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The maximum temperature threshold needed
to trigger a heatwave event. Default : 30 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperatures above thresholds to qualify
as a heatwave. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
heat_wave_frequency (DataArray) – Total number of series of at least {window} consecu-
tive days with daily minimum temperature above {thresh_tasmin} and daily maximum tempera-
ture above {thresh_tasmax} (heat_wave_events), with additional attributes: description: {freq}
number of heat wave events within a given period. A heat wave occurs when daily minimum and
maximum temperatures exceed {thresh_tasmin} and {thresh_tasmax}, respectively, over at least
{window} days.

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indicators.atmos._temperature.heat_wave_index(tasmax: Union[DataArray, str] = 'tasmax', *,
thresh: str = '25.0 degC', window: int = 5, freq:
str = 'YS', op: str = '>', ds: Dataset = None)→
DataArray

Heat wave index (realm: atmos)

Number of days that constitute heatwave events. A heat wave occurs when daily minimum and maximum tem-
peratures exceed given thresholds for a number of days.

752 Chapter 16. xclim

xclim Documentation, Release 0.39.0

This indicator will check for missing values according to the method “from_context”. Based on indice
heat_wave_index().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to designate a heat-
wave. Default : 25.0 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature above threshold to qualify
as a heatwave. Default : 5.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
heat_wave_index (DataArray) – Total number of days constituting events of at least {window}
consecutive days with daily maximum temperature above {thresh} (heat_wave_index) [days],
with additional attributes: description: {freq} total number of days that are part of a heatwave
within a given period. A heat wave occurs when daily maximum temperatures exceed {thresh}
over at least {window} days.

xclim.indicators.atmos._temperature.heat_wave_max_length(tasmin: Union[DataArray, str] = 'tasmin',
tasmax: Union[DataArray, str] =
'tasmax', *, thresh_tasmin: str = '22.0
degC', thresh_tasmax: str = '30 degC',
window: int = 3, freq: str = 'YS', op: str =
'>', resample_before_rl: bool = True, ds:
Dataset = None)→ DataArray

Heat wave maximum length (realm: atmos)

Total duration of heat waves. A heat wave occurs when daily minimum and maximum temperatures exceed given
thresholds for a number of days.

This indicator will check for missing values according to the method “from_context”. Based on indice
heat_wave_max_length(). Keywords : health,.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The minimum temperature threshold needed
to trigger a heatwave event. Default : 22.0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The maximum temperature threshold needed
to trigger a heatwave event. Default : 30 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperatures above thresholds to qualify
as a heatwave. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

16.1. xclim package 753

xclim Documentation, Release 0.39.0

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
heat_wave_max_length (DataArray) – Longest series of at least {window} consecutive days
with daily minimum temperature above {thresh_tasmin} and daily maximum temperature
above {thresh_tasmax} (spell_length_of_days_with_air_temperature_above_threshold) [days],
with additional attributes: description: {freq} maximum length of heat wave events occurring
within a given period. A heat wave occurs when daily minimum and maximum temperatures
exceed {thresh_tasmin} and {thresh_tasmax}, respectively, over at least {window} days.

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be: thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indicators.atmos._temperature.heat_wave_total_length(tasmin: Union[DataArray, str] =
'tasmin', tasmax: Union[DataArray,
str] = 'tasmax', *, thresh_tasmin: str =
'22.0 degC', thresh_tasmax: str = '30
degC', window: int = 3, freq: str = 'YS',
op: str = '>', resample_before_rl: bool
= True, ds: Dataset = None)→
DataArray

Heat wave total length (realm: atmos)

Maximum length of heat waves. A heat wave occurs when daily minimum and maximum temperatures exceed
given thresholds for a number of days.

This indicator will check for missing values according to the method “from_context”. Based on indice
heat_wave_total_length(). Keywords : health,.

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – The minimum temperature threshold needed
to trigger a heatwave event. Default : 22.0 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The maximum temperature threshold needed
to trigger a heatwave event. Default : 30 degC. [Required units : [temperature]]

754 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• window (number) – Minimum number of days with temperatures above thresholds to qualify
as a heatwave. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
heat_wave_total_length (DataArray) – Total length of events of at least {window} consecutive
days with daily minimum temperature above {thresh_tasmin} and daily maximum temperature
above {thresh_tasmax} (spell_length_of_days_with_air_temperature_above_threshold) [days],
with additional attributes: description: {freq} total length of heat wave events occurring within
a given period. A heat wave occurs when daily minimum and maximum temperatures exceed
{thresh_tasmin} and {thresh_tasmax}, respectively, over at least {window} days.

Notes

See notes and references of heat_wave_max_length

xclim.indicators.atmos._temperature.heating_degree_days(tas: Union[DataArray, str] = 'tas', *,
thresh: str = '17.0 degC', freq: str = 'YS',
ds: Dataset = None, **indexer)→
DataArray

Heating degree days (realm: atmos)

The cumulative degree days for days when the mean daily temperature is below a given threshold and buildings
must be heated.

This indicator will check for missing values according to the method “from_context”. Based on indice
heating_degree_days().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 17.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
heating_degree_days (DataArray) – Cumulative sum of temperature degrees for mean daily
temperature below {thresh} (integral_of_air_temperature_deficit_wrt_time) [K days], with ad-
ditional attributes: cell_methods: time: sum over days; description: {freq} cumulative heating
degree days (mean temperature below {thresh}).

16.1. xclim package 755

xclim Documentation, Release 0.39.0

Notes

This index intentionally differs from its ECA&D [Project team ECA&D and KNMI, 2013] equivalent: HD17.
In HD17, values below zero are not clipped before the sum. The present definition should provide a better
representation of the energy demand for heating buildings to the given threshold.

Let 𝑇𝐺𝑖𝑗 be the daily mean temperature at day 𝑖 of period 𝑗. Then the heating degree days are:

𝐻𝐷17𝑗 =

𝐼∑︁
𝑖=1

(17− 𝑇𝐺𝑖𝑗)|𝑇𝐺𝑖𝑗 < 17)

xclim.indicators.atmos._temperature.hot_spell_frequency(tasmax: Union[DataArray, str] = 'tasmax',
*, thresh_tasmax: str = '30 degC', window:
int = 3, freq: str = 'YS', op: str = '>', ds:
Dataset = None)→ DataArray

Hot spell frequency (realm: atmos)

Number of hot spells events within a given period. A hot spell occurs when the daily maximum temperatureex-
ceeds a given threshold for a minimum number of days.

This indicator will check for missing values according to the method “from_context”. Based on indice
hot_spell_frequency(). Keywords : health,.

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The maximum temperature threshold needed
to trigger a heatwave event. Default : 30 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperatures above thresholds to qualify
as a heatwave. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
hot_spell_frequency (DataArray) – Total number of series of at least {window} consecutive
days with daily maximum temperature above {thresh_tasmax} (hot_spell_events), with addi-
tional attributes: description: {freq} number of hot spell events within a given period. A hot
spell event occurs when the maximum daily temperature exceeds {thresh_tasmax} over at least
{window} days.

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

756 Chapter 16. xclim

xclim Documentation, Release 0.39.0

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indicators.atmos._temperature.hot_spell_max_length(tasmax: Union[DataArray, str] =
'tasmax', *, thresh_tasmax: str = '30
degC', window: int = 1, freq: str = 'YS',
op: str = '>', ds: Dataset = None)→
DataArray

Hot spell maximum length (realm: atmos)

Maximum length of hot spells events within a given period. A hot spell occurs when the daily maximum tem-
perature exceeds a given threshold for a minimum number of days.

This indicator will check for missing values according to the method “from_context”. Based on indice
hot_spell_max_length(). Keywords : health,.

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• thresh_tasmax (quantity (string with units)) – The maximum temperature threshold needed
to trigger a heatwave event. Default : 30 degC. [Required units : [temperature]]

• window (number) – Minimum number of days with temperatures above thresholds to qualify
as a heatwave. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
hot_spell_max_length (DataArray) – Longest series of at least {window}
consecutive days with daily maximum temperature above {thresh_tasmax}
(spell_length_of_days_with_air_temperature_above_threshold) [days], with additional at-
tributes: description: {freq} maximum length of hot spell events occurring within a given
period. A hot spell event occurs when the maximum daily temperature exceeds {thresh_tasmax}
over at least {window} days.

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

16.1. xclim package 757

xclim Documentation, Release 0.39.0

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indicators.atmos._temperature.huglin_index(tas: Union[DataArray, str] = 'tas', tasmax:
Union[DataArray, str] = 'tasmax', lat:
Union[DataArray, str] = 'lat', *, thresh: str = '10
degC', method: str = 'jones', start_date:
DayOfYearStr = '04-01', end_date: DayOfYearStr =
'10-01', freq: str = 'YS', ds: Dataset = None)→
DataArray

Huglin heliothermal index (realm: atmos)

Heat-summation index for agroclimatic suitability estimation, developed specifically for viticulture. Considers
daily minimum and maximum temperature with a given base threshold, typically between 1 April and 30Septem-
ber, and integrates a day-length coefficient calculation for higher latitudes. Metric originally published in Huglin
(1978). Day-length coefficient based on Hall & Jones (2010).

This indicator will check for missing values according to the method “from_context”. Based on indice
huglin_index().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• lat (str or DataArray) – Latitude coordinate. If None, a CF-conformant “latitude” field must
be available within the passed DataArray. Default : ds.lat. [Required units : []]

• thresh (quantity (string with units)) – The temperature threshold. Default : 10 degC. [Re-
quired units : [temperature]]

• method ({‘smoothed’, ‘icclim’, ‘jones’}) – The formula to use for the latitude coefficient
calculation. Default : jones.

• start_date (date (string, MM-DD)) – The hemisphere-based start date to consider (north =
April, south = October). Default : 04-01.

• end_date (date (string, MM-DD)) – The hemisphere-based start date to consider (north =
October, south = April). This date is non-inclusive. Default : 10-01.

• freq (offset alias (string)) – Resampling frequency (default: “YS”; For Southern Hemi-
sphere, should be “AS-JUL”). Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
hi (DataArray) – Integral of mean daily temperature above {thresh} multiplied by day-length co-
efficient with {method} method for days between {start_date} and {end_date}, with additional
attributes: description: Heat-summation index for agroclimatic suitability estimation, devel-
oped specifically for viticulture, computed with {method} formula (Summation of ((Tn + Tx)/2
- {thresh}) * k), where coefficient k is a latitude-based day-length for days between {start_date}
and {end_date}.

758 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖 and 𝑇𝐺𝑖 be the daily maximum and mean temperature at day 𝑖 and 𝑇𝑡ℎ𝑟𝑒𝑠ℎ the base threshold needed
for heat summation (typically, 10 degC). A day-length multiplication, 𝑘, based on latitude, 𝑙𝑎𝑡, is also considered.
Then the Huglin heliothermal index for dates between 1 April and 30 September is:

𝐻𝐼 =

September 30∑︁
𝑖=April 1

(︂
𝑇𝑋𝑖 + 𝑇𝐺𝑖)

2
− 𝑇𝑡ℎ𝑟𝑒𝑠ℎ

)︂
* 𝑘

For the smoothed method, the day-length multiplication factor, 𝑘, is calculated as follows:

𝑘 = 𝑓(𝑙𝑎𝑡) =

⎧⎪⎨⎪⎩
1, if |𝑙𝑎𝑡| <= 40

1 + ((𝑎𝑏𝑠(𝑙𝑎𝑡)− 40)/10) * 0.06, if 40 < |𝑙𝑎𝑡| <= 50

𝑁𝑎𝑁, if |𝑙𝑎𝑡| > 50

For compatibility with ICCLIM, end_date should be set to 11-01, method should be set to icclim. The day-length
multiplication factor, 𝑘, is calculated as follows:

𝑘 = 𝑓(𝑙𝑎𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0, if |𝑙𝑎𝑡| <= 40

1.02, if 40 < |𝑙𝑎𝑡| <= 42

1.03, if 42 < |𝑙𝑎𝑡| <= 44

1.04, if 44 < |𝑙𝑎𝑡| <= 46

1.05, if 46 < |𝑙𝑎𝑡| <= 48

1.06, if 48 < |𝑙𝑎𝑡| <= 50

𝑁𝑎𝑁, if |𝑙𝑎𝑡| > 50

A more robust day-length calculation based on latitude, calendar, day-of-year, and obliquity is available with
method=”jones”. See: xclim.indices.generic.day_lengths() or Hall and Jones [2010] for more infor-
mation.

References

Hall and Jones [2010], Huglin [1978]

xclim.indicators.atmos._temperature.ice_days(tasmax: Union[DataArray, str] = 'tasmax', *, thresh: str
= '0 degC', freq: str = 'YS', ds: Dataset = None,
**indexer)→ DataArray

Ice days (realm: atmos)

Number of days where the daily maximum temperature is below 0°C

This indicator will check for missing values according to the method “from_context”. Based on indice
ice_days().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Freezing temperature. Default : 0 degC. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

16.1. xclim package 759

xclim Documentation, Release 0.39.0

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
ice_days (DataArray) – Number of days with maximum daily temperature below {thresh}
(days_with_air_temperature_below_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days where the maximum daily temperature
is below {thresh}.

Notes

Let 𝑇𝑋𝑖𝑗 be the daily maximum temperature at day 𝑖 of period 𝑗, and :math`TT` the threshold. Then counted is
the number of days where:

𝑇𝑋𝑖𝑗 < 𝑇𝑇

xclim.indicators.atmos._temperature.last_spring_frost(tas: Union[DataArray, str] = 'tas', *, thresh:
str = '0 degC', before_date: DayOfYearStr =
'07-01', window: int = 1, freq: str = 'YS', ds:
Dataset = None)→ DataArray

Last spring frost (realm: atmos)

The last day when temperature is below a given threshold for a certain number of days, limited by a final calendar
date.

This indicator will check for missing values according to the method “from_context”. Based on indice
last_spring_frost().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• before_date (date (string, MM-DD)) – Date of the year before which to look for the final
frost event. Should have the format ‘%m-%d’. Default : 07-01.

• window (number) – Minimum number of days with temperature below threshold needed for
evaluation. Default : 1.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
last_spring_frost (DataArray) – Last day of minimum daily temperature below a threshold of
{thresh} for at least {window} days before a given date ({before_date}) (day_of_year), with
additional attributes: description: Day of year of last spring frost, defined as the last day a
minimum temperature remains below a threshold of {thresh} for at least {window} days before
a given date ({before_date}).

xclim.indicators.atmos._temperature.latitude_temperature_index(tas: Union[DataArray, str] = 'tas',
lat: Union[DataArray, str] = 'lat',
*, freq: str = 'YS', ds: Dataset =
None)→ DataArray

760 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Latitude temperature index (realm: atmos)

A climate indice based on mean temperature of the warmest month and a latitude-based coefficient to account
for longer day-length favouring growing conditions. Developed specifically for viticulture. Mean temperature
of warmest month multiplied by the difference of latitude factor coefficient minus latitude. Metric originally
published in Jackson, D. I., & Cherry, N. J. (1988).

This indicator will check for missing values according to the method “from_context”. Based on indice
latitude_temperature_index(). With injected parameters: lat_factor=60.

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• lat (str or DataArray) – Latitude coordinate. If None, a CF-conformant “latitude” field must
be available within the passed DataArray. Default : ds.lat. [Required units : []]

• freq (offset alias (string)) – Resampling frequency. Restricted to frequencies equivalent to
one of [‘A’] Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
lti (DataArray) – Mean temperature of warmest month multiplied by the difference of
{lat_factor} minus latitude, with additional attributes: description: A climate indice based on
mean temperature of the warmest month and a latitude-based coefficient to account for longer
day-length favouring growing conditions. Developed specifically for viticulture. Mean tempera-
ture of warmest month multiplied by the difference of {lat_factor} minus latitude.

Notes

The latitude factor of 75 is provided for examining the poleward expansion of wine-growing climates under
scenarios of climate change (modified from Kenny and Shao [1992]). For comparing 20th century/observed
historical records, the original scale factor of 60 is more appropriate.

Let 𝑇𝑛𝑗 be the average temperature for a given month 𝑗, 𝑙𝑎𝑡𝑓 be the latitude factor, and 𝑙𝑎𝑡 be the latitude of the
area of interest. Then the Latitude-Temperature Index (𝐿𝑇𝐼) is:

𝐿𝑇𝐼 = 𝑚𝑎𝑥(𝑇𝑁𝑗 : 𝑗 = 1..12)(𝑙𝑎𝑡𝑓 − |𝑙𝑎𝑡|)

References

Jackson and Cherry [1988], Kenny and Shao [1992]

xclim.indicators.atmos._temperature.max_daily_temperature_range(tasmin: Union[DataArray, str] =
'tasmin', tasmax:
Union[DataArray, str] =
'tasmax', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→
DataArray

Maximum of daily temperature range (realm: atmos)

The maximum difference between the daily maximum and minimum temperatures.

This indicator will check for missing values according to the method “from_context”. Based on indice
daily_temperature_range(). With injected parameters: op=max.

16.1. xclim package 761

xclim Documentation, Release 0.39.0

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
dtrmax (DataArray) – Maximum diurnal temperature range (air_temperature) [K], with addi-
tional attributes: cell_methods: time range within days time: max over days; description: {freq}
maximum diurnal temperature range.

Notes

For a default calculation using op=’mean’ :

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the mean diurnal
temperature range in period 𝑗 is:

𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=1(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)

𝐼

xclim.indicators.atmos._temperature.maximum_consecutive_frost_free_days(tasmin:
Union[DataArray, str]
= 'tasmin', *, thresh:
str = '0 degC', freq:
str = 'YS', ds: Dataset
= None)→ DataArray

Maximum consecutive frost free days (realm: atmos)

Maximum number of consecutive frost-free days: where the daily minimum temperature is above or equal to
0°C

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_frost_free_days().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature. Default : 0 degC. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
consecutive_frost_free_days (DataArray) – Maximum number of con-
secutive days with minimum temperature at or above {thresh}

762 Chapter 16. xclim

xclim Documentation, Release 0.39.0

(spell_length_of_days_with_air_temperature_above_threshold) [days], with additional at-
tributes: cell_methods: time: maximum over days; description: {freq} maximum number of
consecutive days with minimum daily temperature at or above {thresh}.

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a daily minimum temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold above or equal to which
a day is considered a frost free day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 <= 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 <=
𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where the temperature crosses the threshold. Then the maximum number of consecutive
frost free days is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 >= 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indicators.atmos._temperature.maximum_consecutive_warm_days(tasmax: Union[DataArray,
str] = 'tasmax', *, thresh: str
= '25 degC', freq: str = 'YS',
ds: Dataset = None)→
DataArray

Maximum consecutive warm days (realm: atmos)

Maximum number of consecutive days where the maximum daily temperature exceeds a certain threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
maximum_consecutive_tx_days().

Parameters
• tasmax (str or DataArray) – Max daily temperature. Default : ds.tasmax. [Required units :

[temperature]]

• thresh (quantity (string with units)) – Threshold temperature. Default : 25 degC. [Required
units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
maximum_consecutive_warm_days (DataArray) – Maximum number
of consecutive days with maximum daily temperature above {thresh}
(spell_length_of_days_with_air_temperature_above_threshold) [days], with additional at-
tributes: cell_methods: time: maximum over days; description: {freq} longest spell of
consecutive days with maximum daily temperature above {thresh}.

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a daily maximum temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold above which a day is
considered a summer day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that
is, the days where the temperature crosses the threshold. Then the maximum number of consecutive tx_days
(summer days) is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

16.1. xclim package 763

xclim Documentation, Release 0.39.0

xclim.indicators.atmos._temperature.tg10p(tas: Union[DataArray, str] = 'tas', tas_per:
Union[DataArray, str] = 'tas_per', *, freq: str = 'YS',
bootstrap: bool = False, op: str = '<', ds: Dataset = None,
**indexer)→ DataArray

Days with mean temperature below the 10th percentile (realm: atmos)

Number of days with mean temperature below the 10th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tg10p().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• tas_per (str or DataArray) – 10th percentile of daily mean temperature. Default : ds.tas_per.
[Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg10p (DataArray) – Number of days with mean temperature below the 10th percentile
(days_with_air_temperature_below_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with mean temperature below the
10th percentile. A {tas_per_window} day(s) window, centered on each calendar day in the
{tas_per_period} period, is used to compute the 10th percentile.

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

xclim.indicators.atmos._temperature.tg90p(tas: Union[DataArray, str] = 'tas', tas_per:
Union[DataArray, str] = 'tas_per', *, freq: str = 'YS',
bootstrap: bool = False, op: str = '>', ds: Dataset = None,
**indexer)→ DataArray

Days with mean temperature above the 90th percentile (realm: atmos)

Number of days with mean temperature above the 90th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tg90p().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

764 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• tas_per (str or DataArray) – 90th percentile of daily mean temperature. Default : ds.tas_per.
[Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg90p (DataArray) – Number of days with mean temperature above the 90th percentile
(days_with_air_temperature_above_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with mean temperature above the
90th percentile. A {tas_per_window} day(s) window, centered on each calendar day in the
{tas_per_period} period, is used to compute the 90th percentile.

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

xclim.indicators.atmos._temperature.tg_days_above(tas: Union[DataArray, str] = 'tas', *, thresh: str =
'10.0 degC', freq: str = 'YS', op: str = '>', ds:
Dataset = None, **indexer)→ DataArray

Number of days with mean temperature above a given threshold (realm: atmos)

The number of days with mean temperature above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tg_days_above().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 10.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg_days_above (DataArray) – The number of days with mean temperature above {thresh}

16.1. xclim package 765

xclim Documentation, Release 0.39.0

(number_of_days_with_air_temperature_above_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where daily mean
temperature exceeds {thresh}.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝐺𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos._temperature.tg_days_below(tas: Union[DataArray, str] = 'tas', *, thresh: str =
'10.0 degC', freq: str = 'YS', op: str = '<', ds:
Dataset = None, **indexer)→ DataArray

Number of days with mean temperature below a given threshold (realm: atmos)

The number of days with mean temperature below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tg_days_below().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 10.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg_days_below (DataArray) – The number of days with mean temperature below {thresh}
(number_of_days_with_air_temperature_below_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where daily mean
temperature is below {thresh}.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝐺𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos._temperature.tg_max(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Maximum of mean temperature (realm: atmos)

Maximum of daily mean temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tg_max().

766 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg_max (DataArray) – Maximum daily mean temperature (air_temperature) [K], with additional
attributes: cell_methods: time: maximum over days; description: {freq} maximum of daily
mean temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then the maximum daily mean temperature for period
𝑗 is:

𝑇𝑁𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑁𝑖𝑗)

xclim.indicators.atmos._temperature.tg_mean(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Mean temperature (realm: atmos)

Mean of daily mean temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
tg_mean().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg_mean (DataArray) – Mean daily mean temperature (air_temperature) [K], with additional
attributes: cell_methods: time: mean over days; description: {freq} mean of daily mean tem-
perature.

16.1. xclim package 767

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑁𝑖 be the mean daily temperature of day 𝑖, then for a period 𝑝 starting at day 𝑎 and finishing on day 𝑏:

𝑇𝐺𝑝 =

∑︀𝑏
𝑖=𝑎 𝑇𝑁𝑖

𝑏− 𝑎+ 1

xclim.indicators.atmos._temperature.tg_min(tas: Union[DataArray, str] = 'tas', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Minimum of mean temperature (realm: atmos)

Minimum of daily mean temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tg_min().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tg_min (DataArray) – Minimum daily mean temperature (air_temperature) [K], with additional
attributes: cell_methods: time: minimum over days; description: {freq} minimum of daily
mean temperature.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then the minimum daily mean temperature for period 𝑗
is:

𝑇𝐺𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝐺𝑖𝑗)

xclim.indicators.atmos._temperature.thawing_degree_days(tas: Union[DataArray, str] = 'tas', *,
thresh: str = '0 degC', freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Thawing degree days (realm: atmos)

The cumulative degree days for days when the average temperature is above a given threshold, typically 0°C.

This indicator will check for missing values according to the method “from_context”. Based on indice
growing_degree_days().

Parameters
• tas (str or DataArray) – Mean daily temperature. Default : ds.tas. [Required units : [tem-

perature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

768 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
thawing_degree_days (DataArray) – Cumulative sum of temperature degrees for mean daily
temperature above {thresh} (integral_of_air_temperature_excess_wrt_time) [K days], with ad-
ditional attributes: cell_methods: time: sum over days; description: {freq} thawing degree days
(mean temperature above {thresh}).

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then the growing degree days are:

𝐺𝐷4𝑗 =

𝐼∑︁
𝑖=1

(𝑇𝐺𝑖𝑗 − 4|𝑇𝐺𝑖𝑗 > 4)

xclim.indicators.atmos._temperature.tn10p(tasmin: Union[DataArray, str] = 'tasmin', tasmin_per:
Union[DataArray, str] = 'tasmin_per', *, freq: str = 'YS',
bootstrap: bool = False, op: str = '<', ds: Dataset = None,
**indexer)→ DataArray

Days with minimum temperature below the 10th percentile (realm: atmos)

Number of days with minimum temperature below the 10th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tn10p().

Parameters
• tasmin (str or DataArray) – Mean daily temperature. Default : ds.tasmin. [Required units :

[temperature]]

• tasmin_per (str or DataArray) – 10th percentile of daily minimum temperature. Default :
ds.tasmin_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn10p (DataArray) – Number of days with minimum temperature below the 10th percentile
(days_with_air_temperature_below_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with minimum temperature below the

16.1. xclim package 769

xclim Documentation, Release 0.39.0

10th percentile. A {tasmin_per_window} day(s) window, centered on each calendar day in the
{tasmin_per_period} period, is used to compute the 10th percentile.

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

xclim.indicators.atmos._temperature.tn90p(tasmin: Union[DataArray, str] = 'tasmin', tasmin_per:
Union[DataArray, str] = 'tasmin_per', *, freq: str = 'YS',
bootstrap: bool = False, op: str = '>', ds: Dataset = None,
**indexer)→ DataArray

Days with minimum temperature above the 90th percentile (realm: atmos)

Number of days with minimum temperature above the 90th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tn90p().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmin_per (str or DataArray) – 90th percentile of daily minimum temperature. Default :
ds.tasmin_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn90p (DataArray) – Number of days with minimum temperature above the 90th percentile
(days_with_air_temperature_above_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with minimum temperature above the
90th percentile. A {tasmin_per_window} day(s) window, centered on each calendar day in the
{tasmin_per_period} period, is used to compute the 90th percentile.

770 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

xclim.indicators.atmos._temperature.tn_days_above(tasmin: Union[DataArray, str] = 'tasmin', *,
thresh: str = '20.0 degC', freq: str = 'YS', op: str =
'>', ds: Dataset = None, **indexer)→ DataArray

Number of days with minimum temperature above a given threshold (realm: atmos)

The number of days with minimum temperature above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tn_days_above().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 20.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn_days_above (DataArray) – The number of days with minimum temperature above {thresh}
(number_of_days_with_air_temperature_above_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where daily minimum
temperature exceeds {thresh}.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos._temperature.tn_days_below(tasmin: Union[DataArray, str] = 'tasmin', *,
thresh: str = '-10.0 degC', freq: str = 'YS', op: str =
'<', ds: Dataset = None, **indexer)→ DataArray

Number of days with minimum temperature below a given threshold (realm: atmos)

The number of days with minimum temperature below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tn_days_below().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : -10.0 degC. [Required units : [temperature]]

16.1. xclim package 771

xclim Documentation, Release 0.39.0

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn_days_below (DataArray) – The number of days with minimum temperature below {thresh}
(number_of_days_with_air_temperature_below_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where daily minimum
temperature is below {thresh}.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos._temperature.tn_max(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS',
ds: Dataset = None, **indexer)→ DataArray

Maximum of minimum temperature (realm: atmos)

Maximum of daily minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tn_max().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn_max (DataArray) – Maximum daily minimum temperature (air_temperature) [K], with ad-
ditional attributes: cell_methods: time: maximum over days; description: {freq} maximum of
daily minimum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then the maximum daily minimum temperature for
period 𝑗 is:

𝑇𝑁𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑁𝑖𝑗)

772 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indicators.atmos._temperature.tn_mean(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str =
'YS', ds: Dataset = None, **indexer)→ DataArray

Mean of minimum temperature (realm: atmos)

Mean of daily minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
tn_mean().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn_mean (DataArray) – Mean daily minimum temperature (air_temperature) [K], with addi-
tional attributes: cell_methods: time: mean over days; description: {freq} mean of daily mini-
mum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then mean values in period 𝑗 are given by:

𝑇𝑁𝑖𝑗 =

∑︀𝐼
𝑖=1 𝑇𝑁𝑖𝑗

𝐼

xclim.indicators.atmos._temperature.tn_min(tasmin: Union[DataArray, str] = 'tasmin', *, freq: str = 'YS',
ds: Dataset = None, **indexer)→ DataArray

Minimum temperature (realm: atmos)

Minimum of daily minimum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tn_min().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tn_min (DataArray) – Minimum daily minimum temperature (air_temperature) [K], with addi-
tional attributes: cell_methods: time: minimum over days; description: {freq} minimum of
daily minimum temperature.

16.1. xclim package 773

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then the minimum daily minimum temperature for
period 𝑗 is:

𝑇𝑁𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝑁𝑖𝑗)

xclim.indicators.atmos._temperature.tropical_nights(tasmin: Union[DataArray, str] = 'tasmin', *,
thresh: str = '20.0 degC', freq: str = 'YS', op: str
= '>', ds: Dataset = None, **indexer)→
DataArray

Tropical nights (realm: atmos)

Number of days where minimum temperature is above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tn_days_above().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 20.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tropical_nights (DataArray) – Number of days with minimum daily temperature above {thresh}
(number_of_days_with_air_temperature_above_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of Tropical Nights, defined
as days with minimum daily temperature above {thresh}.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos._temperature.tx10p(tasmax: Union[DataArray, str] = 'tasmax', tasmax_per:
Union[DataArray, str] = 'tasmax_per', *, freq: str = 'YS',
bootstrap: bool = False, op: str = '<', ds: Dataset = None,
**indexer)→ DataArray

Days with maximum temperature below the 10th percentile (realm: atmos)

Number of days with maximum temperature below the 10th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tx10p().

Parameters

774 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• tasmax_per (str or DataArray) – 10th percentile of daily maximum temperature. Default :
ds.tasmax_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx10p (DataArray) – Number of days with maximum temperature below the 10th percentile
(days_with_air_temperature_below_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with maximum temperature below the
10th percentile. A {tasmax_per_window} day(s) window, centered on each calendar day in the
{tasmax_per_period} period, is used to compute the 10th percentile.

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

xclim.indicators.atmos._temperature.tx90p(tasmax: Union[DataArray, str] = 'tasmax', tasmax_per:
Union[DataArray, str] = 'tasmax_per', *, freq: str = 'YS',
bootstrap: bool = False, op: str = '>', ds: Dataset = None,
**indexer)→ DataArray

Days with maximum temperature above the 90th percentile (realm: atmos)

Number of days with maximum temperature above the 90th percentile.

This indicator will check for missing values according to the method “from_context”. Based on indice tx90p().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• tasmax_per (str or DataArray) – 90th percentile of daily maximum temperature. Default :
ds.tasmax_per. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

16.1. xclim package 775

xclim Documentation, Release 0.39.0

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx90p (DataArray) – Number of days with maximum temperature above the 90th percentile
(days_with_air_temperature_above_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with maximum temperature above the
90th percentile. A {tasmax_per_window} day(s) window, centered on each calendar day in the
{tasmax_per_period} period, is used to compute the 90th percentile.

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

xclim.indicators.atmos._temperature.tx_days_above(tasmax: Union[DataArray, str] = 'tasmax', *,
thresh: str = '25.0 degC', freq: str = 'YS', op: str =
'>', ds: Dataset = None, **indexer)→ DataArray

Number of days with maximum temperature above a given threshold (realm: atmos)

The number of days with maximum temperature above a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tx_days_above().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 25.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx_days_above (DataArray) – The number of days with maximum temperature above {thresh}
(number_of_days_with_air_temperature_above_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where daily maximum
temperature exceeds {thresh}.

776 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos._temperature.tx_days_below(tasmax: Union[DataArray, str] = 'tasmax', *,
thresh: str = '25.0 degC', freq: str = 'YS', op: str =
'<', ds: Dataset = None, **indexer)→ DataArray

Number of days with maximum temperature below a given threshold (realm: atmos)

The number of days with maximum temperature below a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
tx_days_below().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• thresh (quantity (string with units)) – Threshold temperature on which to base evaluation.
Default : 25.0 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘<’, ‘lt’, ‘<=’, ‘le’}) – Comparison operation. Default: “<”. Default : <.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx_days_below (DataArray) – The number of days with maximum temperature below {thresh}
(number_of_days_with_air_temperature_below_threshold) [days], with additional attributes:
cell_methods: time: sum over days; description: {freq} number of days where daily max tem-
perature is below {thresh}.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indicators.atmos._temperature.tx_max(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str =
'YS', ds: Dataset = None, **indexer)→ DataArray

Maximum temperature (realm: atmos)

Maximum of daily maximum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tx_max().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

16.1. xclim package 777

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx_max (DataArray) – Maximum daily maximum temperature (air_temperature) [K], with ad-
ditional attributes: cell_methods: time: maximum over days; description: {freq} maximum of
daily maximum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then the maximum daily maximum temperature
for period 𝑗 is:

𝑇𝑋𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑋𝑖𝑗)

xclim.indicators.atmos._temperature.tx_mean(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str =
'YS', ds: Dataset = None, **indexer)→ DataArray

Mean of maximum temperature (realm: atmos)

Mean of daily maximum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice
tx_mean().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx_mean (DataArray) – Mean daily maximum temperature (air_temperature) [K], with addi-
tional attributes: cell_methods: time: mean over days; description: {freq} mean of daily max-
imum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then mean values in period 𝑗 are given by:

𝑇𝑋𝑖𝑗 =

∑︀𝐼
𝑖=1 𝑇𝑋𝑖𝑗

𝐼

xclim.indicators.atmos._temperature.tx_min(tasmax: Union[DataArray, str] = 'tasmax', *, freq: str =
'YS', ds: Dataset = None, **indexer)→ DataArray

Minimum of maximum temperature (realm: atmos)

Minimum of daily maximum temperature.

This indicator will check for missing values according to the method “from_context”. Based on indice tx_min().

778 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
tx_min (DataArray) – Minimum daily maximum temperature (air_temperature) [K], with ad-
ditional attributes: cell_methods: time: minimum over days; description: {freq} minimum of
daily maximum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then the minimum daily maximum temperature for
period 𝑗 is:

𝑇𝑋𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝑋𝑖𝑗)

xclim.indicators.atmos._temperature.tx_tn_days_above(tasmin: Union[DataArray, str] = 'tasmin',
tasmax: Union[DataArray, str] = 'tasmax', *,
thresh_tasmin: str = '22 degC', thresh_tasmax:
str = '30 degC', freq: str = 'YS', op: str = '>',
ds: Dataset = None, **indexer)→ DataArray

Number of days with daily minimum and maximum temperatures exceeding thresholds (realm: atmos)

Number of days with daily maximum and minimum temperatures above given thresholds.

This indicator will check for missing values according to the method “from_context”. Based on indice
tx_tn_days_above().

Parameters
• tasmin (str or DataArray) – Minimum daily temperature. Default : ds.tasmin. [Required

units : [temperature]]

• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required
units : [temperature]]

• thresh_tasmin (quantity (string with units)) – Threshold temperature for tasmin on which
to base evaluation. Default : 22 degC. [Required units : [temperature]]

• thresh_tasmax (quantity (string with units)) – Threshold temperature for tasmax on which
to base evaluation. Default : 30 degC. [Required units : [temperature]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

16.1. xclim package 779

xclim Documentation, Release 0.39.0

Returns
tx_tn_days_above (DataArray) – Number of days with daily minimum above
{thresh_tasmin} and daily maximum temperatures above {thresh_tasmax} (num-
ber_of_days_with_air_temperature_above_threshold) [days], with additional attributes: de-
scription: {freq} number of days where daily maximum temperature exceeds {thresh_tasmax}
and minimum temperature exceeds {thresh_tasmin}.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗, 𝑇𝑁𝑖𝑗 the daily minimum temperature at day 𝑖 of
period 𝑗, 𝑇𝑋𝑡ℎ𝑟𝑒𝑠ℎ the threshold for maximum daily temperature, and 𝑇𝑁𝑡ℎ𝑟𝑒𝑠ℎ the threshold for minimum
daily temperature. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 > 𝑇𝑋𝑡ℎ𝑟𝑒𝑠ℎ[]

and where:

𝑇𝑁𝑖𝑗 > 𝑇𝑁𝑡ℎ𝑟𝑒𝑠ℎ[]

xclim.indicators.atmos._temperature.warm_spell_duration_index(tasmax: Union[DataArray, str] =
'tasmax', tasmax_per:
Union[DataArray, str] =
'tasmax_per', *, window: int = 6,
freq: str = 'YS',
resample_before_rl: bool = True,
bootstrap: bool = False, op: str =
'>', ds: Dataset = None)→
DataArray

Warm spell duration index (realm: atmos)

Number of days part of a percentile-defined warm spell. A warm spell occurs when the maximum daily temper-
ature is above a given percentile for a given number of consecutive days.

This indicator will check for missing values according to the method “from_context”. Based on indice
warm_spell_duration_index().

Parameters
• tasmax (str or DataArray) – Maximum daily temperature. Default : ds.tasmax. [Required

units : [temperature]]

• tasmax_per (str or DataArray) – percentile(s) of daily maximum temperature. Default :
ds.tasmax_per. [Required units : [temperature]]

• window (number) – Minimum number of days with temperature above threshold to qualify
as a warm spell. Default : 6.

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• bootstrap (boolean) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive. Default : False.

780 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• op ({‘>’, ‘gt’, ‘ge’, ‘>=’}) – Comparison operation. Default: “>”. Default : >.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
warm_spell_duration_index (DataArray) – Number of days with at least {window} consec-
utive days where the maximum daily temperature is above the {tasmax_per_thresh}th per-
centile(s) (number_of_days_with_air_temperature_above_threshold) [days], with additional at-
tributes: cell_methods: time: sum over days; description: {freq} number of days with at
least {window} consecutive days where the maximum daily temperature is above the {tas-
max_per_thresh}th percentile(s). A {tasmax_per_window} day(s) window, centred on each cal-
endar day in the {tasmax_per_period} period, is used to compute the {tasmax_per_thresh}th
percentile(s).

References

From the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI; [Zhang et al., 2011]).
Used in Alexander, Zhang, Peterson, Caesar, Gleason, Klein Tank, Haylock, Collins, Trewin, Rahimzadeh,
Tagipour, Rupa Kumar, Revadekar, Griffiths, Vincent, Stephenson, Burn, Aguilar, Brunet, Taylor, New, Zhai,
Rusticucci, and Vazquez-Aguirre [2006]

xclim.indicators.atmos._wind module

xclim.indicators.atmos._wind.calm_days(sfcWind: Union[DataArray, str] = 'sfcWind', *, thresh: str = '2 m
s-1', freq: str = 'MS', ds: Dataset = None, **indexer)→
DataArray

Calm days (realm: atmos)

Number of days with surface wind speed below threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
calm_days().

Parameters
• sfcWind (str or DataArray) – Daily windspeed. Default : ds.sfcWind. [Required units :

[speed]]

• thresh (quantity (string with units)) – Threshold average near-surface wind speed on which
to base evaluation. Default : 2 m s-1. [Required units : [speed]]

• freq (offset alias (string)) – Resampling frequency. Default : MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
calm_days (DataArray) – Number of days with surface wind speed below {thresh} (num-
ber_of_days_with_sfcWind_below_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with surface wind speed below
{thresh}.

16.1. xclim package 781

xclim Documentation, Release 0.39.0

Notes

Let 𝑊𝑆𝑖𝑗 be the windspeed at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑊𝑆𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑠− 1]

xclim.indicators.atmos._wind.windy_days(sfcWind: Union[DataArray, str] = 'sfcWind', *, thresh: str =
'10.8 m s-1', freq: str = 'MS', ds: Dataset = None, **indexer)→
DataArray

Windy days (realm: atmos)

Number of days with surface wind speed at or above threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
windy_days().

Parameters
• sfcWind (str or DataArray) – Daily average near-surface wind speed. Default : ds.sfcWind.

[Required units : [speed]]

• thresh (quantity (string with units)) – Threshold average near-surface wind speed on which
to base evaluation. Default : 10.8 m s-1. [Required units : [speed]]

• freq (offset alias (string)) – Resampling frequency. Default : MS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
windy_days (DataArray) – Number of days with surface wind speed at or above {thresh} (num-
ber_of_days_with_sfcWind_above_threshold) [days], with additional attributes: cell_methods:
time: sum over days; description: {freq} number of days with surface wind speed at or above
{thresh}.

Notes

Let 𝑊𝑆𝑖𝑗 be the windspeed at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑊𝑆𝑖𝑗 >= 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑠− 1]

xclim.indicators.land package

Land indicators

Submodules

xclim.indicators.land._snow module

782 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indicators.land._snow.blowing_snow(snd: Union[DataArray, str] = 'snd', sfcWind:
Union[DataArray, str] = 'sfcWind', *, snd_thresh: str = '5 cm',
sfcWind_thresh: str = '15 km/h', window: int = 3, freq: str =
'AS-JUL', ds: Dataset = None)→ DataArray

Blowing snow days (realm: land)

The number of days with snowfall, snow depth, and windspeed over given thresholds for a period of days.

This indicator will check for missing values according to the method “from_context”. Based on indice
blowing_snow().

Parameters
• snd (str or DataArray) – Surface snow depth. Default : ds.snd. [Required units : [length]]

• sfcWind (str or DataArray) – Wind velocity Default : ds.sfcWind. [Required units : [speed]]

• snd_thresh (quantity (string with units)) – Threshold on net snowfall accumulation over the
last window days. Default : 5 cm. [Required units : [length]]

• sfcWind_thresh (quantity (string with units)) – Wind speed threshold. Default : 15 km/h.
[Required units : [speed]]

• window (number) – Period over which snow is accumulated before comparing against
threshold. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
{freq}_blowing_snow (DataArray) – Days with snowfall and wind speed at or above given
thresholds [days], with additional attributes: description: The {freq} number of days with snow-
fall over last {window} days above {snd_thresh} and wind speed above {sfcWind_thresh}.

xclim.indicators.land._snow.continuous_snow_cover_end(snd: Union[DataArray, str] = 'snd', *, thresh:
str = '2 cm', window: int = 14, freq: str =
'AS-JUL', ds: Dataset = None)→ DataArray

End date of continuous snow cover (realm: land)

The first date on which snow depth is below a given threshold for a given number of consecutive days.

This indicator will check for missing values according to the method “from_context”. Based on indice
continuous_snow_cover_end().

Parameters
• snd (str or DataArray) – Surface snow thickness. Default : ds.snd. [Required units :

[length]]

• thresh (quantity (string with units)) – Threshold snow thickness. Default : 2 cm. [Required
units : [length]]

• window (number) – Minimum number of days with snow depth below threshold. Default :
14.

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
continuous_snow_cover_end (DataArray) – End date of continuous snow cover (day_of_year),
with additional attributes: description: Day of year when snow depth is below {thresh} for
{window} consecutive days.

16.1. xclim package 783

xclim Documentation, Release 0.39.0

References

Chaumont, Mailhot, Diaconescu, Fournier, and Logan [2017]

xclim.indicators.land._snow.continuous_snow_cover_start(snd: Union[DataArray, str] = 'snd', *,
thresh: str = '2 cm', window: int = 14, freq:
str = 'AS-JUL', ds: Dataset = None)→
DataArray

Start date of continuous snow cover (realm: land)

The first date on which snow depth is greater than or equal to a given threshold for a given number of consecutive
days.

This indicator will check for missing values according to the method “from_context”. Based on indice
continuous_snow_cover_start().

Parameters
• snd (str or DataArray) – Surface snow thickness. Default : ds.snd. [Required units :

[length]]

• thresh (quantity (string with units)) – Threshold snow thickness. Default : 2 cm. [Required
units : [length]]

• window (number) – Minimum number of days with snow depth above or equal to threshold.
Default : 14.

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
continuous_snow_cover_start (DataArray) – Start date of continuous snow cover
(day_of_year), with additional attributes: description: Day of year when snow depth is
above or equal to {thresh} for {window} consecutive days.

References

Chaumont, Mailhot, Diaconescu, Fournier, and Logan [2017]

xclim.indicators.land._snow.snd_max_doy(snd: Union[DataArray, str] = 'snd', *, freq: str = 'AS-JUL', ds:
Dataset = None, **indexer)→ DataArray

Day of year of maximum snow depth (realm: land)

Day of the year when snow depth reaches its maximum value.

This indicator will check for missing values according to the method “from_context”. Based on indice
snd_max_doy().

Parameters
• snd (str or DataArray) – Surface snow depth. Default : ds.snd. [Required units : [length]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

784 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Returns
{freq}_snd_max_doy (DataArray) – Day of the year when snow depth reaches its maximum
value (day_of_year), with additional attributes: description: The {freq} day of the year when
snow depth reaches its maximum value.

xclim.indicators.land._snow.snow_cover_duration(snd: Union[DataArray, str] = 'snd', *, thresh: str = '2
cm', freq: str = 'AS-JUL', ds: Dataset = None,
**indexer)→ DataArray

Snow cover duration (realm: land)

Number of days when the snow depth is greater than or equal to a given threshold.

This indicator will check for missing values according to the method “from_context”. Based on indice
snow_cover_duration().

Parameters
• snd (str or DataArray) – Surface snow thickness. Default : ds.snd. [Required units :

[length]]

• thresh (quantity (string with units)) – Threshold snow thickness. Default : 2 cm. [Required
units : [length]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
snow_cover_duration (DataArray) – Number of days with snow depth at or above threshold
[days], with additional attributes: description: The {freq} number of days with snow depth
greater than or equal to {thresh}.

xclim.indicators.land._snow.snow_depth(snd: Union[DataArray, str] = 'snd', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Mean snow depth (realm: land)

Mean of daily snow depth.

This indicator will check for missing values according to the method “from_context”. Based on indice
snow_depth().

Parameters
• snd (str or DataArray) – Mean daily snow depth. Default : ds.snd. [Required units : [length]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
snow_depth (DataArray) – Mean of daily snow depth (surface_snow_thickness) [cm], with ad-
ditional attributes: cell_methods: time: mean over days; description: The {freq} mean of daily
mean snow depth.

16.1. xclim package 785

xclim Documentation, Release 0.39.0

xclim.indicators.land._snow.snow_melt_we_max(snw: Union[DataArray, str] = 'snw', *, window: int = 3,
freq: str = 'AS-JUL', ds: Dataset = None)→ DataArray

Maximum snow melt (realm: land)

The water equivalent of the maximum snow melt.

This indicator will check for missing values according to the method “from_context”. Based on indice
snow_melt_we_max().

Parameters
• snw (str or DataArray) – Snow amount (mass per area). Default : ds.snw. [Required units :

[mass]/[area]]

• window (number) – Number of days during which the melt is accumulated. Default : 3.

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
{freq}_snow_melt_we_max (DataArray) – Maximum snow melt
(change_over_time_in_surface_snow_amount) [kg m-2], with additional attributes: de-
scription: The {freq} maximum negative change in melt amount over {window} days.

xclim.indicators.land._snow.snw_max(snw: Union[DataArray, str] = 'snw', *, freq: str = 'AS-JUL', ds:
Dataset = None, **indexer)→ DataArray

Maximum snow amount (realm: land)

The maximum snow water equivalent amount on the surface.

This indicator will check for missing values according to the method “from_context”. Based on indice
snw_max().

Parameters
• snw (str or DataArray) – Snow amount (mass per area). Default : ds.snw. [Required units :

[mass]/[area]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
{freq}_snw_max (DataArray) – Maximum snow water equivalent amount (sur-
face_snow_amount) [kg m-2], with additional attributes: description: The {freq} maximum
snow water equivalent amount on the surface.

xclim.indicators.land._snow.snw_max_doy(snw: Union[DataArray, str] = 'snw', *, freq: str = 'AS-JUL', ds:
Dataset = None, **indexer)→ DataArray

Day of year of maximum snow amount (realm: land)

The day of year when snow water equivalent amount on the surface reaches its maximum.

This indicator will check for missing values according to the method “from_context”. Based on indice
snw_max_doy().

Parameters

786 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• snw (str or DataArray) – Surface snow amount. Default : ds.snw. [Required units :
[mass]/[area]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
{freq}_snw_max_doy (DataArray) – Day of year of maximum daily snow water equivalent
amount (day_of_year), with additional attributes: description: The {freq} day of year when
snow water equivalent amount on the surface reaches its maximum.

xclim.indicators.land._snow.winter_storm(snd: Union[DataArray, str] = 'snd', *, thresh: str = '25 cm',
freq: str = 'AS-JUL', ds: Dataset = None, **indexer)→
DataArray

Winter storm days (realm: land)

Number of days with snowfall accumulation greater or equal to threshold (default: 25 cm).

This indicator will check for missing values according to the method “from_context”. Based on indice
winter_storm().

Parameters
• snd (str or DataArray) – Surface snow depth. Default : ds.snd. [Required units : [length]]

• thresh (quantity (string with units)) – Threshold on snowfall accumulation require to label
an event a winter storm. Default : 25 cm. [Required units : [length]]

• freq (offset alias (string)) – Resampling frequency. Default : AS-JUL.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Default :
None.

Returns
{freq}_winter_storm (DataArray) – Days with snowfall at or above a given threshold [days],
with additional attributes: description: The {freq} number of days with snowfall accumulation
above {thresh}.

Notes

Snowfall accumulation is estimated by the change in snow depth.

16.1. xclim package 787

xclim Documentation, Release 0.39.0

xclim.indicators.land._streamflow module

Streamflow indicator definitions.

xclim.indicators.land._streamflow.base_flow_index(q: Union[DataArray, str] = 'q', *, freq: str = 'YS',
ds: Dataset = None)→ DataArray

Base flow index (realm: land)

Return the base flow index, defined as the minimum 7-day average flow divided by the mean flow.

This indicator will check for missing values according to the method “from_context”. Based on indice
base_flow_index().

Parameters
• q (str or DataArray) – Rate of river discharge. Default : ds.q. [Required units : [discharge]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
base_flow_index (DataArray) – Base flow index, with additional attributes: description: Min-
imum of the 7-day moving average flow divided by the mean flow.

Notes

Let q = 𝑞0, 𝑞1, . . . , 𝑞𝑛 be the sequence of daily discharge and q the mean flow over the period. The base flow
index is given by:

min(CMA7(q))

q

where CMA7 is the seven days moving average of the daily flow:

CMA7(𝑞𝑖) =

∑︀𝑖+3
𝑗=𝑖−3 𝑞𝑗

7

xclim.indicators.land._streamflow.doy_qmax(da: Union[DataArray, str] = 'da', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Day of year of the maximum streamflow (realm: land)

This indicator will check for missing values according to the method “from_context”. Based on indice
select_resample_op(). With injected parameters: op=<function doymax at 0x7fc835069120>.

Parameters
• da (str or DataArray) – Input data. Default : ds.da.

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Time attribute and values over which to subset the array. For example, use sea-
son=’DJF’ to select winter values, month=1 to select January, or month=[6,7,8] to select
summer months. If not indexer is given, all values are considered. Default : None.

788 Chapter 16. xclim

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

Returns
q{indexer}_doy_qmax (DataArray) – Day of the year of the maximum streamflow over {in-
dexer}, with additional attributes: description: Day of the year of the maximum streamflow
over {indexer}.

xclim.indicators.land._streamflow.doy_qmin(da: Union[DataArray, str] = 'da', *, freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Day of year of the minimum streamflow (realm: land)

This indicator will check for missing values according to the method “from_context”. Based on indice
select_resample_op(). With injected parameters: op=<function doymin at 0x7fc8350691b0>.

Parameters
• da (str or DataArray) – Input data. Default : ds.da.

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Time attribute and values over which to subset the array. For example, use sea-
son=’DJF’ to select winter values, month=1 to select January, or month=[6,7,8] to select
summer months. If not indexer is given, all values are considered. Default : None.

Returns
q{indexer}_doy_qmin (DataArray) – Day of the year of the minimum streamflow over {in-
dexer}, with additional attributes: description: Day of the year of the minimum streamflow over
{indexer}.

xclim.indicators.land._streamflow.fit(da: Union[DataArray, str] = 'da', *, dist: str = 'norm', method: str
= 'ML', dim: str = 'time', ds: Dataset = None, **fitkwargs)→
DataArray

Distribution parameters fitted over the time dimension. (realm: land)

Based on indice fit().

Parameters
• da (str or DataArray) – Time series to be fitted along the time dimension. Default : ds.da.

• dist (str) – Name of the univariate distribution, such as beta, expon, genextreme, gamma,
gumbel_r, lognorm, norm (see :py:mod:scipy.stats for full list). If the PWM method is used,
only the following distributions are currently supported: ‘expon’, ‘gamma’, ‘genextreme’,
‘genpareto’, ‘gumbel_r’, ‘pearson3’, ‘weibull_min’. Default : norm.

• method ({‘APP’, ‘ML’, ‘PWM’}) – Fitting method, either maximum likelihood (ML), prob-
ability weighted moments (PWM), also called L-Moments, or approximate method (APP)
The PWM method is usually more robust to outliers. Default : ML.

• dim (str) – The dimension upon which to perform the indexing (default: “time”). Other
arguments passed directly to _fitstart() and to the distribution’s fit. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• fitkwargs – Default : None.

Returns
params (DataArray) – {dist} distribution parameters ({dist} parameters), with additional at-
tributes: cell_methods: time: fit; description: Parameters of the {dist} distribution.

16.1. xclim package 789

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

Notes

Coordinates for which all values are NaNs will be dropped before fitting the distribution. If the array still contains
NaNs, the distribution parameters will be returned as NaNs.

xclim.indicators.land._streamflow.freq_analysis(da: Union[DataArray, str] = 'da', *, mode: str, t: int |
Sequence[int], dist: str, window: int = 1, freq: str |
None = None, ds: Dataset = None, **indexer)→
DataArray

Return period flow amount (realm: land)

Streamflow frequency analysis on the basis of a given mode and distribution.

This indicator will check for missing values according to the method “skip”. Based on indice
frequency_analysis().

Parameters
• da (str or DataArray) – Input data. Default : ds.da.

• mode ({‘max’, ‘min’}) – Whether we are looking for a probability of exceedance (high) or a
probability of non-exceedance (low). Default : ds.da.

• t (number or sequence of numbers) – Return period. The period depends on the resolution
of the input data. If the input array’s resolution is yearly, then the return period is in years.
Default : ds.da.

• dist (str) – Name of the univariate distribution, e.g. beta, expon, genextreme, gamma, gum-
bel_r, lognorm, norm. Default : ds.da.

• window (number) – Averaging window length (days). Default : 1.

• freq (offset alias (string)) – Resampling frequency. If None, the frequency is assumed to be
‘YS’ unless the indexer is season=’DJF’, in which case freq would be set to AS-DEC. Default
: None.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Time attribute and values over which to subset the array. For example, use sea-
son=’DJF’ to select winter values, month=1 to select January, or month=[6,7,8] to select
summer months. If not indexer is given, all values are considered. Default : None.

Returns
q{window}{mode (r}{indexer} : DataArray) – N-year return period flow amount [m^3 s-1],
with additional attributes: description: Streamflow frequency analysis for the {mode} {indexer}
{window}-day flow estimated using the {dist} distribution.

xclim.indicators.land._streamflow.rb_flashiness_index(q: Union[DataArray, str] = 'q', *, freq: str =
'YS', ds: Dataset = None)→ DataArray

Richards-Baker Flashiness Index (realm: land)

Measurement of flow oscillations relative to average flow, quantifying the frequency and speed of flow changes.

This indicator will check for missing values according to the method “from_context”. Based on indice
rb_flashiness_index().

Parameters
• q (str or DataArray) – Rate of river discharge. Default : ds.q. [Required units : [discharge]]

• freq (offset alias (string)) – Resampling frequency. Default : YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

790 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Returns
rbi (DataArray) – Richards-Baker Flashiness Index, with additional attributes: description:
{freq} of Richards-Baker Index, an index measuring the flashiness of flow.

Notes

Let q = 𝑞0, 𝑞1, . . . , 𝑞𝑛 be the sequence of daily discharge, the R-B Index is given by:∑︀𝑛
𝑖=1 |𝑞𝑖 − 𝑞𝑖−1|∑︀𝑛

𝑖=1 𝑞𝑖

References

Baker, Richards, Loftus, and Kramer [2004]

xclim.indicators.land._streamflow.stats(da: Union[DataArray, str] = 'da', *, op: str, freq: str = 'YS', ds:
Dataset = None, **indexer)→ DataArray

Statistic of the daily flow for a given period. (realm: land)

This indicator will check for missing values according to the method “any”. Based on indice
select_resample_op().

Parameters
• da (str or DataArray) – Input data. Default : ds.da.

• op ({‘var’, ‘mean’, ‘min’, ‘sum’, ‘argmin’, ‘max’, ‘argmax’, ‘std’, ‘count’}) – Reduce oper-
ation. Can either be a DataArray method or a function that can be applied to a DataArray.
Default : ds.da.

• freq (offset alias (string)) – Resampling frequency defining the periods as defined in https:
//pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default :
YS.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

• indexer – Time attribute and values over which to subset the array. For example, use sea-
son=’DJF’ to select winter values, month=1 to select January, or month=[6,7,8] to select
summer months. If not indexer is given, all values are considered. Default : None.

Returns
q{indexer}{op (r} : DataArray) – Daily flow statistics [m^3 s-1], with additional attributes:
description: {freq} {op} of daily flow ({indexer}).

xclim.indicators.seaIce package

Ice-related indicators

Submodules

xclim.indicators.seaIce._seaice module

Sea ice indicators

16.1. xclim package 791

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

xclim.indicators.seaIce._seaice.sea_ice_area(siconc: Union[DataArray, str] = 'siconc', areacello:
Union[DataArray, str] = 'areacello', *, thresh: str = '15
pct', ds: Dataset = None)→ DataArray

Sea ice area (realm: seaIce)

A measure of total ocean surface covered by sea ice.

This indicator will check for missing values according to the method “skip”. Based on indice sea_ice_area().

Parameters
• siconc (str or DataArray) – Sea ice concentration (area fraction). Default : ds.siconc. [Re-

quired units : []]

• areacello (str or DataArray) – Grid cell area (usually over the ocean). Default : ds.areacello.
[Required units : [area]]

• thresh (quantity (string with units)) – Minimum sea ice concentration for a grid cell to con-
tribute to the sea ice extent. Default : 15 pct. [Required units : []]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
sea_ice_area (DataArray) – Sum of ice-covered areas where sea ice concentration exceeds
{thresh} (sea_ice_area) [m2], with additional attributes: cell_methods: lon: sum lat: sum; de-
scription: The sum of ice-covered areas where sea ice concentration exceeds {thresh}.

Notes

To compute sea ice area over a subregion, first mask or subset the input sea ice concentration data.

References

“What is the difference between sea ice area and extent?” - NSIDC [2008]

xclim.indicators.seaIce._seaice.sea_ice_extent(siconc: Union[DataArray, str] = 'siconc', areacello:
Union[DataArray, str] = 'areacello', *, thresh: str =
'15 pct', ds: Dataset = None)→ DataArray

Sea ice extent (realm: seaIce)

A measure of the extent of all areas where sea ice concentration exceeds a threshold.

This indicator will check for missing values according to the method “skip”. Based on indice
sea_ice_extent().

Parameters
• siconc (str or DataArray) – Sea ice concentration (area fraction). Default : ds.siconc. [Re-

quired units : []]

• areacello (str or DataArray) – Grid cell area. Default : ds.areacello. [Required units :
[area]]

• thresh (quantity (string with units)) – Minimum sea ice concentration for a grid cell to con-
tribute to the sea ice extent. Default : 15 pct. [Required units : []]

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

792 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Returns
sea_ice_extent (DataArray) – Sum of ocean areas where sea ice concentration exceeds {thresh}
(sea_ice_extent) [m2], with additional attributes: cell_methods: lon: sum lat: sum; description:
The sum of ocean areas where sea ice concentration exceeds {thresh}.

Notes

To compute sea ice area over a subregion, first mask or subset the input sea ice concentration data.

References

“What is the difference between sea ice area and extent?” - NSIDC [2008]

xclim.indices package

Indices library

This module contains climate indices functions operating on xarray.DataArray. Most of these functions operate on
daily time series, but might accept other sampling frequencies as well. All functions perform units checks to make
sure that inputs have the expected dimensions (for example have units of temperature, whether it is celsius, kelvin or
fahrenheit), and set the units attribute of the output DataArray.

The calendar, fire, generic, helpers, run_length and stats submodules provide helpers to simplify the implementation
of the indices.

Note: Indices functions do not perform missing value checks, and usually do not set CF-Convention at-
tributes (long_name, standard_name, description, cell_methods, etc.). These functionalities are provided by
xclim.indicators.Indicator instances found in the xclim.indicators.atmos, xclim.indicators.land
and xclim.indicators.seaIce modules, documented in Climate indicators.

Subpackages

xclim.indices.fire package

Fire indices submodule

xclim.indices.fire.fire_weather_indexes(tas: DataArray, pr: DataArray, sfcWind: DataArray, hurs:
DataArray, lat: DataArray, snd: Optional[DataArray] = None,
ffmc0: Optional[DataArray] = None, dmc0:
Optional[DataArray] = None, dc0: Optional[DataArray] =
None, season_mask: Optional[DataArray] = None,
season_method: Optional[str] = None, overwintering: bool =
False, dry_start: Optional[str] = None, initial_start_up: bool =
True, **params)

16.1. xclim package 793

xclim Documentation, Release 0.39.0

Submodules

xclim.indices.fire._cffwis module

Canadian Forest Fire Weather Index System

This submodule defines the xclim.indices.fire.fire_season(), xclim.indices.fire.drought_code()
and xclim.indices.fire.cffwis_indices() indices, which are used by the eponym indicators. Users should
read this module’s documentation and the one of fire_weather_ufunc(). They should also consult the information
available at Natural Resources Canada [n.d.].

First adapted from Matlab code CalcFWITimeSeriesWithStartup.m from GFWED [Wang et al., 2015] made for using
MERRA2 data, which was a translation of FWI.vba of the Canadian Fire Weather Index system. Then, updated and
synchronized with the R code of the cffdrs package. When given the correct parameters, the current code has an error
below 3% when compared with the Field et al. [2015] data.

Parts of the code and of the documentation in this submodule are directly taken from Cantin et al. [2014] which was
published with the GPLv2 license.

Fire season

Fire weather indexes are iteratively computed, each day’s value depending on the previous day indexes. Additionally
and optionally, the codes are “shut down” (set to NaN) in winter. There are a few ways of computing this shut down and
the subsequent spring start-up. The fire_season function allows for full control of that, replicating the fireSeason method
in the R package. It produces a mask to be given a season_mask in the indicators. However, the fire_weather_ufunc and
the indicators also accept a season_method parameter so the fire season can be computed inside the iterator. Passing
season_method=None switches to an “always on” mode replicating the fire method of the R package.

The fire season determination is based on three consecutive daily maximum temperature thresholds [Lawson and Ar-
mitage, 2008, Wotton and Flannigan, 1993]. A “GFWED” method is also implemented. There, the 12h LST temper-
ature is used instead of the daily maximum. The current implementation is slightly different from the description in
Field et al. [2015], but it replicates the Matlab code when temp_start_thresh and temp_end_thresh are both set to 6
degC. In xclim, the number of consecutive days, the start and end temperature thresholds and the snow depth threshold
can all be modified.

Overwintering

Additionaly, overwintering of the drought code is also directly implemented in fire_weather_ufunc(). The last
drought_code of the season is kept in “winter” (where the fire season mask is False) and the precipitation is accumulated
until the start of the next season. The first drought code is computed as a function of these instead of using the default
DCStart value. Parameters to _overwintering_drought_code() are listed below. The code for the overwintering
is based on McElhinny et al. [2020], Van Wagner [1985].

Finally, a mechanism for dry spring starts is implemented. For now, it is slightly different from what the GFWED, uses,
but seems to agree with the state of the science of the CFS. When activated, the drought code and Duff-moisture codes
are started in spring with a value that is function of the number of days since the last significant precipitation event.
The conventional start value increased by that number of days times a “dry start” factor. Parameters are controlled in
the call of the indices and fire_weather_ufunc(). Overwintering of the drought code overrides this mechanism if
both are activated. GFWED use a more complex approach with an added check on the previous day’s snow cover for
determining “dry” points. Moreover, there, the start values are only the multiplication of a factor to the number of dry
days.

794 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Examples

The current literature seems to agree that climate-oriented series of the fire weather indexes should be computed using
only the longest fire season of each year and activating the overwintering of the drought code and the “dry start” for
the duff-moisture code. The following example uses reasonable parameters when computing over all of Canada.

Note: Here the example snippets use the _indices_ defined in this very module, but we always recommend using the
indicators defined in the xclim.atmos module.

>>> ds = open_dataset("ERA5/daily_surface_cancities_1990-1993.nc")
>>> ds = ds.assign(
... hurs=xclim.atmos.relative_humidity_from_dewpoint(ds=ds),
... tas=xclim.core.units.convert_units_to(ds.tas, "degC"),
... pr=xclim.core.units.convert_units_to(ds.pr, "mm/d"),
... sfcWind=xclim.atmos.wind_speed_from_vector(ds=ds)[0],
...)
>>> season_mask = fire_season(
... tas=ds.tas,
... method="WF93",
... freq="YS",
... # Parameters below are at their default values, but listed here for explicitness.
... temp_start_thresh="12 degC",
... temp_end_thresh="5 degC",
... temp_condition_days=3,
...)
>>> out_fwi = cffwis_indices(
... tas=ds.tas,
... pr=ds.pr,
... hurs=ds.hurs,
... sfcWind=ds.sfcWind,
... lat=ds.lat,
... season_mask=season_mask,
... overwintering=True,
... dry_start="CFS",
... prec_thresh="1.5 mm/d",
... dmc_dry_factor=1.2,
... # Parameters below are at their default values, but listed here for explicitness.
... carry_over_fraction=0.75,
... wetting_efficiency_fraction=0.75,
... dc_start=15,
... dmc_start=6,
... ffmc_start=85,
...)

Similarly, the next lines calculate the fire weather indexes, but according to the parameters and options used in NASA’s
GFWED datasets. Here, no need to split the fire season mask from the rest of the computation as _all_ seasons are
used, even the very short shoulder seasons.

>>> ds = open_dataset("FWI/GFWED_sample_2017.nc")
>>> out_fwi = cffwis_indices(
... tas=ds.tas,
... pr=ds.prbc,

(continues on next page)

16.1. xclim package 795

xclim Documentation, Release 0.39.0

(continued from previous page)

... snd=ds.snow_depth,

... hurs=ds.rh,

... sfcWind=ds.sfcwind,

... lat=ds.lat,

... season_method="GFWED",

... overwintering=False,

... dry_start="GFWED",

... temp_start_thresh="6 degC",

... temp_end_thresh="6 degC",

... # Parameters below are at their default values, but listed here for explicitness.

... temp_condition_days=3,

... snow_condition_days=3,

... dc_start=15,

... dmc_start=6,

... ffmc_start=85,

... dmc_dry_factor=2,

...)

xclim.indices.fire._cffwis._convert_parameters(params: Mapping[str, int | float])→ Mapping[str, int |
float]

xclim.indices.fire._cffwis._day_length(lat: int | float, mth: int)
Return the average day length for a month within latitudinal bounds.

xclim.indices.fire._cffwis._day_length_factor(lat: float, mth: int)
Return the day length factor.

xclim.indices.fire._cffwis._fire_season(tas: ndarray, snd: Optional[ndarray] = None, method: str =
'WF93', temp_start_thresh: float = 12, temp_end_thresh: float =
5, temp_condition_days: int = 3, snow_condition_days: int = 3,
snow_thresh: float = 0.01)

Compute the active fire season mask.

Parameters
• tas (ndarray) – Temperature [degC], the time axis on the last position.

• snd (ndarray, optional) – Snow depth [m], time axis on the last position, used with method
== ‘LA08’.

• method ({“WF93”, “LA08”, “GFWED”}) – Which method to use.

• temp_start_thresh (float) – Starting temperature threshold.

• temp_end_thresh (float) – Ending temperature threshold.

• temp_condition_days (int) – The number of days’ temperature condition to consider.

• snow_condition_days (int) – The number of days’ snow condition to consider.

• snow_thresh (float) – Numerical parameters of the methods.

Returns
ndarray [bool] – True where the fire season is active, same shape as tas.

xclim.indices.fire._cffwis._fire_weather_calc(tas, pr, rh, ws, snd, mth, lat, season_mask, dc0, dmc0,
ffmc0, winter_pr, **params)

Primary function computing all Fire Weather Indexes. DO NOT CALL DIRECTLY, use fire_weather_ufunc
instead.

796 Chapter 16. xclim

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

xclim.indices.fire._cffwis.build_up_index(dmc, dc)
Build-up index.

Parameters
• dmc (array) – Duff moisture code.

• dc (array) – Drought code.

Returns
array – Build up index.

xclim.indices.fire._cffwis.cffwis_indices(tas: DataArray, pr: DataArray, sfcWind: DataArray, hurs:
DataArray, lat: DataArray, snd: Optional[DataArray] =
None, ffmc0: Optional[DataArray] = None, dmc0:
Optional[DataArray] = None, dc0: Optional[DataArray] =
None, season_mask: Optional[DataArray] = None,
season_method: Optional[str] = None, overwintering: bool =
False, dry_start: Optional[str] = None, initial_start_up: bool
= True, **params)

Canadian Fire Weather Index System indices.

Computes the 6 fire weather indexes as defined by the Canadian Forest Service: the Drought Code, the Duff-
Moisture Code, the Fine Fuel Moisture Code, the Initial Spread Index, the Build Up Index and the Fire Weather
Index.

Parameters
• tas (xr.DataArray) – Noon temperature.

• pr (xr.DataArray) – Rain fall in open over previous 24 hours, at noon.

• sfcWind (xr.DataArray) – Noon wind speed.

• hurs (xr.DataArray) – Noon relative humidity.

• lat (xr.DataArray) – Latitude coordinate

• snd (xr.DataArray) – Noon snow depth, only used if season_method=’LA08’ is passed.

• ffmc0 (xr.DataArray) – Initial values of the fine fuel moisture code.

• dmc0 (xr.DataArray) – Initial values of the Duff moisture code.

• dc0 (xr.DataArray) – Initial values of the drought code.

• season_mask (xr.DataArray, optional) – Boolean mask, True where/when the fire season is
active.

• season_method ({None, “WF93”, “LA08”, “GFWED”}) – How to compute the start-up
and shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar
to the R fire function. Ignored if season_mask is given.

• overwintering (bool) – Whether to activate DC overwintering or not. If True, either sea-
son_method or season_mask must be given.

• dry_start ({None, ‘CFS’, ‘GFWED’}) – Whether to activate the DC and DMC “dry start”
mechanism or not, see fire_weather_ufunc().

• initial_start_up (bool) – If True (default), gridpoints where the fire season is active on the
first timestep go through a start_up phase for that time step. Otherwise, previous codes must
be given as a continuing fire season is assumed for those points.

16.1. xclim package 797

xclim Documentation, Release 0.39.0

• params – Any other keyword parameters as defined in fire_weather_ufunc() and in
default_params.

Returns
• DC (xr.DataArray, [dimensionless])

• DMC (xr.DataArray, [dimensionless])

• FFMC (xr.DataArray, [dimensionless])

• ISI (xr.DataArray, [dimensionless])

• BUI (xr.DataArray, [dimensionless])

• FWI (xr.DataArray, [dimensionless])

Notes

See Natural Resources Canada [n.d.], the xclim.indices.fire module documentation, and the docstring of
fire_weather_ufunc() for more information.

References

Wang, Anderson, and Suddaby [2015]

xclim.indices.fire._cffwis.daily_severity_rating(fwi: np.ndarray)→ np.ndarry
Daily severity rating.

Parameters
fwi (array_like) – Fire weather index

Returns
array_like – Daily severity rating.

xclim.indices.fire._cffwis.drought_code(tas: DataArray, pr: DataArray, lat: DataArray, snd:
Optional[DataArray] = None, dc0: Optional[DataArray] =
None, season_mask: Optional[DataArray] = None,
season_method: Optional[str] = None, overwintering: bool =
False, dry_start: Optional[str] = None, initial_start_up: bool =
True, **params)

Drought code (FWI component).

The drought code is part of the Canadian Forest Fire Weather Index System. It is a numeric rating of the average
moisture content of organic layers.

Parameters
• tas (xr.DataArray) – Noon temperature.

• pr (xr.DataArray) – Rain fall in open over previous 24 hours, at noon.

• lat (xr.DataArray) – Latitude coordinate

• snd (xr.DataArray) – Noon snow depth.

• dc0 (xr.DataArray) – Initial values of the drought code.

• season_mask (xr.DataArray, optional) – Boolean mask, True where/when the fire season is
active.

798 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• season_method ({None, “WF93”, “LA08”, “GFWED”}) – How to compute the start-up
and shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar
to the R fire function. Ignored if season_mask is given.

• overwintering (bool) – Whether to activate DC overwintering or not. If True, either sea-
son_method or season_mask must be given.

• dry_start ({None, “CFS”, ‘GFWED’}) – Whether to activate the DC and DMC “dry start”
mechanism and which method to use. See fire_weather_ufunc().

• initial_start_up (bool) – If True (default), grid points where the fire season is active on the
first timestep go through a start_up phase for that time step. Otherwise, previous codes must
be given as a continuing fire season is assumed for those points.

• params – Any other keyword parameters as defined in xclim.indices.fire.fire_weather_ufunc
and in default_params.

Returns
xr.DataArray, [dimensionless] – Drought code

Notes

See Natural Resources Canada [n.d.], the xclim.indices.fire module documentation, and the docstring of
fire_weather_ufunc() for more information.

References

Wang, Anderson, and Suddaby [2015]

xclim.indices.fire._cffwis.fire_season(tas: DataArray, snd: Optional[DataArray] = None, method: str =
'WF93', freq: Optional[str] = None, temp_start_thresh: str = '12
degC', temp_end_thresh: str = '5 degC', temp_condition_days: int
= 3, snow_condition_days: int = 3, snow_thresh: str = '0.01 m')

Fire season mask.

Binary mask of the active fire season, defined by conditions on consecutive daily temperatures and, optionally,
snow depths.

Parameters
• tas (xr.DataArray) – Daily surface temperature, cffdrs recommends using maximum daily

temperature.

• snd (xr.DataArray, optional) – Snow depth, used with method == ‘LA08’.

• method ({“WF93”, “LA08”, “GFWED”}) – Which method to use. “LA08” and “GFWED”
need the snow depth.

• freq (str, optional) – If given only the longest fire season for each period defined by this
frequency, Every “seasons” are returned if None, including the short shoulder seasons.

• temp_start_thresh (str) – Minimal temperature needed to start the season.

• temp_end_thresh (str) – Maximal temperature needed to end the season.

• temp_condition_days (int) – Number of days with temperature above or below the thresh-
olds to trigger a start or an end of the fire season.

16.1. xclim package 799

xclim Documentation, Release 0.39.0

• snow_condition_days (int) – Parameters for the fire season determination. See
fire_season(). Temperature is in degC, snow in m. The snow_thresh parameters is also
used when dry_start is set to “GFWED”.

• snow_thresh (str) – Minimal snow depth level to end a fire season, only used with method
“LA08”.

Returns
xr.DataArray – Fire season mask

References

Lawson and Armitage [2008], Wotton and Flannigan [1993]

xclim.indices.fire._cffwis.fire_weather_index(isi, bui)
Fire weather index.

Parameters
• isi (array) – Initial spread index

• bui (array) – Build up index.

Returns
array – Build up index.

xclim.indices.fire._cffwis.fire_weather_ufunc(*, tas: DataArray, pr: DataArray, hurs:
Optional[DataArray] = None, sfcWind:
Optional[DataArray] = None, snd:
Optional[DataArray] = None, lat: Optional[DataArray]
= None, dc0: Optional[DataArray] = None, dmc0:
Optional[DataArray] = None, ffmc0:
Optional[DataArray] = None, winter_pr:
Optional[DataArray] = None, season_mask:
Optional[DataArray] = None, start_dates:
Optional[Union[DataArray, str]] = None, indexes:
Optional[Sequence[str]] = None, season_method:
Optional[str] = None, overwintering: bool = False,
dry_start: Optional[str] = None, initial_start_up: bool
= True, **params)

Fire Weather Indexes computation using xarray’s apply_ufunc.

No unit handling. Meant to be used by power users only. Please prefer using the DC and CFFWIS indicators or
the drought_code() and cffwis_indices() indices defined in the same submodule.

Dask arrays must have only one chunk along the “time” dimension. User can control which indexes are computed
with the indexes argument.

Parameters
• tas (xr.DataArray) – Noon surface temperature in °C

• pr (xr.DataArray) – Rainfall over previous 24h, at noon in mm/day

• hurs (xr.DataArray, optional) – Noon surface relative humidity in %, not needed for DC

• sfcWind (xr.DataArray, optional) – Noon surface wind speed in km/h, not needed for DC,
DMC or BUI

• snd (xr.DataArray, optional) – Noon snow depth in m, only needed if season_method is
“LA08”

800 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• lat (xr.DataArray, optional) – Latitude in °N, not needed for FFMC or ISI

• dc0 (xr.DataArray, optional) – Previous DC map, see Notes. Defaults to NaN.

• dmc0 (xr.DataArray, optional) – Previous DMC map, see Notes. Defaults to NaN.

• ffmc0 (xr.DataArray, optional) – Previous FFMC map, see Notes. Defaults to NaN.

• winter_pr (xr.DataArray, optional) – Accumulated precipitation since the end of the last
season, until the beginning of the current data, mm/day. Only used if overwintering is True,
defaults to 0.

• season_mask (xr.DataArray, optional) – Boolean mask, True where/when the fire season is
active.

• indexes (Sequence[str], optional) – Which indexes to compute. If intermediate indexes are
needed, they will be added to the list and output.

• season_method ({None, “WF93”, “LA08”, “GFWED”}) – How to compute the start-up
and shutdown of the fire season. If “None”, no start-ups or shutdowns are computed, similar
to the R fire function. Ignored if season_mask is given.

• overwintering (bool) – Whether to activate DC overwintering or not. If True, either sea-
son_method or season_mask must be given.

• dry_start ({None, ‘CFS’, ‘GFWED’}) – Whether to activate the DC and DMC “dry start”
mechanism and which method to use. See Notes. If overwintering is activated, it overrides
this parameter : only DMC is handled through the dry start mechanism.

• initial_start_up (bool) – If True (default), grid points where the fire season is active on the
first timestep go through a start-up phase for that time step. Otherwise, previous codes must
be given as a continuing fire season is assumed for those points.

• carry_over_fraction (float)

• wetting_efficiency_fraction (float) – Drought code overwintering parameters, see
overwintering_drought_code().

• temp_start_thresh (float) – Starting temperature threshold.

• temp_end_thresh (float) – Ending temperature threshold.

• temp_condition_days (int) – The number of days’ temperature condition to consider.

• snow_thresh (float)

• snow_condition_days (int) – Parameters for the fire season determination. See
fire_season(). Temperature is in degC, snow in m. The snow_thresh parameters is also
used when dry_start is set to “GFWED”, see Notes.

• dc_start (float)

• dmc_start (float)

• ffmc_start (float) – Default starting values for the three base codes.

• prec_thresh (float) – If the “dry start” is activated, this is the “wet” day precipitation thresh-
old, see Notes. In mm/d.

• dc_dry_factor (float) – DC’s start-up values for the “dry start” mechanism, see Notes.

• dmc_dry_factor (float) – DMC’s start-up values for the “dry start” mechanism, see Notes.

• snow_cover_days (int)

• snow_min_cover_frac (float)

16.1. xclim package 801

xclim Documentation, Release 0.39.0

• snow_min_mean_depth (float) – Additional parameters for GFWED’s version of the “dry
start” mechanism. See Notes. Snow depth is in m.

Returns
dict[str, xarray.DataArray] – Dictionary containing the computed indexes as prescribed in in-
dexes, including the intermediate ones needed, even if they were not explicitly listed in indexes.
When overwintering is activated, winter_pr is added. If season_method is not None and sea-
son_mask was not given, season_mask is computed on-the-fly and added to the output.

Notes

When overwintering is activated, the argument dc0 is understood as last season’s last DC map and will be used
to compute the overwintered DC at the beginning of the next season.

If overwintering is not activated and neither is fire season computation (season_method and season_mask are
None), dc0, dmc0 and ffmc0 are understood as the codes on the day before the first day of FWI computation.
They will default to their respective start values. This “always on” mode replicates the R “fire” code.

If the “dry start” mechanism is set to “CFS” (but there is no overwintering), the arguments dc0 and dmc0 are
understood as the potential start-up values from last season. With 𝐷𝐶𝑠𝑡𝑎𝑟𝑡 the conventional start-up value,
𝐹𝑑𝑟𝑦−𝑑𝑐 the dc_dry_factor and 𝑁𝑑𝑟𝑦 the number of days since the last significant precipitation event, the start-
up value 𝐷𝐶0 is computed as:

𝐷𝐶0 = 𝐷𝐶𝑠𝑡𝑎𝑟𝑡 + 𝐹𝑑𝑟𝑦−𝑑𝑐 *𝑁𝑑𝑟𝑦

The last significant precipitation event is the last day when precipitation was greater or equal to “prec_thresh”.
The same happens for the DMC, with corresponding parameters. If overwintering is activated, this mechanism
is only used for the DMC.

Alternatively, dry_start can be set to “GFWED”. In this mode, the start-up values are computed as:

𝐷𝐶0 = 𝐹𝑑𝑟𝑦−𝑑𝑐 *𝑁𝑑𝑟𝑦

Where the current day is also included in the determination of 𝑁𝑑𝑟𝑦 (𝐷𝐶0 can thus be 0). Finally, for this
“GFWED” mode, if snow cover is provided, a second check is performed: the dry start procedure is skipped
and conventional start-up values are used for cells where the snow cover of the last snow_cover_days was above
snow_thresh for at least snow_cover_days * snow_min_cover_frac days and where the mean snow cover over the
same period was greater of equal to snow_min_mean_depth.

xclim.indices.fire._cffwis.initial_spread_index(ws: ndarray, ffmc: ndarray)→ ndarray
Initialize spread index.

Parameters
• ws (array_like) – Noon wind speed [km/h].

• ffmc (array_like) – Fine fuel moisture code.

Returns
array_like – Initial spread index.

xclim.indices.fire._cffwis.overwintering_drought_code(last_dc: DataArray, winter_pr: DataArray,
carry_over_fraction: xarray.DataArray | float
= 0.75, wetting_efficiency_fraction:
xarray.DataArray | float = 0.75, min_dc:
xarray.DataArray | float = 15)→ DataArray

Compute the season-starting drought code based on the previous season’s last drought code and the total winter
precipitation.

802 Chapter 16. xclim

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

This method replicates the “wDC” method of the “cffdrs R package [Cantin et al., 2014], with an added control
on the “minimum” DC.

Parameters
• last_dc (xr.DataArray) – The previous season’s last drought code.

• winter_pr (xr.DataArray) – The accumulated precipitation since the end of the fire season.

• carry_over_fraction (xr.DataArray or float) – Carry-over fraction of last fall’s moisture

• wetting_efficiency_fraction (xr.DataArray or float) – Effectiveness of winter precipitation
in recharging moisture reserves in spring

• min_dc (xr.DataArray or float) – Minimum drought code starting value.

Returns
wDC (xr.DataArray) – Overwintered drought code.

Notes

Details taken from the “cffdrs” R package documentation [Cantin et al., 2014]: Of the three fuel moisture codes
(i.e. FFMC, DMC and DC) making up the FWI System, only the DC needs to be considered in terms of its values
carrying over from one fire season to the next. In Canada both the FFMC and the DMC are assumed to reach
moisture saturation from overwinter precipitation at or before spring melt; this is a reasonable assumption and
any error in these assumed starting conditions quickly disappears. If snowfall (or other overwinter precipitation)
is not large enough however, the fuel layer tracked by the Drought Code may not fully reach saturation after spring
snow melt; because of the long response time in this fuel layer (53 days in standard conditions) a large error in this
spring starting condition can affect the DC for a significant portion of the fire season. In areas where overwinter
precipitation is 200 mm or more, full moisture recharge occurs and DC overwintering is usually unnecessary.
More discussion of overwintering and fuel drying time lag can be found in Lawson and Armitage [2008] and
Van Wagner [1985].

Carry-over fraction of last fall’s moisture:
• 1.0, Daily DC calculated up to 1 November; continuous snow cover, or freeze-up, whichever comes

first

• 0.75, Daily DC calculations stopped before any of the above conditions met or the area is subject to
occasional winter chinook conditions, leaving the ground bare and subject to moisture depletion

• 0.5, Forested areas subject to long periods in fall or winter that favor depletion of soil moisture

Effectiveness of winter precipitation in recharging moisture reserves in spring:
• 0.9, Poorly drained, boggy sites with deep organic layers

• 0.75, Deep ground frost does not occur until late fall, if at all; moderately drained sites that allow
infiltration of most of the melting snowpack

• 0.5, Chinook-prone areas and areas subject to early and deep ground frost; well-drained soils favoring
rapid percolation or topography favoring rapid runoff before melting of ground frost

Source: Lawson and Armitage [2008] - Table 9.

16.1. xclim package 803

xclim Documentation, Release 0.39.0

References

Cantin et al. [2014], Field et al. [2015], Lawson and Armitage [2008], Van Wagner [1985]

xclim.indices.fire._ffdi module

McArthur Forest Fire Danger (Mark 5) System

This submodule defines indices related to the McArthur Forest Fire Danger Index Mark 5. Currently im-
plemented are the xclim.indices.fire.keetch_byram_drought_index(), xclim.indices.fire.
griffiths_drought_factor() and xclim.indices.fire.mcarthur_forest_fire_danger_index()
indices, which are used by the eponym indicators. The implementation of these indices follows Finkele et al. [2006]
and Noble et al. [1980], with any differences described in the documentation for each index. Users are encouraged
to read this module’s documentation and consult Finkele et al. [2006] for a full description of the methods used to
calculate each index.

xclim.indices.fire._ffdi.griffiths_drought_factor(pr: DataArray, smd: DataArray, limiting_func: str
= 'xlim')→ DataArray

Griffiths drought factor based on the soil moisture deficit.

The drought factor is a numeric indicator of the forest fire fuel availability in the deep litter bed. It is often used
in the calculation of the McArthur Forest Fire Danger Index. The method implemented here follows Finkele et
al. [2006].

Parameters
• pr (xr.DataArray) – Total rainfall over previous 24 hours [mm/day].

• smd (xarray DataArray) – Daily soil moisture deficit (often KBDI) [mm/day].

• limiting_func ({“xlim”, “discrete”}) – How to limit the values of the drought factor. If
“xlim” (default), use equation (14) in Finkele et al. [2006]. If “discrete”, use equation Eq
(13) in Finkele et al. [2006], but with the lower limit of each category bound adjusted to
match the upper limit of the previous bound.

Returns
df (xr.DataArray) – The limited Griffiths drought factor.

Notes

Calculation of the Griffiths drought factor depends on the rainfall over the previous 20 days. Thus, the first
non-NaN time point in the drought factor returned by this function corresponds to the 20th day of the input data.

References

Finkele, Mills, Beard, and Jones [2006], Griffiths [1999], Holgate, Van DIjk, Cary, and Yebra [2017]

xclim.indices.fire._ffdi.keetch_byram_drought_index(pr: DataArray, tasmax: DataArray, pr_annual:
DataArray, kbdi0: Optional[DataArray] =
None)→ DataArray

Keetch-Byram drought index (KBDI) for soil moisture deficit.

The KBDI indicates the amount of water necessary to bring the soil moisture content back to field capacity. It is
often used in the calculation of the McArthur Forest Fire Danger Index. The method implemented here follows

804 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Finkele et al. [2006] but limits the maximum KBDI to 203.2 mm, rather than 200 mm, in order to align best with
the majority of the literature.

Parameters
• pr (xr.DataArray) – Total rainfall over previous 24 hours [mm/day].

• tasmax (xr.DataArray) – Maximum temperature near the surface over previous 24 hours
[degC].

• pr_annual (xr.DataArray) – Mean (over years) annual accumulated rainfall [mm/year].

• kbdi0 (xr.DataArray, optional) – Previous KBDI values used to initialise the KBDI calcu-
lation [mm/day]. Defaults to 0.

Returns
xr.DataArray – Keetch-Byram drought index.

Notes

This method implements the method described in Finkele et al. [2006] (section 2.1.1) for calculating the KBDI
with one small difference: in Finkele et al. [2006] the maximum KBDI is limited to 200 mm to represent the
maximum field capacity of the soil (8 inches according to Keetch and Byram [1968]). However, it is more
common in the literature to limit the KBDI to 203.2 mm which is a more accurate conversion from inches to
mm. In this function, the KBDI is limited to 203.2 mm.

References

Dolling, Chu, and Fujioka [2005], Finkele, Mills, Beard, and Jones [2006], Holgate, Van DIjk, Cary, and Yebra
[2017], Keetch and Byram [1968]

xclim.indices.fire._ffdi.mcarthur_forest_fire_danger_index(drought_factor: DataArray, tasmax:
DataArray, hurs: DataArray, sfcWind:
DataArray)

McArthur forest fire danger index (FFDI) Mark 5.

The FFDI is a numeric indicator of the potential danger of a forest fire.

Parameters
• drought_factor (xr.DataArray) – The drought factor, often the daily Griffiths drought factor

(see griffiths_drought_factor()).

• tasmax (xr.DataArray) – The daily maximum temperature near the surface, or similar. Dif-
ferent applications have used different inputs here, including the previous/current day’s max-
imum daily temperature at a height of 2m, and the daily mean temperature at a height of 2m.

• hurs (xr.DataArray) – The relative humidity near the surface and near the time of the max-
imum daily temperature, or similar. Different applications have used different inputs here,
including the mid-afternoon relative humidity at a height of 2m, and the daily mean relative
humidity at a height of 2m.

• sfcWind (xr.DataArray) – The wind speed near the surface and near the time of the maximum
daily temperature, or similar. Different applications have used different inputs here, including
the mid-afternoon wind speed at a height of 10m, and the daily mean wind speed at a height
of 10m.

Returns
xr.DataArray – The McArthur forest fire danger index.

16.1. xclim package 805

xclim Documentation, Release 0.39.0

References

Dowdy [2018], Holgate, Van DIjk, Cary, and Yebra [2017], Noble, Gill, and Bary [1980]

Submodules

xclim.indices._agro module

xclim.indices._agro.biologically_effective_degree_days(tasmin: DataArray, tasmax: DataArray, lat:
Optional[DataArray] = None,
thresh_tasmin: str = '10 degC', method: str
= 'gladstones', low_dtr: str = '10 degC',
high_dtr: str = '13 degC',
max_daily_degree_days: str = '9 degC',
start_date: DayOfYearStr = '04-01',
end_date: DayOfYearStr = '11-01', freq: str
= 'YS')→ DataArray

Biologically effective growing degree days.

Growing-degree days with a base of 10°C and an upper limit of 19°C and adjusted for latitudes between 40°N
and 50°N for April to October (Northern Hemisphere; October to April in Southern Hemisphere). A temperature
range adjustment also promotes small and large swings in daily temperature range. Used as a heat-summation
metric in viticulture agroclimatology.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• lat (xarray.DataArray, optional) – Latitude coordinate. If None and method in [“glad-
stones”, “icclim”], a CF-conformant “latitude” field must be available within the passed
DataArray.

• thresh_tasmin (str) – The minimum temperature threshold.

• method ({“gladstones”, “icclim”, “jones”}) – The formula to use for the calculation. The
“gladstones” integrates a daily temperature range and latitude coefficient. End_date should
be “11-01”. The “icclim” method ignores daily temperature range and latitude coefficient.
End date should be “10-01”. The “jones” method integrates axial tilt, latitude, and day-of-
year on coefficient. End_date should be “11-01”.

• low_dtr (str) – The lower bound for daily temperature range adjustment (default: 10°C).

• high_dtr (str) – The higher bound for daily temperature range adjustment (default: 13°C).

• max_daily_degree_days (str) – The maximum amount of biologically effective degrees days
that can be summed daily.

• start_date (DayOfYearStr) – The hemisphere-based start date to consider (north = April,
south = October).

• end_date (DayOfYearStr) – The hemisphere-based start date to consider (north = October,
south = April). This date is non-inclusive.

• freq (str) – Resampling frequency (default: “YS”; For Southern Hemisphere, should be
“AS-JUL”).

806 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Returns
xarray.DataArray, [K days] – Biologically effective growing degree days (BEDD)

Warning: Lat coordinate must be provided if method is “gladstones” or “jones”.

Notes

The tasmax ceiling of 19°C is assumed to be the max temperature beyond which no further gains from daily
temperature occur. Indice originally published in Gladstones [1992].

Let 𝑇𝑋𝑖 and 𝑇𝑁𝑖 be the daily maximum and minimum temperature at day 𝑖, 𝑙𝑎𝑡 the latitude of the point of
interest, 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥 the maximum amount of degrees that can be summed per day (typically, 9). Then the sum
of daily biologically effective growing degree day (BEDD) units between 1 April and 31 October is:

𝐵𝐸𝐷𝐷𝑖 =

October 31∑︁
𝑖=April 1

𝑚𝑖𝑛

(︂(︂
𝑚𝑎𝑥

(︂
𝑇𝑋𝑖 + 𝑇𝑁𝑖)

2
− 10, 0

)︂
* 𝑘

)︂
+ 𝑇𝑅𝑎𝑑𝑗 , 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥

)︂

𝑇𝑅𝑎𝑑𝑗 = 𝑓(𝑇𝑋𝑖, 𝑇𝑁𝑖) =

⎧⎪⎨⎪⎩
0.25(𝑇𝑋𝑖 − 𝑇𝑁𝑖 − 13), if (𝑇𝑋𝑖 − 𝑇𝑁𝑖) > 13

0, if 10 < (𝑇𝑋𝑖 − 𝑇𝑁𝑖) < 13

0.25(𝑇𝑋𝑖 − 𝑇𝑁𝑖 − 10), if (𝑇𝑋𝑖 − 𝑇𝑁𝑖) < 10

𝑘 = 𝑓(𝑙𝑎𝑡) = 1 +

(︂
|𝑙𝑎𝑡|
50

* 0.06, if 40 < |𝑙𝑎𝑡| < 50, else 0
)︂

A second version of the BEDD (method=”icclim”) does not consider 𝑇𝑅𝑎𝑑𝑗 and 𝑘 and employs a different end
date (30 September) [Project team ECA&D and KNMI, 2013]. The simplified formula is as follows:

𝐵𝐸𝐷𝐷𝑖 =

September 30∑︁
𝑖=April 1

𝑚𝑖𝑛

(︂
𝑚𝑎𝑥

(︂
𝑇𝑋𝑖 + 𝑇𝑁𝑖)

2
− 10, 0

)︂
, 𝑑𝑒𝑔𝑑𝑎𝑦𝑠𝑚𝑎𝑥

)︂

References

Gladstones [1992], Project team ECA&D and KNMI [2013]

xclim.indices._agro.cool_night_index(tasmin: DataArray, lat: Optional[Union[DataArray, str]] = None,
freq: str = 'YS')→ DataArray

Cool Night Index.

Mean minimum temperature for September (northern hemisphere) or March (Southern hemisphere). Used in
calculating the Géoviticulture Multicriteria Classification System (Tonietto and Carbonneau [2004]).

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• lat (xarray.DataArray or {“north”, “south”}, optional) – Latitude coordinate as an array,
float or string. If None, a CF-conformant “latitude” field must be available within the passed
DataArray.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [degC] – Mean of daily minimum temperature for month of interest.

16.1. xclim package 807

xclim Documentation, Release 0.39.0

Notes

Given that this indice only examines September and March months, it is possible to send in DataArrays containing
only these timesteps. Users should be aware that due to the missing values checks in wrapped Indicators, datasets
that are missing several months will be flagged as invalid. This check can be ignored by setting the following
context:

Examples

>>> from xclim.indices import cool_night_index
>>> tasmin = xr.open_dataset(path_to_tasmin_file).tasmin
>>> cni = cool_night_index(tasmin)

References

Tonietto and Carbonneau [2004]

xclim.indices._agro.corn_heat_units(tasmin: DataArray, tasmax: DataArray, thresh_tasmin: str = '4.44
degC', thresh_tasmax: str = '10 degC')→ DataArray

Corn heat units.

Temperature-based index used to estimate the development of corn crops. Formula adapted from Bootsma et al.
[1999].

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmin (str) – The minimum temperature threshold needed for corn growth.

• thresh_tasmax (str) – The maximum temperature threshold needed for corn growth.

Returns
xarray.DataArray, [unitless] – Daily corn heat units.

Notes

Formula used in calculating the Corn Heat Units for the Agroclimatic Atlas of Quebec [Audet et al., 2012].

The thresholds of 4.44°C for minimum temperatures and 10°C for maximum temperatures were selected follow-
ing the assumption that no growth occurs below these values.

Let 𝑇𝑋𝑖 and 𝑇𝑁𝑖 be the daily maximum and minimum temperature at day 𝑖. Then the daily corn heat unit is:

𝐶𝐻𝑈𝑖 =
𝑌 𝑋𝑖 + 𝑌 𝑁𝑖

2

with

𝑌 𝑋𝑖 = 3.33(𝑇𝑋𝑖 − 10)− 0.084(𝑇𝑋𝑖 − 10)2, if 𝑇𝑋𝑖 > 10𝐶

𝑌 𝑁𝑖 = 1.8(𝑇𝑁𝑖 − 4.44), if 𝑇𝑁𝑖 > 4.44𝐶

where 𝑌 𝑋𝑖 and 𝑌 𝑁𝑖 is 0 when 𝑇𝑋𝑖 ≤ 10𝐶 and 𝑇𝑁𝑖 ≤ 4.44𝐶, respectively.

808 Chapter 16. xclim

xclim Documentation, Release 0.39.0

References

Audet, Côté, Bachand, and Mailhot [2012], Bootsma, Tremblay, and Filion [1999]

xclim.indices._agro.dry_spell_frequency(pr: DataArray, thresh: str = '1.0 mm', window: int = 3, freq: str
= 'YS', resample_before_rl: bool = True, op: str = 'sum')→
DataArray

Return the number of dry periods of n days and more.

Periods during which the accumulated or maximal daily precipitation amount on a window of n days is under
threshold.

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• thresh (str) – Precipitation amount under which a period is considered dry. The value against
which the threshold is compared depends on op .

• window (int) – Minimum length of the spells.

• freq (str) – Resampling frequency.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

• op ({“sum”,”max”}) – Operation to perform on the window. Default is “sum”, which checks
that the sum of accumulated precipitation over the whole window is less than the threshold.
“max” checks that the maximal daily precipitation amount within the window is less than
the threshold. This is the same as verifying that each individual day is below the threshold.

Returns
xarray.DataArray, [unitless] – The {freq} number of dry periods of minimum {window} days.

Examples

>>> from xclim.indices import dry_spell_frequency
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> dsf = dry_spell_frequency(pr=pr, op="sum")
>>> dsf = dry_spell_frequency(pr=pr, op="max")

xclim.indices._agro.dry_spell_total_length(pr: DataArray, thresh: str = '1.0 mm', window: int = 3, op:
str = 'sum', freq: str = 'YS', resample_before_rl: bool =
True, **indexer)→ DataArray

Total length of dry spells.

Total number of days in dry periods of a minimum length, during which the maximum or accumulated precipi-
tation within a window of the same length is under a threshold.

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• thresh (str) – Accumulated precipitation value under which a period is considered dry.

• window (int) – Number of days when the maximum or accumulated precipitation is under
threshold.

• op ({“max”, “sum”}) – Reduce operation.

• freq (str) – Resampling frequency.

16.1. xclim package 809

xclim Documentation, Release 0.39.0

• indexer – Indexing parameters to compute the indicator on a temporal subset of the data.
It accepts the same arguments as xclim.indices.generic.select_time(). Indexing is
done after finding the dry days, but before finding the spells.

Returns
xarray.DataArray, [days] – The {freq} total number of days in dry periods of minimum {win-
dow} days.

Notes

The algorithm assumes days before and after the timeseries are “wet”, meaning that the condition for being
considered part of a dry spell is stricter on the edges. For example, with window=3 and op=’sum’, the first day
of the series is considered part of a dry spell only if the accumulated precipitation within the first three days is
under the threshold. In comparison, a day in the middle of the series is considered part of a dry spell if any of the
three 3-day periods of which it is part are considered dry (so a total of five days are included in the computation,
compared to only three).

xclim.indices._agro.effective_growing_degree_days(tasmax: DataArray, tasmin: DataArray, *, thresh:
str = '5 degC', method: str = 'bootsma', after_date:
DayOfYearStr = '07-01', dim: str = 'time', freq: str
= 'YS')→ DataArray

Effective growing degree days.

Growing degree days based on a dynamic start and end of the growing season, as defined in [Bootsma and
Gameda and D.W. McKenney, 2005].

Parameters
• tasmax (xr.DataArray) – Daily mean temperature.

• tasmin (xr.DataArray) – Daily minimum temperature.

• thresh (str) – The minimum temperature threshold.

• method ({“bootsma”, “qian”}) – The window method used to determine the temperature-
based start date. For “bootsma”, the start date is defined as 10 days after the average tem-
perature exceeds a threshold. For “qian”, the start date is based on a weighted 5-day rolling
average, based on :py:func`qian_weighted_mean_average`.

• after_date (str) – Date of the year after which to look for the first frost event. Should have
the format ‘%m-%d’.

• dim (str) – Time dimension.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [K days] – Effective growing degree days (EGDD).

810 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

The effective growing degree days for a given year 𝐸𝐺𝐷𝐷𝑖 can be calculated as follows:

The end date is determined as the day preceding the first day with minimum temperature below 0 degC.

References

Bootsma and Gameda and D.W. McKenney [2005]

xclim.indices._agro.huglin_index(tas: DataArray, tasmax: DataArray, lat: Optional[DataArray] = None,
thresh: str = '10 degC', method: str = 'smoothed', start_date:
DayOfYearStr = '04-01', end_date: DayOfYearStr = '10-01', freq: str =
'YS')→ DataArray

Huglin Heliothermal Index.

Growing-degree days with a base of 10°C and adjusted for latitudes between 40°N and 50°N for April-September
(Northern Hemisphere; October-March in Southern Hemisphere). Originally proposed in Huglin [1978]. Used
as a heat-summation metric in viticulture agroclimatology.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• lat (xarray.DataArray) – Latitude coordinate. If None, a CF-conformant “latitude” field
must be available within the passed DataArray.

• thresh (str) – The temperature threshold.

• method ({“smoothed”, “icclim”, “jones”}) – The formula to use for the latitude coefficient
calculation.

• start_date (DayOfYearStr) – The hemisphere-based start date to consider (north = April,
south = October).

• end_date (DayOfYearStr) – The hemisphere-based start date to consider (north = October,
south = April). This date is non-inclusive.

• freq (str) – Resampling frequency (default: “YS”; For Southern Hemisphere, should be
“AS-JUL”).

Returns
xarray.DataArray, [unitless] – Huglin heliothermal index (HI).

Notes

Let 𝑇𝑋𝑖 and 𝑇𝐺𝑖 be the daily maximum and mean temperature at day 𝑖 and 𝑇𝑡ℎ𝑟𝑒𝑠ℎ the base threshold needed
for heat summation (typically, 10 degC). A day-length multiplication, 𝑘, based on latitude, 𝑙𝑎𝑡, is also considered.
Then the Huglin heliothermal index for dates between 1 April and 30 September is:

𝐻𝐼 =

September 30∑︁
𝑖=April 1

(︂
𝑇𝑋𝑖 + 𝑇𝐺𝑖)

2
− 𝑇𝑡ℎ𝑟𝑒𝑠ℎ

)︂
* 𝑘

16.1. xclim package 811

xclim Documentation, Release 0.39.0

For the smoothed method, the day-length multiplication factor, 𝑘, is calculated as follows:

𝑘 = 𝑓(𝑙𝑎𝑡) =

⎧⎪⎨⎪⎩
1, if |𝑙𝑎𝑡| <= 40

1 + ((𝑎𝑏𝑠(𝑙𝑎𝑡)− 40)/10) * 0.06, if 40 < |𝑙𝑎𝑡| <= 50

𝑁𝑎𝑁, if |𝑙𝑎𝑡| > 50

For compatibility with ICCLIM, end_date should be set to 11-01, method should be set to icclim. The day-length
multiplication factor, 𝑘, is calculated as follows:

𝑘 = 𝑓(𝑙𝑎𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0, if |𝑙𝑎𝑡| <= 40

1.02, if 40 < |𝑙𝑎𝑡| <= 42

1.03, if 42 < |𝑙𝑎𝑡| <= 44

1.04, if 44 < |𝑙𝑎𝑡| <= 46

1.05, if 46 < |𝑙𝑎𝑡| <= 48

1.06, if 48 < |𝑙𝑎𝑡| <= 50

𝑁𝑎𝑁, if |𝑙𝑎𝑡| > 50

A more robust day-length calculation based on latitude, calendar, day-of-year, and obliquity is available with
method=”jones”. See: xclim.indices.generic.day_lengths() or Hall and Jones [2010] for more infor-
mation.

References

Hall and Jones [2010], Huglin [1978]

xclim.indices._agro.latitude_temperature_index(tas: DataArray, lat: Optional[DataArray] = None,
lat_factor: float = 75, freq: str = 'YS')→ DataArray

Latitude-Temperature Index.

Mean temperature of the warmest month with a latitude-based scaling factor [Jackson and Cherry, 1988]. Used
for categorizing wine-growing regions.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• lat (xarray.DataArray, optional) – Latitude coordinate. If None, a CF-conformant “latitude”
field must be available within the passed DataArray.

• lat_factor (float) – Latitude factor. Maximum poleward latitude. Default: 75.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [unitless] – Latitude Temperature Index.

Notes

The latitude factor of 75 is provided for examining the poleward expansion of wine-growing climates under
scenarios of climate change (modified from Kenny and Shao [1992]). For comparing 20th century/observed
historical records, the original scale factor of 60 is more appropriate.

Let 𝑇𝑛𝑗 be the average temperature for a given month 𝑗, 𝑙𝑎𝑡𝑓 be the latitude factor, and 𝑙𝑎𝑡 be the latitude of the
area of interest. Then the Latitude-Temperature Index (𝐿𝑇𝐼) is:

𝐿𝑇𝐼 = 𝑚𝑎𝑥(𝑇𝑁𝑗 : 𝑗 = 1..12)(𝑙𝑎𝑡𝑓 − |𝑙𝑎𝑡|)

812 Chapter 16. xclim

xclim Documentation, Release 0.39.0

References

Jackson and Cherry [1988], Kenny and Shao [1992]

xclim.indices._agro.qian_weighted_mean_average(tas: DataArray, dim: str = 'time')→ DataArray
Binomial smoothed, five-day weighted mean average temperature.

Calculates a five-day weighted moving average with emphasis on temperatures closer to day of interest.

Parameters
• tas (xr.DataArray) – Daily mean temperature.

• dim (str) – Time dimension.

Returns
xr.DataArray, [same as tas] – Binomial smoothed, five-day weighted mean average temperature.

Notes

Qian Modified Weighted Mean Indice originally proposed in [Qian et al., 2010], based on [Bootsma and Gameda
and D.W. McKenney, 2005].

Let 𝑋𝑛 be the average temperature for day 𝑛 and 𝑋𝑡 be the daily mean temperature on day 𝑡. Then the weighted
mean average can be calculated as follows:

𝑋𝑛 =
𝑋𝑛−2 + 4𝑋𝑛−1 + 6𝑋𝑛 + 4𝑋𝑛+1 +𝑋𝑛+2

16

References

Bootsma and Gameda and D.W. McKenney [2005], Qian, Zhang, Chen, Feng, and O’Brien [2010]

xclim.indices._agro.standardized_precipitation_evapotranspiration_index(wb: DataArray,
wb_cal: DataArray,
freq: str = 'MS',
window: int = 1, dist:
str = 'gamma',
method: str = 'APP')
→ DataArray

Standardized Precipitation Evapotranspiration Index (SPEI).

Precipitation minus potential evapotranspiration data (PET) fitted to a statistical distribution (dist), transformed
to a cdf, and inverted back to a gaussian normal pdf. The potential evapotranspiration is calculated with a given
method (method).

Parameters
• wb (xarray.DataArray) – Daily water budget (pr - pet).

• wb_cal (xarray.DataArray) – Daily water budget used for calibration.

• freq (str) – Resampling frequency. A monthly or daily frequency is expected.

• window (int) – Averaging window length relative to the resampling frequency. For example,
if freq=”MS”, i.e. a monthly resampling, the window is an integer number of months.

• dist ({‘gamma’, ‘fisk’}) – Name of the univariate distribution. (see scipy.stats).

16.1. xclim package 813

https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

xclim Documentation, Release 0.39.0

• method ({‘APP’, ‘ML’}) – Name of the fitting method, such as ML (maximum likelihood),
APP (approximate). The approximate method uses a deterministic function that doesn’t
involve any optimization. Available methods vary with the distribution: ‘gamma’:{‘APP’,
‘ML’}, ‘fisk’:{‘ML’}

Returns
xarray.DataArray – Standardized Precipitation Evapotranspiration Index.

See also:
standardized_precipitation_index

Notes

See Standardized Precipitation Index (SPI) for more details on usage.

xclim.indices._agro.standardized_precipitation_index(pr: DataArray, pr_cal: DataArray, freq: str =
'MS', window: int = 1, dist: str = 'gamma',
method: str = 'APP')→ DataArray

Standardized Precipitation Index (SPI).

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• pr_cal (xarray.DataArray) – Daily precipitation used for calibration. Usually this is a tem-
poral subset of pr over some reference period.

• freq (str) – Resampling frequency. A monthly or daily frequency is expected.

• window (int) – Averaging window length relative to the resampling frequency. For example,
if freq=”MS”, i.e. a monthly resampling, the window is an integer number of months.

• dist ({“gamma”, “fisk”}) – Name of the univariate distribution. (see scipy.stats).

• method ({‘APP’, ‘ML’}) – Name of the fitting method, such as ML (maximum likelihood),
APP (approximate). The approximate method uses a deterministic function that doesn’t in-
volve any optimization.

Returns
xarray.DataArray, [unitless] – Standardized Precipitation Index.

Notes

The length N of the N-month SPI is determined by choosing the window = N. Supported statistical distributions
are: [“gamma”]

Example

>>> from datetime import datetime
>>> from xclim.indices import standardized_precipitation_index
>>> ds = xr.open_dataset(path_to_pr_file)
>>> pr = ds.pr
>>> pr_cal = pr.sel(time=slice(datetime(1990, 5, 1), datetime(1990, 8, 31)))
>>> spi_3 = standardized_precipitation_index(
... pr, pr_cal, freq="MS", window=3, dist="gamma", method="ML"
...) # Computing SPI-3 months using a gamma distribution for the fit

814 Chapter 16. xclim

https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

xclim Documentation, Release 0.39.0

References

McKee, Doesken, and Kleist [1993]

xclim.indices._agro.water_budget(pr: DataArray, evspsblpot: Optional[DataArray] = None, tasmin:
Optional[DataArray] = None, tasmax: Optional[DataArray] = None,
tas: Optional[DataArray] = None, lat: Optional[DataArray] = None,
hurs: Optional[DataArray] = None, rsds: Optional[DataArray] = None,
rsus: Optional[DataArray] = None, rlds: Optional[DataArray] = None,
rlus: Optional[DataArray] = None, sfcwind: Optional[DataArray] =
None, method: str = 'BR65')→ DataArray

Precipitation minus potential evapotranspiration.

Precipitation minus potential evapotranspiration as a measure of an approximated surface water budget, where
the potential evapotranspiration can be calculated with a given method.

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• evspsblpot (xarray.DataArray, optional) – Potential evapotranspiration

• tasmin (xarray.DataArray, optional) – Minimum daily temperature.

• tasmax (xarray.DataArray, optional) – Maximum daily temperature.

• tas (xarray.DataArray, optional) – Mean daily temperature.

• lat (xarray.DataArray, optional) – Latitude coordinate, needed if evspsblpot is not given. If
None, a CF-conformant “latitude” field must be available within the pr DataArray.

• hurs (xarray.DataArray, optional) – Relative humidity.

• rsds (xarray.DataArray, optional) – Surface Downwelling Shortwave Radiation

• rsus (xarray.DataArray, optional) – Surface Upwelling Shortwave Radiation

• rlds (xarray.DataArray, optional) – Surface Downwelling Longwave Radiation

• rlus (xarray.DataArray, optional) – Surface Upwelling Longwave Radiation

• sfcwind (xarray.DataArray, optional) – Surface wind velocity (at 10 m)

• method (str) – Method to use to calculate the potential evapotranspiration.

See also:
xclim.indicators.atmos.potential_evapotranspiration

Returns
xarray.DataArray – Precipitation minus potential evapotranspiration.

16.1. xclim package 815

xclim Documentation, Release 0.39.0

xclim.indices._anuclim module

xclim.indices._anuclim.isothermality(tasmin: DataArray, tasmax: DataArray, freq: str = 'YS')→
DataArray

Isothermality.

The mean diurnal temperature range divided by the annual temperature range.

Parameters
• tasmin (xarray.DataArray) – Average daily minimum temperature at daily, weekly, or

monthly frequency.

• tasmax (xarray.DataArray) – Average daily maximum temperature at daily, weekly, or
monthly frequency.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [%] – Isothermality

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the output with input
data with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior
to calling the function.

References

Xu and Hutchinson [2010]

xclim.indices._anuclim.prcptot(pr: DataArray, thresh: str = '0 mm/d', freq: str = 'YS')→ DataArray
Accumulated total precipitation.

The total accumulated precipitation from days where precipitation exceeds a given amount. A threshold is pro-
vided in order to allow the option of reducing the impact of days with trace precipitation amounts on period
totals.

Parameters
• pr (xarray.DataArray) – Total precipitation flux [mm d-1], [mm week-1], [mm month-1] or

similar.

• thresh (str) – Threshold over which precipitation starts being cumulated.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [length] – Total {freq} precipitation.

xclim.indices._anuclim.prcptot_warmcold_quarter(pr: DataArray, tas: DataArray, op: Optional[str] =
None, freq: str = 'YS')→ DataArray

Total precipitation of warmest/coldest quarter.

The warmest (or coldest) quarter of the year is determined, and the total precipitation of this period is calculated.
If the input data frequency is daily (“D) or weekly (“W”), quarters are defined as 13-week periods, otherwise are
3 months.

816 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Parameters
• pr (xarray.DataArray) – Total precipitation rate at daily, weekly, or monthly frequency.

• tas (xarray.DataArray) – Mean temperature at daily, weekly, or monthly frequency.

• op ({‘warmest’, ‘coldest’}) – Operation to perform: ‘warmest’ calculate for the warmest
quarter ; ‘coldest’ calculate for the coldest quarter.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [mm] – Precipitation of {op} quarter

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

Xu and Hutchinson [2010]

xclim.indices._anuclim.prcptot_wetdry_period(pr: DataArray, *, op: str, freq: str = 'YS')→ DataArray
Precipitation of the wettest/driest day, week, or month, depending on the time step.

The wettest (or driest) period is determined, and the total precipitation of this period is calculated.

Parameters
• pr (xarray.DataArray) – Total precipitation flux [mm d-1], [mm week-1], [mm month-1] or

similar.

• op ({‘wettest’, ‘driest’}) – Operation to perform : ‘wettest’ calculate the wettest period ;
‘driest’ calculate the driest period.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [length] – Precipitation of {op} period

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

16.1. xclim package 817

xclim Documentation, Release 0.39.0

References

Xu and Hutchinson [2010]

xclim.indices._anuclim.prcptot_wetdry_quarter(pr: DataArray, op: Optional[str] = None, freq: str =
'YS')→ DataArray

Total precipitation of wettest/driest quarter.

The wettest (or driest) quarter of the year is determined, and the total precipitation of this period is calculated. If
the input data frequency is daily (“D”) or weekly (“W”) quarters are defined as 13-week periods, otherwise are
three (3) months.

Parameters
• pr (xarray.DataArray) – Total precipitation rate at daily, weekly, or monthly frequency.

• op ({‘wettest’, ‘driest’}) – Operation to perform : ‘wettest’ calculate the wettest quarter ;
‘driest’ calculate the driest quarter.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [length] – Precipitation of {op} quarter

Examples

The following would compute for each grid cell of file pr.day.nc the annual wettest quarter total precipitation:

>>> from xclim.indices import prcptot_wetdry_quarter
>>> p = xr.open_dataset(path_to_pr_file)
>>> pr_warm_qrt = prcptot_wetdry_quarter(pr=p.pr, op="wettest")

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

Xu and Hutchinson [2010]

xclim.indices._anuclim.precip_seasonality(pr: DataArray, freq: str = 'YS')→ DataArray
Precipitation Seasonality (C of V).

The annual precipitation Coefficient of Variation (C of V) expressed in percent. Calculated as the standard
deviation of precipitation values for a given year expressed as a percentage of the mean of those values.

Parameters
• pr (xarray.DataArray) – Total precipitation rate at daily, weekly, or monthly frequency. Units

need to be defined as a rate (e.g. mm d-1, mm week-1).

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [%] – Precipitation coefficient of variation

818 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Examples

The following would compute for each grid cell of file pr.day.nc the annual precipitation seasonality:

>>> import xclim.indices as xci
>>> p = xr.open_dataset(path_to_pr_file).pr
>>> pday_seasonality = xci.precip_seasonality(p)
>>> p_weekly = xci.precip_accumulation(p, freq="7D")

Input units need to be a rate >>> p_weekly.attrs[“units”] = “mm/week” >>> pweek_seasonality =
xci.precip_seasonality(p_weekly)

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

If input units are in mm s-1 (or equivalent), values are converted to mm/day to avoid potentially small denominator
values.

References

Xu and Hutchinson [2010]

xclim.indices._anuclim.temperature_seasonality(tas: DataArray, freq: str = 'YS')→ DataArray
Temperature seasonality (coefficient of variation).

The annual temperature coefficient of variation expressed in percent. Calculated as the standard deviation of
temperature values for a given year expressed as a percentage of the mean of those temperatures.

Parameters
• tas (xarray.DataArray) – Mean temperature at daily, weekly, or monthly frequency.

• freq (str) – Resampling frequency.

Returns
• xarray.DataArray, [%] – Mean temperature coefficient of variation

• freq (str) – Resampling frequency.

Examples

The following would compute for each grid cell of file tas.day.nc the annual temperature seasonality:

>>> import xclim.indices as xci
>>> t = xr.open_dataset(path_to_tas_file).tas
>>> tday_seasonality = xci.temperature_seasonality(t)
>>> t_weekly = xci.tg_mean(t, freq="7D")
>>> tweek_seasonality = xci.temperature_seasonality(t_weekly)

16.1. xclim package 819

xclim Documentation, Release 0.39.0

Notes

For this calculation, the mean in degrees Kelvin is used. This avoids the possibility of having to divide by zero,
but it does mean that the values are usually quite small.

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

Xu and Hutchinson [2010]

xclim.indices._anuclim.tg_mean_warmcold_quarter(tas: DataArray, op: Optional[str] = None, freq: str =
'YS')→ DataArray

Mean temperature of warmest/coldest quarter.

The warmest (or coldest) quarter of the year is determined, and the mean temperature of this period is calculated.
If the input data frequency is daily (“D”) or weekly (“W”), quarters are defined as 13-week periods, otherwise
as three (3) months.

Parameters
• tas (xarray.DataArray) – Mean temperature at daily, weekly, or monthly frequency.

• op (str {‘warmest’, ‘coldest’}) – Operation to perform: ‘warmest’ calculate the warmest
quarter; ‘coldest’ calculate the coldest quarter.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same as tas] – Mean temperature of {op} quarter

Examples

The following would compute for each grid cell of file tas.day.nc the annual temperature of the warmest quarter
mean temperature:

>>> from xclim.indices import tg_mean_warmcold_quarter
>>> t = xr.open_dataset(path_to_tas_file)
>>> t_warm_qrt = tg_mean_warmcold_quarter(tas=t.tas, op="warmest")

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

820 Chapter 16. xclim

xclim Documentation, Release 0.39.0

References

Xu and Hutchinson [2010]

xclim.indices._anuclim.tg_mean_wetdry_quarter(tas: DataArray, pr: DataArray, op: Optional[str] =
None, freq: str = 'YS')→ DataArray

Mean temperature of wettest/driest quarter.

The wettest (or driest) quarter of the year is determined, and the mean temperature of this period is calculated.
If the input data frequency is daily (“D”) or weekly (“W”), quarters are defined as 13-week periods, otherwise
are 3 months.

Parameters
• tas (xarray.DataArray) – Mean temperature at daily, weekly, or monthly frequency.

• pr (xarray.DataArray) – Total precipitation rate at daily, weekly, or monthly frequency.

• op ({‘wettest’, ‘driest’}) – Operation to perform: ‘wettest’ calculate for the wettest quarter;
‘driest’ calculate for the driest quarter.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same as tas] – Mean temperature of {op} quarter

Notes

According to the ANUCLIM user-guide (Xu and Hutchinson [2010], ch. 6), input values should be at a weekly
(or monthly) frequency. However, the xclim.indices implementation here will calculate the result with input data
with daily frequency as well. As such weekly or monthly input values, if desired, should be calculated prior to
calling the function.

References

Xu and Hutchinson [2010]

xclim.indices._conversion module

xclim.indices._conversion.clausius_clapeyron_scaled_precipitation(delta_tas: DataArray,
pr_baseline: DataArray,
cc_scale_factor: float = 1.07)
→ DataArray

Scale precipitation according to the Clausius-Clapeyron relation.

Parameters
• delta_tas (xarray.DataArray) – Difference in temperature between a baseline climatology

and another climatology.

• pr_baseline (xarray.DataArray) – Baseline precipitation to adjust with Clausius-Clapeyron.

• cc_scale_factor (float (default = 1.07)) – Clausius Clapeyron scale factor.

Returns
DataArray – Baseline precipitation scaled to other climatology using Clausius-Clapeyron rela-
tionship.

16.1. xclim package 821

xclim Documentation, Release 0.39.0

Notes

The Clausius-Clapeyron equation for water vapour under typical atmospheric conditions states that the saturation
water vapour pressure 𝑒𝑠 changes approximately exponentially with temperature

d𝑒𝑠(𝑇)

d𝑇
≈ 1.07𝑒𝑠(𝑇)

This function assumes that precipitation can be scaled by the same factor.

Warning: Make sure that delta_tas is computed over a baseline compatible with pr_baseline. So for ex-
ample, if delta_tas is the climatological difference between a baseline and a future period, then pr_baseline
should be precipitations over a period within the same baseline.

xclim.indices._conversion.heat_index(tas: DataArray, hurs: DataArray)→ DataArray
Heat index.

Perceived temperature after relative humidity is taken into account [Blazejczyk et al., 2012]. The index is only
valid for temperatures above 20°C.

Parameters
• tas (xr.DataArray) – Temperature. The equation assumes an instantaneous value.

• hurs (xr.DataArray) – Relative humidity. The equation assumes an instantaneous value.

Returns
xr.DataArray, [temperature] – Heat index for moments with temperature above 20°C.

References

Blazejczyk, Epstein, Jendritzky, Staiger, and Tinz [2012]

Notes

While both the humidex and the heat index are calculated using dew point the humidex uses a dew point of 7 °C
(45 °F) as a base, whereas the heat index uses a dew point base of 14 °C (57 °F). Further, the heat index uses
heat balance equations which account for many variables other than vapour pressure, which is used exclusively
in the humidex calculation.

xclim.indices._conversion.humidex(tas: DataArray, tdps: Optional[DataArray] = None, hurs:
Optional[DataArray] = None)→ DataArray

Humidex index.

The humidex indicates how hot the air feels to an average person, accounting for the effect of humidity. It can be
loosely interpreted as the equivalent perceived temperature when the air is dry.

Parameters
• tas (xarray.DataArray) – Air temperature.

• tdps (xarray.DataArray,) – Dewpoint temperature.

• hurs (xarray.DataArray) – Relative humidity.

Returns
xarray.DataArray, [temperature] – The humidex index.

822 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

The humidex is usually computed using hourly observations of dry bulb and dewpoint temperatures. It is com-
puted using the formula based on Masterton and Richardson [1979]:

𝑇 +
5

9
[𝑒− 10]

where 𝑇 is the dry bulb air temperature (°C). The term 𝑒 can be computed from the dewpoint temperature
𝑇𝑑𝑒𝑤𝑝𝑜𝑖𝑛𝑡 in °K:

𝑒 = 6.112× exp(5417.7530

(︂
1

273.16
− 1

𝑇dewpoint

)︂
where the constant 5417.753 reflects the molecular weight of water, latent heat of vaporization, and the universal
gas constant [Mekis et al., 2015]. Alternatively, the term 𝑒 can also be computed from the relative humidity h
expressed in percent using Sirangelo et al. [2020]:

𝑒 =
ℎ

100
× 6.112 * 107.5𝑇/(𝑇+237.7).

The humidex comfort scale [Canada, 2011] can be interpreted as follows:

• 20 to 29 : no discomfort;

• 30 to 39 : some discomfort;

• 40 to 45 : great discomfort, avoid exertion;

• 46 and over : dangerous, possible heat stroke;

Please note that while both the humidex and the heat index are calculated using dew point, the humidex uses a
dew point of 7 °C (45 °F) as a base, whereas the heat index uses a dew point base of 14 °C (57 °F). Further, the
heat index uses heat balance equations which account for many variables other than vapour pressure, which is
used exclusively in the humidex calculation.

References

Canada [2011], Masterton and Richardson [1979], Mekis, Vincent, Shephard, and Zhang [2015], Sirangelo,
Caloiero, Coscarelli, Ferrari, and Fusto [2020]

xclim.indices._conversion.mean_radiant_temperature(rsds: DataArray, rsus: DataArray, rlds:
DataArray, rlus: DataArray, stat: str = 'average')
→ DataArray

Mean radiant temperature.

The mean radiant temperature is the incidence of radiation on the body from all directions.

Parameters
• rsds (xr.DataArray) – Surface Downwelling Shortwave Radiation

• rsus (xr.DataArray) – Surface Upwelling Shortwave Radiation

• rlds (xr.DataArray) – Surface Downwelling Longwave Radiation

• rlus (xr.DataArray) – Surface Upwelling Longwave Radiation

• stat ({‘average’, ‘instant’, ‘sunlit’}) – Which statistic to apply. If “average”, the average of
the cosine of the solar zenith angle is calculated. If “instant”, the instantaneous cosine of the
solar zenith angle is calculated. If “sunlit”, the cosine of the solar zenith angle is calculated
during the sunlit period of each interval. If “instant”, the instantaneous cosine of the solar
zenith angle is calculated. This is necessary if mrt is not None.

16.1. xclim package 823

xclim Documentation, Release 0.39.0

Returns
xarray.DataArray, [K] – Mean radiant temperature

Warning: There are some issues in the calculation of mrt in polar regions.

Notes

This code was inspired by the thermofeel package [Brimicombe et al., 2021].

References

Di Napoli, Hogan, and Pappenberger [2020]

xclim.indices._conversion.potential_evapotranspiration(tasmin: Optional[DataArray] = None,
tasmax: Optional[DataArray] = None, tas:
Optional[DataArray] = None, lat:
Optional[DataArray] = None, hurs:
Optional[DataArray] = None, rsds:
Optional[DataArray] = None, rsus:
Optional[DataArray] = None, rlds:
Optional[DataArray] = None, rlus:
Optional[DataArray] = None, sfcwind:
Optional[DataArray] = None, method: str =
'BR65', peta: float = 0.00516409319477,
petb: float = 0.0874972822289)→
DataArray

Potential evapotranspiration.

The potential for water evaporation from soil and transpiration by plants if the water supply is sufficient, according
to a given method.

Parameters
• tasmin (xarray.DataArray, optional) – Minimum daily temperature.

• tasmax (xarray.DataArray, optional) – Maximum daily temperature.

• tas (xarray.DataArray, optional) – Mean daily temperature.

• lat (xarray.DataArray, optional) – Latitude. If not given, it is sought on tasmin or tas using
cf-xarray accessors.

• hurs (xarray.DataArray, optional) – Relative humidity.

• rsds (xarray.DataArray, optional) – Surface Downwelling Shortwave Radiation

• rsus (xarray.DataArray, optional) – Surface Upwelling Shortwave Radiation

• rlds (xarray.DataArray, optional) – Surface Downwelling Longwave Radiation

• rlus (xarray.DataArray, optional) – Surface Upwelling Longwave Radiation

• sfcwind (xarray.DataArray, optional) – Surface wind velocity (at 10 m)

• method ({“baierrobertson65”, “BR65”, “hargreaves85”, “HG85”, “thornthwaite48”,
“TW48”, “mcguinnessbordne05”, “MB05”, “allen98”, “FAO_PM98”}) – Which method
to use, see notes.

824 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• peta (float) – Used only with method MB05 as 𝑎 for calculation of PET, see Notes section.
Default value resulted from calibration of PET over the UK.

• petb (float) – Used only with method MB05 as 𝑏 for calculation of PET, see Notes section.
Default value resulted from calibration of PET over the UK.

Returns
xarray.DataArray

Notes

Available methods are:

• “baierrobertson65” or “BR65”, based on Baier and Robertson [1965]. Requires tasmin and tasmax, daily
[D] freq.

• “hargreaves85” or “HG85”, based on George H. Hargreaves and Zohrab A. Samani [1985]. Requires tasmin
and tasmax, daily [D] freq. (optional: tas can be given in addition of tasmin and tasmax).

• “mcguinnessbordne05” or “MB05”, based on Tanguy et al. [2018]. Requires tas, daily [D] freq, with
latitudes ‘lat’.

• “thornthwaite48” or “TW48”, based on Thornthwaite [1948]. Requires tasmin and tasmax, monthly [MS]
or daily [D] freq. (optional: tas can be given instead of tasmin and tasmax).

• “allen98” or “FAO_PM98”, based on Allen et al. [1998]. Modification of Penman-Monteith method.
Requires tasmin and tasmax, relative humidity, radiation flux and wind speed (10 m wind will be converted
to 2 m).

The McGuinness-Bordne [McGuinness and Borone, 1972] equation is:

𝑃𝐸𝑇 [𝑚𝑚𝑑𝑎𝑦−1] = 𝑎 * 𝑆0

𝜆
𝑇𝑎 + 𝑏 * 𝑆0𝜆

where 𝑎 and 𝑏 are empirical parameters; 𝑆0 is the extraterrestrial radiation [MJ m-2 day-1], assuming a solar
constant of 1367 W m-2;
𝑙𝑎𝑚𝑏𝑑𝑎 is the latent heat of vaporisation [MJ kg-1] and 𝑇𝑎 is the air temperature [°C]. The equation was originally
derived for the USA, with 𝑎 = 0.0147 and 𝑏 = 0.07353. The default parameters used here are calibrated for the
UK, using the method described in Tanguy et al. [2018].

Methods “BR65”, “HG85” and “MB05” use an approximation of the extraterrestrial radiation. See
extraterrestrial_solar_radiation().

References

Allen, Pereira, Raes, and Smith [1998], Baier and Robertson [1965], McGuinness and Borone [1972], Tanguy,
Prudhomme, Smith, and Hannaford [2018], Thornthwaite [1948], George H. Hargreaves and Zohrab A. Samani
[1985]

xclim.indices._conversion.rain_approximation(pr: DataArray, tas: DataArray, thresh: str = '0 degC',
method: str = 'binary')→ DataArray

Rainfall approximation from total precipitation and temperature.

Liquid precipitation estimated from precipitation and temperature according to a given method. This is a conve-
nience method based on snowfall_approximation(), see the latter for details.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

16.1. xclim package 825

xclim Documentation, Release 0.39.0

• tas (xarray.DataArray, optional) – Mean, maximum, or minimum daily temperature.

• thresh (str,) – Threshold temperature, used by method “binary”.

• method ({“binary”, “brown”, “auer”}) – Which method to use when approximating snow-
fall from total precipitation. See notes.

Returns
xarray.DataArray, [same units as pr] – Liquid precipitation rate.

Notes

This method computes the snowfall approximation and subtracts it from the total precipitation to estimate the
liquid rain precipitation.

See also:
snowfall_approximation

xclim.indices._conversion.relative_humidity(tas: DataArray, tdps: Optional[DataArray] = None, huss:
Optional[DataArray] = None, ps: Optional[DataArray] =
None, ice_thresh: Optional[str] = None, method: str =
'sonntag90', invalid_values: str = 'clip')→ DataArray

Relative humidity.

Compute relative humidity from temperature and either dewpoint temperature or specific humidity and pressure
through the saturation vapour pressure.

Parameters
• tas (xr.DataArray) – Temperature array

• tdps (xr.DataArray) – Dewpoint temperature, if specified, overrides huss and ps.

• huss (xr.DataArray) – Specific humidity.

• ps (xr.DataArray) – Air Pressure.

• ice_thresh (str) – Threshold temperature under which to switch to equations in reference to
ice instead of water. If None (default) everything is computed with reference to water. Does
nothing if ‘method’ is “bohren98”.

• method ({“bohren98”, “goffgratch46”, “sonntag90”, “tetens30”, “wmo08”}) – Which
method to use, see notes of this function and of saturation_vapor_pressure().

• invalid_values ({“clip”, “mask”, None}) – What to do with values outside the 0-100 range.
If “clip” (default), clips everything to 0 - 100, if “mask”, replaces values outside the range
by np.nan, and if None, does nothing.

Returns
xr.DataArray, [%] – Relative humidity.

826 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

In the following, let 𝑇 , 𝑇𝑑, 𝑞 and 𝑝 be the temperature, the dew point temperature, the specific humidity and the
air pressure.

For the “bohren98” method : This method does not use the saturation vapour pressure directly, but rather uses
an approximation of the ratio of 𝑒𝑠𝑎𝑡(𝑇𝑑)

𝑒𝑠𝑎𝑡(𝑇) . With 𝐿 the enthalpy of vaporization of water and 𝑅𝑤 the gas constant
for water vapour, the relative humidity is computed as:

𝑅𝐻 = 𝑒
−𝐿(𝑇−𝑇𝑑)

𝑅𝑤𝑇𝑇𝑑

From Bohren and Albrecht [1998], formula taken from Lawrence [2005]. 𝐿 = 2.5 × 10−6 J kg-1, exact for
𝑇 = 273.15 K, is used.

Other methods: With 𝑤, 𝑤𝑠𝑎𝑡, 𝑒𝑠𝑎𝑡 the mixing ratio, the saturation mixing ratio and the saturation vapour
pressure. If the dewpoint temperature is given, relative humidity is computed as:

𝑅𝐻 = 100
𝑒𝑠𝑎𝑡(𝑇𝑑)

𝑒𝑠𝑎𝑡(𝑇)

Otherwise, the specific humidity and the air pressure must be given so relative humidity can be computed as:

𝑅𝐻 = 100
𝑤

𝑤𝑠𝑎𝑡
𝑤 =

𝑞

1− 𝑞
𝑤𝑠𝑎𝑡 = 0.622

𝑒𝑠𝑎𝑡
𝑃 − 𝑒𝑠𝑎𝑡

The methods differ by how 𝑒𝑠𝑎𝑡 is computed. See the doc of xclim.core.utils.
saturation_vapor_pressure().

Examples

>>> from xclim.indices import relative_humidity
>>> rh = relative_humidity(
... tas=tas_dataset,
... tdps=tdps_dataset,
... huss=huss_dataset,
... ps=ps_dataset,
... ice_thresh="0 degC",
... method="wmo08",
... invalid_values="clip",
...)

References

Bohren and Albrecht [1998], Lawrence [2005]

xclim.indices._conversion.saturation_vapor_pressure(tas: DataArray, ice_thresh: Optional[str] =
None, method: str = 'sonntag90')→ DataArray

Saturation vapour pressure from temperature.

Parameters
• tas (xr.DataArray) – Temperature array.

• ice_thresh (str) – Threshold temperature under which to switch to equations in reference to
ice instead of water. If None (default) everything is computed with reference to water.

16.1. xclim package 827

xclim Documentation, Release 0.39.0

• method ({“goffgratch46”, “sonntag90”, “tetens30”, “wmo08”, “its90”}) – Which method
to use, see notes.

Returns
xarray.DataArray, [Pa] – Saturation vapour pressure.

Notes

In all cases implemented here 𝑙𝑜𝑔(𝑒𝑠𝑎𝑡) is an empirically fitted function (usually a polynomial) where coefficients
can be different when ice is taken as reference instead of water. Available methods are:

• “goffgratch46” or “GG46”, based on Goff and Gratch [1946], values and equation taken from Vömel [2016].

• “sonntag90” or “SO90”, taken from SONNTAG [1990].

• “tetens30” or “TE30”, based on Tetens [1930], values and equation taken from Vömel [2016].

• “wmo08” or “WMO08”, taken from World Meteorological Organization [2008].

• “its90” or “ITS90”, taken from Hardy [1998].

Examples

>>> from xclim.indices import saturation_vapor_pressure
>>> rh = saturation_vapor_pressure(
... tas=tas_dataset, ice_thresh="0 degC", method="wmo08"
...)

References

Goff and Gratch [1946], Hardy [1998], SONNTAG [1990], Tetens [1930], Vömel [2016], World Meteorological
Organization [2008]

xclim.indices._conversion.sfcwind_2_uas_vas(sfcWind: DataArray, sfcWindfromdir: DataArray)→
tuple[xarray.DataArray, xarray.DataArray]

Eastward and northward wind components from the wind speed and direction.

Compute the eastward and northward wind components from the wind speed and direction.

Parameters
• sfcWind (xr.DataArray) – Wind velocity

• sfcWindfromdir (xr.DataArray) – Direction from which the wind blows, following the me-
teorological convention where 360 stands for North.

Returns
• uas (xr.DataArray, [m s-1]) – Eastward wind velocity.

• vas (xr.DataArray, [m s-1]) – Northward wind velocity.

828 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Examples

>>> from xclim.indices import sfcwind_2_uas_vas
>>> uas, vas = sfcwind_2_uas_vas(
... sfcWind=sfcWind_dataset, sfcWindfromdir=sfcWindfromdir_dataset
...)

xclim.indices._conversion.snowfall_approximation(pr: DataArray, tas: DataArray, thresh: str = '0
degC', method: str = 'binary')→ DataArray

Snowfall approximation from total precipitation and temperature.

Solid precipitation estimated from precipitation and temperature according to a given method.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• tas (xarray.DataArray, optional) – Mean, maximum, or minimum daily temperature.

• thresh (str,) – Threshold temperature, used by method “binary”.

• method ({“binary”, “brown”, “auer”}) – Which method to use when approximating snow-
fall from total precipitation. See notes.

Returns
xarray.DataArray, [same units as pr] – Solid precipitation flux.

Notes

The following methods are available to approximate snowfall and are drawn from the Canadian Land Surface
Scheme [Melton, 2019, Verseghy, 2009].

• 'binary' : When the temperature is under the freezing threshold, precipitation is assumed to be solid.
The method is agnostic to the type of temperature used (mean, maximum or minimum).

• 'brown' : The phase between the freezing threshold goes from solid to liquid linearly over a range of 2°C
over the freezing point.

• 'auer' : The phase between the freezing threshold goes from solid to liquid as a degree six polynomial
over a range of 6°C over the freezing point.

References

Melton [2019], Verseghy [2009]

xclim.indices._conversion.specific_humidity(tas: DataArray, hurs: DataArray, ps: DataArray,
ice_thresh: Optional[str] = None, method: str =
'sonntag90', invalid_values: Optional[str] = None)→
DataArray

Specific humidity from temperature, relative humidity and pressure.

Specific humidity is the ratio between the mass of water vapour and the mass of moist air [World Meteorological
Organization, 2008].

Parameters
• tas (xr.DataArray) – Temperature array

• hurs (xr.DataArray) – Relative Humidity.

16.1. xclim package 829

xclim Documentation, Release 0.39.0

• ps (xr.DataArray) – Air Pressure.

• ice_thresh (str) – Threshold temperature under which to switch to equations in reference to
ice instead of water. If None (default) everything is computed with reference to water.

• method ({“goffgratch46”, “sonntag90”, “tetens30”, “wmo08”}) – Which method to use,
see notes of this function and of saturation_vapor_pressure().

• invalid_values ({“clip”, “mask”, None}) – What to do with values larger than the saturation
specific humidity and lower than 0. If “clip” (default), clips everything to 0 - q_sat if “mask”,
replaces values outside the range by np.nan, if None, does nothing.

Returns
xarray.DataArray, [dimensionless] – Specific humidity.

Notes

In the following, let 𝑇 , ℎ𝑢𝑟𝑠 (in %) and 𝑝 be the temperature, the relative humidity and the air pressure. With
𝑤, 𝑤𝑠𝑎𝑡, 𝑒𝑠𝑎𝑡 the mixing ratio, the saturation mixing ratio and the saturation vapour pressure, specific humidity
𝑞 is computed as:

𝑤𝑠𝑎𝑡 = 0.622
𝑒𝑠𝑎𝑡

𝑃 − 𝑒𝑠𝑎𝑡
𝑤 = 𝑤𝑠𝑎𝑡 * ℎ𝑢𝑟𝑠/100𝑞 = 𝑤/(1 + 𝑤)

The methods differ by how 𝑒𝑠𝑎𝑡 is computed. See xclim.core.utils.saturation_vapor_pressure().

If invalid_values is not None, the saturation specific humidity 𝑞𝑠𝑎𝑡 is computed as:

𝑞𝑠𝑎𝑡 = 𝑤𝑠𝑎𝑡/(1 + 𝑤𝑠𝑎𝑡)

Examples

>>> from xclim.indices import specific_humidity
>>> rh = specific_humidity(
... tas=tas_dataset,
... hurs=hurs_dataset,
... ps=ps_dataset,
... ice_thresh="0 degC",
... method="wmo08",
... invalid_values="mask",
...)

References

World Meteorological Organization [2008]

xclim.indices._conversion.specific_humidity_from_dewpoint(tdps: DataArray, ps: DataArray,
method: str = 'sonntag90')→
DataArray

Specific humidity from dewpoint temperature and air pressure.

Specific humidity is the ratio between the mass of water vapour and the mass of moist air [World Meteorological
Organization, 2008].

Parameters

830 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• tdps (xr.DataArray) – Dewpoint temperature array.

• ps (xr.DataArray) – Air pressure array.

• method ({“goffgratch46”, “sonntag90”, “tetens30”, “wmo08”}) – Method to compute the
saturation vapour pressure.

Returns
xarray.DataArray, [dimensionless] – Specific humidity.

Notes

If 𝑒 is the water vapour pressure, and 𝑝 the total air pressure, then specific humidity is given by

𝑞 = 𝑚𝑤𝑒/(𝑚𝑎(𝑝− 𝑒) +𝑚𝑤𝑒)

where 𝑚𝑤 and 𝑚𝑎 are the molecular weights of water and dry air respectively. This formula is often written with
= 𝑚𝑤/𝑚𝑎, which simplifies to 𝑞 = 𝑒/(𝑝− 𝑒(1−)).

Examples

>>> from xclim.indices import specific_humidity_from_dewpoint
>>> rh = specific_humidity_from_dewpoint(
... tdps=tas_dataset,
... ps=ps_dataset,
... method="wmo08",
...)

References

World Meteorological Organization [2008]

xclim.indices._conversion.tas(tasmin: DataArray, tasmax: DataArray)→ DataArray
Average temperature from minimum and maximum temperatures.

We assume a symmetrical distribution for the temperature and retrieve the average value as Tg = (Tx + Tn) / 2

Parameters
• tasmin (xarray.DataArray) – Minimum (daily) temperature

• tasmax (xarray.DataArray) – Maximum (daily) temperature

Returns
xarray.DataArray – Mean (daily) temperature [same units as tasmin]

16.1. xclim package 831

xclim Documentation, Release 0.39.0

Examples

>>> from xclim.indices import tas
>>> tas = tas(tasmin_dataset, tasmax_dataset)

xclim.indices._conversion.uas_vas_2_sfcwind(uas: DataArray, vas: DataArray, calm_wind_thresh: str =
'0.5 m/s')→ tuple[xarray.DataArray, xarray.DataArray]

Wind speed and direction from the eastward and northward wind components.

Computes the magnitude and angle of the wind vector from its northward and eastward components, following
the meteorological convention that sets calm wind to a direction of 0° and northerly wind to 360°.

Parameters
• uas (xr.DataArray) – Eastward wind velocity

• vas (xr.DataArray) – Northward wind velocity

• calm_wind_thresh (str) – The threshold under which winds are considered “calm” and for
which the direction is set to 0. On the Beaufort scale, calm winds are defined as < 0.5 m/s.

Returns
• wind (xr.DataArray, [m s-1]) – Wind velocity

• wind_from_dir (xr.DataArray, [°]) – Direction from which the wind blows, following the
meteorological convention where 360 stands for North and 0 for calm winds.

Examples

>>> from xclim.indices import uas_vas_2_sfcwind
>>> sfcwind = uas_vas_2_sfcwind(
... uas=uas_dataset, vas=vas_dataset, calm_wind_thresh="0.5 m/s"
...)

Notes

Winds with a velocity less than calm_wind_thresh are given a wind direction of 0°, while stronger northerly
winds are set to 360°.

xclim.indices._conversion.universal_thermal_climate_index(tas: DataArray, hurs: DataArray,
sfcWind: DataArray, mrt:
Optional[DataArray] = None, rsds:
Optional[DataArray] = None, rsus:
Optional[DataArray] = None, rlds:
Optional[DataArray] = None, rlus:
Optional[DataArray] = None, stat: str =
'average', mask_invalid: bool = True)→
DataArray

Universal thermal climate index (UTCI).

The UTCI is the equivalent temperature for the environment derived from a reference environment and is used
to evaluate heat stress in outdoor spaces.

Parameters
• tas (xarray.DataArray) – Mean temperature

832 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• hurs (xarray.DataArray) – Relative Humidity

• sfcWind (xarray.DataArray) – Wind velocity

• mrt (xarray.DataArray, optional) – Mean radiant temperature

• rsds (xr.DataArray, optional) – Surface Downwelling Shortwave Radiation This is necessary
if mrt is not None.

• rsus (xr.DataArray, optional) – Surface Upwelling Shortwave Radiation This is necessary if
mrt is not None.

• rlds (xr.DataArray, optional) – Surface Downwelling Longwave Radiation This is necessary
if mrt is not None.

• rlus (xr.DataArray, optional) – Surface Upwelling Longwave Radiation This is necessary if
mrt is not None.

• stat ({‘average’, ‘instant’, ‘sunlit’}) – Which statistic to apply. If “average”, the average of
the cosine of the solar zenith angle is calculated. If “instant”, the instantaneous cosine of the
solar zenith angle is calculated. If “sunlit”, the cosine of the solar zenith angle is calculated
during the sunlit period of each interval. If “instant”, the instantaneous cosine of the solar
zenith angle is calculated. This is necessary if mrt is not None.

• mask_invalid (bool) – If True (default), UTCI values are NaN where any of the inputs are
outside their validity ranges : -50°C < tas < 50°C, -30°C < tas - mrt < 30°C and 0.5 m/s <
sfcWind < 17.0 m/s.

Returns
xarray.DataArray – Universal Thermal Climate Index.

Notes

The calculation uses water vapour partial pressure, which is derived from relative humidity and saturation vapour
pressure computed according to the ITS-90 equation.

This code was inspired by the pythermalcomfort and thermofeel packages.

Notes

See: http://www.utci.org/utcineu/utcineu.php

References

Bröde [2009], Błażejczyk, Jendritzky, Bröde, Fiala, Havenith, Epstein, Psikuta, and Kampmann [2013]

xclim.indices._conversion.wind_chill_index(tas: DataArray, sfcWind: DataArray, method: str = 'CAN',
mask_invalid: bool = True)

Wind chill index.

The Wind Chill Index is an estimation of how cold the weather feels to the average person. It is computed from
the air temperature and the 10-m wind. As defined by the Environment and Climate Change Canada (Mekis,
Vincent, Shephard, and Zhang [2015]), two equations exist, the conventional one and one for slow winds (usually
< 5 km/h), see Notes.

Parameters
• tas (xarray.DataArray) – Surface air temperature.

16.1. xclim package 833

http://www.utci.org/utcineu/utcineu.php

xclim Documentation, Release 0.39.0

• sfcWind (xarray.DataArray) – Surface wind speed (10 m).

• method ({‘CAN’, ‘US’}) – If “CAN” (default), a “slow wind” equation is used where winds
are slower than 5 km/h, see Notes.

• mask_invalid (bool) – Whether to mask values when the inputs are outside their validity
range. or not. If True (default), points where the temperature is above a threshold are masked.
The threshold is 0°C for the canadian method and 50°F for the american one. With the latter
method, points where sfcWind < 3 mph are also masked.

Returns
xarray.DataArray, [degC] – Wind Chill Index.

Notes

Following the calculations of Environment and Climate Change Canada, this function switches from the stan-
dardized index to another one for slow winds. The standard index is the same as used by the National Weather
Service of the USA [US Department of Commerce, n.d.]. Given a temperature at surface 𝑇 (in °C) and 10-m
wind speed 𝑉 (in km/h), the Wind Chill Index 𝑊 (dimensionless) is computed as:

𝑊 = 13.12 + 0.6125 * 𝑇 − 11.37 * 𝑉 0.16 + 0.3965 * 𝑇 * 𝑉 0.16

Under slow winds (𝑉 < 5 km/h), and using the canadian method, it becomes:

𝑊 = 𝑇 +
−1.59 + 0.1345 * 𝑇

5
* 𝑉

Both equations are invalid for temperature over 0°C in the canadian method.

The american Wind Chill Temperature index (WCT), as defined by USA’s National Weather Service, is computed
when method=’US’. In that case, the maximal valid temperature is 50°F (10 °C) and minimal wind speed is 3
mph (4.8 km/h).

For more information, see:

• National Weather Service FAQ: [US Department of Commerce, n.d.].

• The New Wind Chill Equivalent Temperature Chart: [Osczevski and Bluestein, 2005].

References

Mekis, Vincent, Shephard, and Zhang [2015], US Department of Commerce [n.d.]

xclim.indices._hydrology module

xclim.indices._hydrology.base_flow_index(q: DataArray, freq: str = 'YS')→ DataArray
Base flow index.

Return the base flow index, defined as the minimum 7-day average flow divided by the mean flow.

Parameters
• q (xarray.DataArray) – Rate of river discharge.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Base flow index.

834 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let q = 𝑞0, 𝑞1, . . . , 𝑞𝑛 be the sequence of daily discharge and q the mean flow over the period. The base flow
index is given by:

min(CMA7(q))

q

where CMA7 is the seven days moving average of the daily flow:

CMA7(𝑞𝑖) =

∑︀𝑖+3
𝑗=𝑖−3 𝑞𝑗

7

xclim.indices._hydrology.melt_and_precip_max(snw: DataArray, pr: DataArray, window: int = 3, freq:
str = 'AS-JUL')→ DataArray

Maximum snow melt and precipitation.

The maximum snow melt plus precipitation over a given number of days expressed in snow water equivalent.

Parameters
• snw (xarray.DataArray) – Snow amount (mass per area).

• pr (xarray.DataArray) – Daily precipitation flux.

• window (int) – Number of days during which the water input is accumulated.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The maximum snow melt plus precipitation over a given number of days for
each period. [mass/area].

xclim.indices._hydrology.rb_flashiness_index(q: DataArray, freq: str = 'YS')→ DataArray
Richards-Baker flashiness index.

Measures oscillations in flow relative to total flow, quantifying the frequency and rapidity of short term changes
in flow, based on Baker et al. [2004].

Parameters
• q (xarray.DataArray) – Rate of river discharge.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – R-B Index.

Notes

Let q = 𝑞0, 𝑞1, . . . , 𝑞𝑛 be the sequence of daily discharge, the R-B Index is given by:∑︀𝑛
𝑖=1 |𝑞𝑖 − 𝑞𝑖−1|∑︀𝑛

𝑖=1 𝑞𝑖

16.1. xclim package 835

xclim Documentation, Release 0.39.0

References

Baker, Richards, Loftus, and Kramer [2004]

xclim.indices._hydrology.snd_max_doy(snd: DataArray, freq: str = 'AS-JUL')→ DataArray
Maximum snow depth day of year.

Day of year when surface snow reaches its peak value. If snow depth is 0 over entire period, return NaN.

Parameters
• snd (xarray.DataArray) – Surface snow depth.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The day of year at which snow depth reaches its maximum value.

xclim.indices._hydrology.snow_melt_we_max(snw: DataArray, window: int = 3, freq: str = 'AS-JUL')→
DataArray

Maximum snow melt.

The maximum snow melt over a given number of days expressed in snow water equivalent.

Parameters
• snw (xarray.DataArray) – Snow amount (mass per area).

• window (int) – Number of days during which the melt is accumulated.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The maximum snow melt over a given number of days for each period.
[mass/area].

xclim.indices._hydrology.snw_max(snw: DataArray, freq: str = 'AS-JUL')→ DataArray
Maximum snow amount.

The maximum daily snow amount.

Parameters
• snw (xarray.DataArray) – Snow amount (mass per area).

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The maximum snow amount over a given number of days for each period.
[mass/area].

xclim.indices._hydrology.snw_max_doy(snw: DataArray, freq: str = 'AS-JUL')→ DataArray
Maximum snow amount day of year.

Day of year when surface snow amount reaches its peak value. If snow amount is 0 over entire period, return
NaN.

Parameters
• snw (xarray.DataArray) – Surface snow amount.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The day of year at which snow amount reaches its maximum value.

836 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indices._multivariate module

xclim.indices._multivariate.blowing_snow(snd: DataArray, sfcWind: DataArray, snd_thresh: str = '5 cm',
sfcWind_thresh: str = '15 km/h', window: int = 3, freq: str =
'AS-JUL')→ DataArray

Blowing snow days.

Number of days when both snowfall over the last days and daily wind speeds are above respective thresholds.

Parameters
• snd (xarray.DataArray) – Surface snow depth.

• sfcWind (xr.DataArray) – Wind velocity

• snd_thresh (str) – Threshold on net snowfall accumulation over the last window days.

• sfcWind_thresh (str) – Wind speed threshold.

• window (int) – Period over which snow is accumulated before comparing against threshold.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – Number of days when snowfall and wind speeds are above respective thresh-
olds.

xclim.indices._multivariate.cold_and_dry_days(tas: DataArray, pr: DataArray, tas_per: DataArray,
pr_per: DataArray, freq: str = 'YS')→ DataArray

Cold and dry days.

Returns the total number of days when “Cold” and “Dry” conditions coincide.

Parameters
• tas (xarray.DataArray) – Mean daily temperature values

• pr (xarray.DataArray) – Daily precipitation.

• tas_per (xarray.DataArray) – First quartile of daily mean temperature computed by month.

• pr_per (xarray.DataArray) – First quartile of daily total precipitation computed by month.

Warning: Before computing the percentiles, all the precipitation below 1mm must be
filtered out! Otherwise, the percentiles will include non-wet days.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The total number of days when cold and dry conditions coincide.

16.1. xclim package 837

xclim Documentation, Release 0.39.0

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indices._multivariate.cold_and_wet_days(tas: DataArray, pr: DataArray, tas_per: DataArray,
pr_per: DataArray, freq: str = 'YS')→ DataArray

Cold and wet days.

Returns the total number of days when “cold” and “wet” conditions coincide.

Parameters
• tas (xarray.DataArray) – Mean daily temperature values

• pr (xarray.DataArray) – Daily precipitation.

• tas_per (xarray.DataArray) – First quartile of daily mean temperature computed by month.

• pr_per (xarray.DataArray) – Third quartile of daily total precipitation computed by month.

• freq (str) – Resampling frequency.

Warning: Before computing the percentiles, all the precipitation below 1mm must be filtered out! Other-
wise, the percentiles will include non-wet days.

Returns
xarray.DataArray – The total number of days when cold and wet conditions coincide.

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indices._multivariate.cold_spell_duration_index(tasmin: DataArray, tasmin_per: DataArray,
window: int = 6, freq: str = 'YS',
resample_before_rl: bool = True, bootstrap:
bool = False, op: str = '<')→ DataArray

Cold spell duration index.

Number of days with at least window consecutive days when the daily minimum temperature is below the tas-
min_per percentiles.

Parameters

838 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmin_per (xarray.DataArray) – nth percentile of daily minimum temperature with day-
ofyear coordinate.

• window (int) – Minimum number of days with temperature below threshold to qualify as a
cold spell.

• freq (str) – Resampling frequency.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Count of days with at least six consecutive days when the daily min-
imum temperature is below the 10th percentile.

Notes

Let 𝑇𝑁𝑖 be the minimum daily temperature for the day of the year 𝑖 and 𝑇𝑁10𝑖 the 10th percentile of the
minimum daily temperature over the 1961-1990 period for day of the year 𝑖, the cold spell duration index over
period 𝜑 is defined as:

∑︁
𝑖∈𝜑

𝑖+6∏︁
𝑗=𝑖

[𝑇𝑁𝑗 < 𝑇𝑁10𝑗]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

References

From the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI; [Zhang et al., 2011]).

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import cold_spell_duration_index
>>> tasmin = xr.open_dataset(path_to_tasmin_file).tasmin.isel(lat=0, lon=0)
>>> tn10 = percentile_doy(tasmin, per=10).sel(percentiles=10)
>>> cold_spell_duration_index(tasmin, tn10)

Note that this example does not use a proper 1961-1990 reference period.

xclim.indices._multivariate.daily_temperature_range(tasmin: DataArray, tasmax: DataArray, freq:
str = 'YS', op: Union[str, Callable] = 'mean')→
DataArray

16.1. xclim package 839

xclim Documentation, Release 0.39.0

Statistics of daily temperature range.

The mean difference between the daily maximum temperature and the daily minimum temperature.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• freq (str) – Resampling frequency.

• op ({‘min’, ‘max’, ‘mean’, ‘std’} or func) – Reduce operation. Can either be a DataArray
method or a function that can be applied to a DataArray.

Returns
xarray.DataArray, [same units as tasmin] – The average variation in daily temperature range for
the given time period.

Notes

For a default calculation using op=’mean’ :

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the mean diurnal
temperature range in period 𝑗 is:

𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=1(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)

𝐼

xclim.indices._multivariate.daily_temperature_range_variability(tasmin: DataArray, tasmax:
DataArray, freq: str = 'YS')→
DataArray

Mean absolute day-to-day variation in daily temperature range.

Mean absolute day-to-day variation in daily temperature range.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmin] – The average day-to-day variation in daily temperature
range for the given time period.

Notes

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then calculated is
the absolute day-to-day differences in period 𝑗 is:

𝑣𝐷𝑇𝑅𝑗 =

∑︀𝐼
𝑖=2 |(𝑇𝑋𝑖𝑗 − 𝑇𝑁𝑖𝑗)− (𝑇𝑋𝑖−1,𝑗 − 𝑇𝑁𝑖−1,𝑗)|

𝐼

840 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indices._multivariate.days_over_precip_thresh(pr: DataArray, pr_per: DataArray, thresh: str =
'1 mm/day', freq: str = 'YS', bootstrap: bool =
False, op: str = '>')→ DataArray

Number of wet days with daily precipitation over a given percentile.

Number of days over period where the precipitation is above a threshold defining wet days and above a given
percentile for that day.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• pr_per (xarray.DataArray) – Percentile of wet day precipitation flux. Either computed daily
(one value per day of year) or computed over a period (one value per spatial point).

• thresh (str) – Precipitation value over which a day is considered wet.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Count of days with daily precipitation above the given percentile
[days].

Examples

>>> from xclim.indices import days_over_precip_thresh
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> p75 = pr.quantile(0.75, dim="time", keep_attrs=True)
>>> r75p = days_over_precip_thresh(pr, p75)

xclim.indices._multivariate.extreme_temperature_range(tasmin: DataArray, tasmax: DataArray, freq:
str = 'YS')→ DataArray

Extreme intra-period temperature range.

The maximum of max temperature (TXx) minus the minimum of min temperature (TNn) for the given time
period.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmin] – Extreme intra-period temperature range for the given
time period.

16.1. xclim package 841

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖𝑗 and 𝑇𝑁𝑖𝑗 be the daily maximum and minimum temperature at day 𝑖 of period 𝑗. Then the extreme
temperature range in period 𝑗 is:

𝐸𝑇𝑅𝑗 = 𝑚𝑎𝑥(𝑇𝑋𝑖𝑗)−𝑚𝑖𝑛(𝑇𝑁𝑖𝑗)

xclim.indices._multivariate.fraction_over_precip_thresh(pr: DataArray, pr_per: DataArray, thresh:
str = '1 mm/day', freq: str = 'YS', bootstrap:
bool = False, op: str = '>')→ DataArray

Fraction of precipitation due to wet days with daily precipitation over a given percentile.

Percentage of the total precipitation over period occurring in days when the precipitation is above a threshold
defining wet days and above a given percentile for that day.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• pr_per (xarray.DataArray) – Percentile of wet day precipitation flux. Either computed daily
(one value per day of year) or computed over a period (one value per spatial point).

• thresh (str) – Precipitation value over which a day is considered wet.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [dimensionless] – Fraction of precipitation over threshold during wet days.

xclim.indices._multivariate.heat_wave_frequency(tasmin: DataArray, tasmax: DataArray,
thresh_tasmin: str = '22.0 degC', thresh_tasmax: str
= '30 degC', window: int = 3, freq: str = 'YS', op: str
= '>', resample_before_rl: bool = True)→
DataArray

Heat wave frequency.

Number of heat waves over a given period. A heat wave is defined as an event where the minimum and maximum
daily temperature both exceed specific thresholds over a minimum number of days.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmin (str) – The minimum temperature threshold needed to trigger a heatwave
event.

• thresh_tasmax (str) – The maximum temperature threshold needed to trigger a heatwave
event.

• window (int) – Minimum number of days with temperatures above thresholds to qualify as
a heatwave.

842 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xarray.DataArray, [dimensionless] – Number of heatwave at the requested frequency.

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indices._multivariate.heat_wave_max_length(tasmin: DataArray, tasmax: DataArray,
thresh_tasmin: str = '22.0 degC', thresh_tasmax: str
= '30 degC', window: int = 3, freq: str = 'YS', op: str
= '>', resample_before_rl: bool = True)→
DataArray

Heat wave max length.

Maximum length of heat waves over a given period. A heat wave is defined as an event where the minimum and
maximum daily temperature both exceeds specific thresholds over a minimum number of days.

By definition heat_wave_max_length must be >= window.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmin (str) – The minimum temperature threshold needed to trigger a heatwave
event.

• thresh_tasmax (str) – The maximum temperature threshold needed to trigger a heatwave
event.

• window (int) – Minimum number of days with temperatures above thresholds to qualify as
a heatwave.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xarray.DataArray, [time] – Maximum length of heatwave at the requested frequency.

16.1. xclim package 843

xclim Documentation, Release 0.39.0

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be: thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indices._multivariate.heat_wave_total_length(tasmin: DataArray, tasmax: DataArray,
thresh_tasmin: str = '22.0 degC', thresh_tasmax:
str = '30 degC', window: int = 3, freq: str = 'YS',
op: str = '>', resample_before_rl: bool = True)
→ DataArray

Heat wave total length.

Total length of heat waves over a given period. A heat wave is defined as an event where the minimum and
maximum daily temperature both exceeds specific thresholds over a minimum number of days. This the sum of
all days in such events.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmin (str) – The minimum temperature threshold needed to trigger a heatwave
event.

• thresh_tasmax (str) – The maximum temperature threshold needed to trigger a heatwave
event.

• window (int) – Minimum number of days with temperatures above thresholds to qualify as
a heatwave.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xarray.DataArray, [time] – Total length of heatwave at the requested frequency.

844 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

See notes and references of heat_wave_max_length

xclim.indices._multivariate.high_precip_low_temp(pr: DataArray, tas: DataArray, pr_thresh: str = '0.4
mm/d', tas_thresh: str = '-0.2 degC', freq: str = 'YS')
→ DataArray

Number of days with precipitation above threshold and temperature below threshold.

Number of days when precipitation is greater or equal to some threshold, and temperatures are colder than some
threshold. This can be used for example to identify days with the potential for freezing rain or icing conditions.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• tas (xarray.DataArray) – Daily mean, minimum or maximum temperature.

• pr_thresh (str) – Precipitation threshold to exceed.

• tas_thresh (str) – Temperature threshold not to exceed.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Count of days with high precipitation and low temperatures.

Example

To compute the number of days with intense rainfall while minimum temperatures dip below -0.2C:
>>> pr = xr.open_dataset(path_to_pr_file).pr >>> tasmin = xr.open_dataset(path_to_tasmin_file).tasmin >>>
high_precip_low_temp(. . . pr, tas=tasmin, pr_thresh=”10 mm/d”, tas_thresh=”-0.2 degC” . . .)

xclim.indices._multivariate.liquid_precip_ratio(pr: DataArray, prsn: Optional[DataArray] = None,
tas: Optional[DataArray] = None, thresh: str = '0
degC', freq: str = 'QS-DEC')→ DataArray

Ratio of rainfall to total precipitation.

The ratio of total liquid precipitation over the total precipitation. If solid precipitation is not provided, it is
approximated with pr, tas and thresh, using the snowfall_approximation function with method ‘binary’.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• prsn (xarray.DataArray, optional) – Mean daily solid precipitation flux.

• tas (xarray.DataArray, optional) – Mean daily temperature.

• thresh (str) – Threshold temperature under which precipitation is assumed to be solid.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Ratio of rainfall to total precipitation.

16.1. xclim package 845

xclim Documentation, Release 0.39.0

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

𝑃𝑅𝑤𝑒𝑡𝑖𝑗

See also:
winter_rain_ratio

xclim.indices._multivariate.multiday_temperature_swing(tasmin: DataArray, tasmax: DataArray,
thresh_tasmin: str = '0 degC',
thresh_tasmax: str = '0 degC', window: int =
1, op: str = 'mean', op_tasmin: str = '<=',
op_tasmax: str = '>', freq: str = 'YS',
resample_before_rl: bool = True)→
DataArray

Statistics of consecutive diurnal temperature swing events.

A diurnal swing of max and min temperature event is when Tmax > thresh_tasmax and Tmin <= thresh_tasmin.
This indice finds all days that constitute these events and computes statistics over the length and frequency of
these events.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmin (str) – The temperature threshold needed to trigger a freeze event.

• thresh_tasmax (str) – The temperature threshold needed to trigger a thaw event.

• window (int) – The minimal length of spells to be included in the statistics.

• op ({‘mean’, ‘sum’, ‘max’, ‘min’, ‘std’, ‘count’}) – The statistical operation to use when
reducing the list of spell lengths.

• op_tasmin ({“<”, “<=”, “lt”, “le”}) – Comparison operation for tasmin. Default: “<=”.

• op_tasmax ({“>”, “>=”, “gt”, “ge”}) – Comparison operation for tasmax. Default: “>”.

• freq (str) – Resampling frequency.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xarray.DataArray, [time] – {freq} {op} length of diurnal temperature cycles exceeding thresh-
olds.

846 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑋𝑖 be the maximum temperature at day 𝑖 and 𝑇𝑁𝑖 be the daily minimum temperature at day 𝑖. Then freeze
thaw spells during a given period are consecutive days where:

𝑇𝑋𝑖 > 0 ∧ 𝑇𝑁𝑖 < 0

This indice returns a given statistic of the found lengths, optionally dropping those shorter than the window
argument. For example, window=1 and op=’sum’ returns the same value as daily_freezethaw_cycles().

xclim.indices._multivariate.precip_accumulation(pr: DataArray, tas: Optional[DataArray] = None,
phase: Optional[str] = None, thresh: str = '0 degC',
freq: str = 'YS')→ DataArray

Accumulated total (liquid and/or solid) precipitation.

Resample the original daily mean precipitation flux and accumulate over each period. If a daily temperature is
provided, the phase keyword can be used to sum precipitation of a given phase only. When the temperature is
under the given threshold, precipitation is assumed to be snow, and liquid rain otherwise. This indice is agnostic
to the type of daily temperature (tas, tasmax or tasmin) given.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• tas (xarray.DataArray, optional) – Mean, maximum or minimum daily temperature.

• phase ({None, ‘liquid’, ‘solid’}) – Which phase to consider, “liquid” or “solid”, if None
(default), both are considered.

• thresh (str) – Threshold of tas over which the precipication is assumed to be liquid rain.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [length] – The total daily precipitation at the given time frequency for the
given phase.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day 𝑖, then for a period 𝑗 starting at day 𝑎 and finishing on day 𝑏:

𝑃𝑅𝑖𝑗 =

𝑏∑︁
𝑖=𝑎

𝑃𝑅𝑖

If tas and phase are given, the corresponding phase precipitation is estimated before computing the accumulation,
using one of snowfall_approximation or rain_approximation with the binary method.

Examples

The following would compute, for each grid cell of a dataset, the total precipitation at the seasonal frequency, ie
DJF, MAM, JJA, SON, DJF, etc.:

>>> from xclim.indices import precip_accumulation
>>> pr_day = xr.open_dataset(path_to_pr_file).pr
>>> prcp_tot_seasonal = precip_accumulation(pr_day, freq="QS-DEC")

16.1. xclim package 847

xclim Documentation, Release 0.39.0

xclim.indices._multivariate.rain_on_frozen_ground_days(pr: DataArray, tas: DataArray, thresh: str =
'1 mm/d', freq: str = 'YS')→ DataArray

Number of rain on frozen ground events.

Number of days with rain above a threshold after a series of seven days below freezing temperature. Precipitation
is assumed to be rain when the temperature is above 0℃.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Precipitation threshold to consider a day as a rain event.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – The number of rain on frozen ground events per period.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation and 𝑇𝐺𝑖 be the mean daily temperature of day 𝑖. Then for a period 𝑗,
rain on frozen grounds days are counted where:

𝑃𝑅𝑖 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑚]

and where

𝑇𝐺𝑖0

is true for continuous periods where 𝑖7

xclim.indices._multivariate.tg10p(tas: DataArray, tas_per: DataArray, freq: str = 'YS', bootstrap: bool =
False, op: str = '<')→ DataArray

Number of days with daily mean temperature below the 10th percentile.

Number of days with daily mean temperature below the 10th percentile.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• tas_per (xarray.DataArray) – 10th percentile of daily mean temperature.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Count of days with daily mean temperature below the 10th percentile
[days].

848 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tg10p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> tas_per = percentile_doy(tas, per=10).sel(percentiles=10)
>>> cold_days = tg10p(tas, tas_per)

xclim.indices._multivariate.tg90p(tas: DataArray, tas_per: DataArray, freq: str = 'YS', bootstrap: bool =
False, op: str = '>')→ DataArray

Number of days with daily mean temperature over the 90th percentile.

Number of days with daily mean temperature over the 90th percentile.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• tas_per (xarray.DataArray) – 90th percentile of daily mean temperature.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Count of days with daily mean temperature below the 10th percentile
[days].

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tg90p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> tas_per = percentile_doy(tas, per=90).sel(percentiles=90)
>>> hot_days = tg90p(tas, tas_per)

xclim.indices._multivariate.tn10p(tasmin: DataArray, tasmin_per: DataArray, freq: str = 'YS', bootstrap:
bool = False, op: str = '<')→ DataArray

16.1. xclim package 849

xclim Documentation, Release 0.39.0

Number of days with daily minimum temperature below the 10th percentile.

Number of days with daily minimum temperature below the 10th percentile.

Parameters
• tasmin (xarray.DataArray) – Mean daily temperature.

• tasmin_per (xarray.DataArray) – 10th percentile of daily minimum temperature.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Count of days with daily minimum temperature below the 10th per-
centile [days].

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tn10p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> tas_per = percentile_doy(tas, per=10).sel(percentiles=10)
>>> cold_days = tn10p(tas, tas_per)

xclim.indices._multivariate.tn90p(tasmin: DataArray, tasmin_per: DataArray, freq: str = 'YS', bootstrap:
bool = False, op: str = '>')→ DataArray

Number of days with daily minimum temperature over the 90th percentile.

Number of days with daily minimum temperature over the 90th percentile.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• tasmin_per (xarray.DataArray) – 90th percentile of daily minimum temperature.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

850 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Count of days with daily minimum temperature below the 10th per-
centile [days].

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tn90p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> tas_per = percentile_doy(tas, per=90).sel(percentiles=90)
>>> hot_days = tn90p(tas, tas_per)

xclim.indices._multivariate.tx10p(tasmax: DataArray, tasmax_per: DataArray, freq: str = 'YS', bootstrap:
bool = False, op: str = '<')→ DataArray

Number of days with daily maximum temperature below the 10th percentile.

Number of days with daily maximum temperature below the 10th percentile.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• tasmax_per (xarray.DataArray) – 10th percentile of daily maximum temperature.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Count of days with daily maximum temperature below the 10th per-
centile [days].

Notes

The 10th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

16.1. xclim package 851

xclim Documentation, Release 0.39.0

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tx10p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> tasmax_per = percentile_doy(tas, per=10).sel(percentiles=10)
>>> cold_days = tx10p(tas, tasmax_per)

xclim.indices._multivariate.tx90p(tasmax: DataArray, tasmax_per: DataArray, freq: str = 'YS', bootstrap:
bool = False, op: str = '>')→ DataArray

Number of days with daily maximum temperature over the 90th percentile.

Number of days with daily maximum temperature over the 90th percentile.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• tasmax_per (xarray.DataArray) – 90th percentile of daily maximum temperature.

• freq (str) – Resampling frequency.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Count of days with daily maximum temperature below the 10th per-
centile [days].

Notes

The 90th percentile should be computed for a 5-day window centered on each calendar day for a reference period.

Examples

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import tx90p
>>> tas = xr.open_dataset(path_to_tas_file).tas
>>> tasmax_per = percentile_doy(tas, per=90).sel(percentiles=90)
>>> hot_days = tx90p(tas, tasmax_per)

xclim.indices._multivariate.tx_tn_days_above(tasmin: DataArray, tasmax: DataArray, thresh_tasmin:
str = '22 degC', thresh_tasmax: str = '30 degC', freq: str
= 'YS', op: str = '>')→ DataArray

Number of days with both hot maximum and minimum daily temperatures.

The number of days per period with tasmin above a threshold and tasmax above another threshold.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

852 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmin (str) – Threshold temperature for tasmin on which to base evaluation.

• thresh_tasmax (str) – Threshold temperature for tasmax on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – the number of days with tasmin > thresh_tasmin and tasmax >
thresh_tasmax per period.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗, 𝑇𝑁𝑖𝑗 the daily minimum temperature at day 𝑖 of
period 𝑗, 𝑇𝑋𝑡ℎ𝑟𝑒𝑠ℎ the threshold for maximum daily temperature, and 𝑇𝑁𝑡ℎ𝑟𝑒𝑠ℎ the threshold for minimum
daily temperature. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 > 𝑇𝑋𝑡ℎ𝑟𝑒𝑠ℎ[]

and where:

𝑇𝑁𝑖𝑗 > 𝑇𝑁𝑡ℎ𝑟𝑒𝑠ℎ[]

xclim.indices._multivariate.warm_and_dry_days(tas: DataArray, pr: DataArray, tas_per: DataArray,
pr_per: DataArray, freq: str = 'YS')→ DataArray

Warm and dry days.

Returns the total number of days when “warm” and “Dry” conditions coincide.

Parameters
• tas (xarray.DataArray) – Mean daily temperature values

• pr (xarray.DataArray) – Daily precipitation.

• tas_per (xarray.DataArray) – Third quartile of daily mean temperature computed by month.

• pr_per (xarray.DataArray) – First quartile of daily total precipitation computed by month.

Warning: Before computing the percentiles, all the precipitation below 1mm must be
filtered out! Otherwise, the percentiles will include non-wet days.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, – The total number of days when warm and dry conditions coincide.

16.1. xclim package 853

xclim Documentation, Release 0.39.0

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indices._multivariate.warm_and_wet_days(tas: DataArray, pr: DataArray, tas_per: DataArray,
pr_per: DataArray, freq: str = 'YS')→ DataArray

Warm and wet days.

Returns the total number of days when “warm” and “wet” conditions coincide.

Parameters
• tas (xarray.DataArray) – Mean daily temperature values

• pr (xarray.DataArray) – Daily precipitation.

• tas_per (xarray.DataArray) – Third quartile of daily mean temperature computed by month.

• pr_per (xarray.DataArray) – Third quartile of daily total precipitation computed by month.

Warning: Before computing the percentiles, all the precipitation below 1mm must be
filtered out! Otherwise, the percentiles will include non-wet days.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – The total number of days when warm and wet conditions coincide.

Notes

Bootstrapping is not available for quartiles because it would make no significant difference to bootstrap per-
centiles so far from the extremes.

Formula to be written (Beniston [2009])

References

Beniston [2009]

xclim.indices._multivariate.warm_spell_duration_index(tasmax: DataArray, tasmax_per: DataArray,
window: int = 6, freq: str = 'YS',
resample_before_rl: bool = True, bootstrap:
bool = False, op: str = '>')→ DataArray

Warm spell duration index.

Number of days inside spells of a minimum number of consecutive days when the daily maximum temperature
is above the 90th percentile. The 90th percentile should be computed for a 5-day moving window, centered on
each calendar day in the 1961-1990 period.

854 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• tasmax_per (xarray.DataArray) – percentile(s) of daily maximum temperature.

• window (int) – Minimum number of days with temperature above threshold to qualify as a
warm spell.

• freq (str) – Resampling frequency.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

• bootstrap (bool) – Flag to run bootstrapping of percentiles. Used by percentile_bootstrap
decorator. Bootstrapping is only useful when the percentiles are computed on a part of the
studied sample. This period, common to percentiles and the sample must be bootstrapped to
avoid inhomogeneities with the rest of the time series. Keep bootstrap to False when there
is no common period, it would give wrong results plus, bootstrapping is computationally
expensive.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Warm spell duration index.

References

From the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI; [Zhang et al., 2011]).
Used in Alexander, Zhang, Peterson, Caesar, Gleason, Klein Tank, Haylock, Collins, Trewin, Rahimzadeh,
Tagipour, Rupa Kumar, Revadekar, Griffiths, Vincent, Stephenson, Burn, Aguilar, Brunet, Taylor, New, Zhai,
Rusticucci, and Vazquez-Aguirre [2006]

Examples

Note that this example does not use a proper 1961-1990 reference period.

>>> from xclim.core.calendar import percentile_doy
>>> from xclim.indices import warm_spell_duration_index

>>> tasmax = xr.open_dataset(path_to_tasmax_file).tasmax.isel(lat=0, lon=0)
>>> tasmax_per = percentile_doy(tasmax, per=90).sel(percentiles=90)
>>> warm_spell_duration_index(tasmax, tasmax_per)

xclim.indices._multivariate.winter_rain_ratio(*, pr: DataArray, prsn: Optional[DataArray] = None,
tas: Optional[DataArray] = None, freq: str =
'QS-DEC')→ DataArray

Ratio of rainfall to total precipitation during winter.

The ratio of total liquid precipitation over the total precipitation over the winter months (DJF). If solid precipita-
tion is not provided, then precipitation is assumed solid if the temperature is below 0°C.

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• prsn (xarray.DataArray, optional) – Mean daily solid precipitation flux.

• tas (xarray.DataArray, optional) – Mean daily temperature.

16.1. xclim package 855

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – Ratio of rainfall to total precipitation during winter months (DJF).

xclim.indices._simple module

xclim.indices._simple.frost_days(tasmin: DataArray, thresh: str = '0 degC', freq: str = 'YS')→ DataArray
Frost days index.

Number of days where daily minimum temperatures are below a threshold temperature.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Freezing temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Frost days index.

Notes

Let 𝑇𝑁𝑖𝑗 be the daily minimum temperature at day 𝑖 of period 𝑗 and :math`TT` the threshold. Then counted is
the number of days where:

𝑇𝑁𝑖𝑗 < 𝑇𝑇

xclim.indices._simple.ice_days(tasmax: DataArray, thresh: str = '0 degC', freq: str = 'YS')→ DataArray
Number of ice/freezing days.

Number of days when daily maximum temperatures are below a threshold.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh (str) – Freezing temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Number of ice/freezing days.

Notes

Let 𝑇𝑋𝑖𝑗 be the daily maximum temperature at day 𝑖 of period 𝑗, and :math`TT` the threshold. Then counted is
the number of days where:

𝑇𝑋𝑖𝑗 < 𝑇𝑇

856 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indices._simple.max_1day_precipitation_amount(pr: DataArray, freq: str = 'YS')→ DataArray
Highest 1-day precipitation amount for a period (frequency).

Resample the original daily total precipitation temperature series by taking the max over each period.

Parameters
• pr (xarray.DataArray) – Daily precipitation values.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as pr] – The highest 1-period precipitation flux value at the given
time frequency.

Notes

Let 𝑃𝑅𝑖 be the mean daily precipitation of day i, then for a period j:

𝑃𝑅𝑥𝑖𝑗 = 𝑚𝑎𝑥(𝑃𝑅𝑖𝑗)

Examples

The following would compute for each grid cell the highest 1-day total at an annual frequency:

>>> from xclim.indices import max_1day_precipitation_amount
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> rx1day = max_1day_precipitation_amount(pr, freq="YS")

xclim.indices._simple.max_n_day_precipitation_amount(pr: DataArray, window: int = 1, freq: str =
'YS')→ DataArray

Highest precipitation amount cumulated over a n-day moving window.

Calculate the n-day rolling sum of the original daily total precipitation series and determine the maximum value
over each period.

Parameters
• pr (xarray.DataArray) – Daily precipitation values.

• window (int) – Window size in days.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [length] – The highest cumulated n-period precipitation value at the given
time frequency.

16.1. xclim package 857

xclim Documentation, Release 0.39.0

Examples

The following would compute for each grid cell the highest 5-day total precipitation at an annual frequency:

>>> from xclim.indices import max_n_day_precipitation_amount
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> out = max_n_day_precipitation_amount(pr, window=5, freq="YS")

xclim.indices._simple.max_pr_intensity(pr: DataArray, window: int = 1, freq: str = 'YS')→ DataArray
Highest precipitation intensity over a n-hour moving window.

Calculate the n-hour rolling average of the original hourly total precipitation series and determine the maximum
value over each period.

Parameters
• pr (xarray.DataArray) – Hourly precipitation values.

• window (int) – Window size in hours.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as pr] – The highest cumulated n-hour precipitation intensity at
the given time frequency.

Examples

The following would compute the maximum 6-hour precipitation intensity at an annual frequency:

>>> from xclim.indices import max_pr_intensity
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> out = max_pr_intensity(pr, window=5, freq="YS")

xclim.indices._simple.snow_depth(snd: DataArray, freq: str = 'YS')→ DataArray
Mean of daily average snow depth.

Resample the original daily mean snow depth series by taking the mean over each period.

Parameters
• snd (xarray.DataArray) – Mean daily snow depth.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as snd] – The mean daily snow depth at the given time frequency

xclim.indices._simple.tg_max(tas: DataArray, freq: str = 'YS')→ DataArray
Highest mean temperature.

The maximum of daily mean temperature.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tas] – Maximum of daily minimum temperature.

858 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑁𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then the maximum daily mean temperature for period
𝑗 is:

𝑇𝑁𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑁𝑖𝑗)

xclim.indices._simple.tg_mean(tas: DataArray, freq: str = 'YS')→ DataArray
Mean of daily average temperature.

Resample the original daily mean temperature series by taking the mean over each period.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tas] – The mean daily temperature at the given time frequency

Notes

Let 𝑇𝑁𝑖 be the mean daily temperature of day 𝑖, then for a period 𝑝 starting at day 𝑎 and finishing on day 𝑏:

𝑇𝐺𝑝 =

∑︀𝑏
𝑖=𝑎 𝑇𝑁𝑖

𝑏− 𝑎+ 1

Examples

The following would compute for each grid cell of file tas.day.nc the mean temperature at the seasonal frequency,
i.e. DJF, MAM, JJA, SON, DJF, etc.:

>>> from xclim.indices import tg_mean
>>> t = xr.open_dataset(path_to_tas_file).tas
>>> tg = tg_mean(t, freq="QS-DEC")

xclim.indices._simple.tg_min(tas: DataArray, freq: str = 'YS')→ DataArray
Lowest mean temperature.

Minimum of daily mean temperature.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tas] – Minimum of daily minimum temperature.

16.1. xclim package 859

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝐺𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then the minimum daily mean temperature for period 𝑗
is:

𝑇𝐺𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝐺𝑖𝑗)

xclim.indices._simple.tn_max(tasmin: DataArray, freq: str = 'YS')→ DataArray
Highest minimum temperature.

The maximum of daily minimum temperature.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmin] – Maximum of daily minimum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then the maximum daily minimum temperature for
period 𝑗 is:

𝑇𝑁𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑁𝑖𝑗)

xclim.indices._simple.tn_mean(tasmin: DataArray, freq: str = 'YS')→ DataArray
Mean minimum temperature.

Mean of daily minimum temperature.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmin] – Mean of daily minimum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then mean values in period 𝑗 are given by:

𝑇𝑁𝑖𝑗 =

∑︀𝐼
𝑖=1 𝑇𝑁𝑖𝑗

𝐼

xclim.indices._simple.tn_min(tasmin: DataArray, freq: str = 'YS')→ DataArray
Lowest minimum temperature.

Minimum of daily minimum temperature.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

860 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmin] – Minimum of daily minimum temperature.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then the minimum daily minimum temperature for
period 𝑗 is:

𝑇𝑁𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝑁𝑖𝑗)

xclim.indices._simple.tx_max(tasmax: DataArray, freq: str = 'YS')→ DataArray
Highest max temperature.

The maximum value of daily maximum temperature.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmax] – Maximum value of daily maximum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then the maximum daily maximum temperature
for period 𝑗 is:

𝑇𝑋𝑥𝑗 = 𝑚𝑎𝑥(𝑇𝑋𝑖𝑗)

xclim.indices._simple.tx_mean(tasmax: DataArray, freq: str = 'YS')→ DataArray
Mean max temperature.

The mean of daily maximum temperature.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmax] – Mean of daily maximum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then mean values in period 𝑗 are given by:

𝑇𝑋𝑖𝑗 =

∑︀𝐼
𝑖=1 𝑇𝑋𝑖𝑗

𝐼

16.1. xclim package 861

xclim Documentation, Release 0.39.0

xclim.indices._simple.tx_min(tasmax: DataArray, freq: str = 'YS')→ DataArray
Lowest max temperature.

The minimum of daily maximum temperature.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [same units as tasmax] – Minimum of daily maximum temperature.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum temperature at day 𝑖 of period 𝑗. Then the minimum daily maximum temperature for
period 𝑗 is:

𝑇𝑋𝑛𝑗 = 𝑚𝑖𝑛(𝑇𝑋𝑖𝑗)

xclim.indices._synoptic module

xclim.indices._synoptic.jetstream_metric_woollings(ua: xarray.DataArray)
Strength and latitude of jetstream.

Identify latitude and strength of maximum smoothed zonal wind speed in the region from 15 to 75°N and -60 to
0°E, using the formula outlined in [Woollings et al., 2010]. Wind is smoothened using a Lanczos filter approach.

Warning: This metric expects eastward wind component (u) to be on a regular grid (i.e. Plate Carree, 1D
lat and lon)

Parameters
ua (xarray.DataArray) – Eastward wind component (u) at between 750 and 950 hPa.

Returns
(xarray.DataArray, xarray.DataArray) – Daily time series of latitude of jetstream and Daily time
series of strength of jetstream.

References

Woollings, Hannachi, and Hoskins [2010]

xclim.indices._threshold module

xclim.indices._threshold.calm_days(sfcWind: DataArray, thresh: str = '2 m s-1', freq: str = 'MS')→
DataArray

Calm days.

The number of days with average near-surface wind speed below threshold (default: 2 m/s).

Parameters

862 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• sfcWind (xarray.DataArray) – Daily windspeed.

• thresh (str) – Threshold average near-surface wind speed on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Number of days with average near-surface wind speed below thresh-
old.

Notes

Let 𝑊𝑆𝑖𝑗 be the windspeed at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑊𝑆𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑠− 1]

xclim.indices._threshold.cold_spell_days(tas: DataArray, thresh: str = '-10 degC', window: int = 5, freq:
str = 'AS-JUL', op: str = '<', resample_before_rl: bool = True)
→ DataArray

Cold spell days.

The number of days that are part of cold spell events, defined as a sequence of consecutive days with mean daily
temperature below a threshold (default: -10°C).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature below which a cold spell begins.

• window (int) – Minimum number of days with temperature below threshold to qualify as a
cold spell.

• freq (str) – Resampling frequency.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xarray.DataArray, [time] – Cold spell days.

Notes

Let 𝑇𝑖 be the mean daily temperature on day 𝑖, the number of cold spell days during period 𝜑 is given by:

∑︁
𝑖∈𝜑

𝑖+5∏︁
𝑗=𝑖

[𝑇𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

xclim.indices._threshold.cold_spell_frequency(tas: DataArray, thresh: str = '-10 degC', window: int =
5, freq: str = 'AS-JUL', op: str = '<',
resample_before_rl: bool = True)→ DataArray

Cold spell frequency.

The number of cold spell events, defined as a sequence of consecutive days with mean daily temperature below
a threshold (default: -10℃).

16.1. xclim package 863

xclim Documentation, Release 0.39.0

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature below which a cold spell begins.

• window (int) – Minimum number of days with temperature below threshold to qualify as a
cold spell.

• freq (str) – Resampling frequency.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run

Returns
xarray.DataArray, [time] – Cold spell frequency.

xclim.indices._threshold.continuous_snow_cover_end(snd: DataArray, thresh: str = '2 cm', window: int
= 14, freq: str = 'AS-JUL')→ DataArray

End date of continuous snow cover.

First day after the start of the continuous snow cover when snow depth is below a threshold (default: 2 cm) for
at least N (default: 14) consecutive days.

Warning: The default freq is valid for the northern hemisphere.

Parameters
• snd (xarray.DataArray) – Surface snow thickness.

• thresh (str) – Threshold snow thickness.

• window (int) – Minimum number of days with snow depth below threshold.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – First day after the start of the continuous snow cover when
the snow depth goes below a threshold for a minimum duration. If there is no such day, returns
np.nan.

References

Chaumont, Mailhot, Diaconescu, Fournier, and Logan [2017]

xclim.indices._threshold.continuous_snow_cover_start(snd: DataArray, thresh: str = '2 cm', window:
int = 14, freq: str = 'AS-JUL')→ DataArray

Start date of continuous snow cover.

Day of year when snow depth is above or equal to a threshold (default: 2 cm) for at least N (default: 14) consec-
utive days.

Warning: The default freq is valid for the northern hemisphere.

Parameters

864 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• snd (xarray.DataArray) – Surface snow thickness.

• thresh (str) – Threshold snow thickness.

• window (int) – Minimum number of days with snow depth above or equal to threshold.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – First day of the year when the snow depth is superior to a
threshold for a minimum duration. If there is no such day, returns np.nan.

References

Chaumont, Mailhot, Diaconescu, Fournier, and Logan [2017]

xclim.indices._threshold.cooling_degree_days(tas: DataArray, thresh: str = '18 degC', freq: str = 'YS')
→ DataArray

Cooling degree days.

Returns the sum of degree days above the temperature threshold at which spaces are cooled (default: 18℃).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Temperature threshold above which air is cooled.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time][temperature] – Cooling degree days.

Notes

Let 𝑥𝑖 be the daily mean temperature at day 𝑖. Then the cooling degree days above temperature threshold 𝑡ℎ𝑟𝑒𝑠ℎ
over period 𝜑 is given by: ∑︁

𝑖∈𝜑

(𝑥𝑖 − 𝑡ℎ𝑟𝑒𝑠ℎ[𝑥𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

xclim.indices._threshold.daily_pr_intensity(pr: DataArray, thresh: str = '1 mm/day', freq: str = 'YS')
→ DataArray

Average daily precipitation intensity.

Return the average precipitation over wet days. Wet days are those with precipitation over a given threshold
(default: 1 mm/day).

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• thresh (str) – Precipitation value over which a day is considered wet.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [precipitation] – The average precipitation over wet days for each period.

16.1. xclim package 865

xclim Documentation, Release 0.39.0

Notes

Let p = 𝑝0, 𝑝1, . . . , 𝑝𝑛 be the daily precipitation and 𝑡ℎ𝑟𝑒𝑠ℎ be the precipitation threshold defining wet days.
Then the daily precipitation intensity is defined as:∑︀𝑛

𝑖=0 𝑝𝑖[𝑝𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ]∑︀𝑛
𝑖=0[𝑝𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false.

Examples

The following would compute for each grid cell of file pr.day.nc the average precipitation fallen over days with
precipitation >= 5 mm at seasonal frequency, i.e. DJF, MAM, JJA, SON, DJF, etc.:

>>> from xclim.indices import daily_pr_intensity
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> daily_int = daily_pr_intensity(pr, thresh="5 mm/day", freq="QS-DEC")

xclim.indices._threshold.days_with_snow(prsn: DataArray, low: str = '0 kg m-2 s-1', high: str = '1E6 kg
m-2 s-1', freq: str = 'AS-JUL')→ DataArray

Days with snow.

Return the number of days where snowfall is within low and high thresholds.

Parameters
• prsn (xr.DataArray) – Solid precipitation flux.

• low (float) – Minimum threshold solid precipitation flux.

• high (float) – Maximum threshold solid precipitation flux.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xarray.DataArray, [time] – Number of days where snowfall is between low and high thresholds.

References

Matthews, Andrey, and Picketts [2017]

xclim.indices._threshold.degree_days_exceedance_date(tas: DataArray, thresh: str = '0 degC',
sum_thresh: str = '25 K days', op: str = '>',
after_date: Optional[DayOfYearStr] = None,
freq: str = 'YS')→ DataArray

Degree-days exceedance date.

Day of year when the sum of degree days exceeds a threshold (default: 25 K days). Degree days are computed
above or below a given temperature threshold (default: 0℃).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base degree-days evaluation.

• sum_thresh (str) – Threshold of the degree days sum.

866 Chapter 16. xclim

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”}) – If equivalent to ‘>’, degree days
are computed as tas - thresh and if equivalent to ‘<’, they are computed as thresh - tas.

• after_date (str, optional) – Date at which to start the cumulative sum. In “mm-dd” format,
defaults to the start of the sampling period.

• freq (str) – Resampling frequency. If after_date is given, freq should be annual.

Returns
xarray.DataArray, [dimensionless] – Degree-days exceedance date.

Notes

Let 𝑇𝐺𝑖𝑗 be the daily mean temperature at day 𝑖 of period 𝑗, 𝑇 is the reference threshold and 𝑆𝑇 is the sum
threshold. Then, starting at day :math:i_0:, the degree days exceedance date is the first day 𝑘 such that{︃

𝑆𝑇 <
∑︀𝑘

𝑖=𝑖0
max(𝑇𝐺𝑖𝑗 − 𝑇, 0) if 𝑜𝑝 is ’>’

𝑆𝑇 <
∑︀𝑘

𝑖=𝑖0
max(𝑇 − 𝑇𝐺𝑖𝑗 , 0) if 𝑜𝑝 is ’<’

The resulting 𝑘 is expressed as a day of year.

Cumulated degree days have numerous applications including plant and insect phenology. See https://en.
wikipedia.org/wiki/Growing_degree-day for examples (Wikipedia Contributors [2021]).

xclim.indices._threshold.dry_days(pr: DataArray, thresh: str = '0.2 mm/d', freq: str = 'YS', op: str = '<')
→ DataArray

Dry days.

The number of days with daily precipitation below threshold.

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Number of days with daily precipitation {op} threshold.

Notes

Let 𝑃𝑅𝑖𝑗 be the daily precipitation at day 𝑖 of period 𝑗. Then counted is the number of days where:∑︁
𝑃𝑅𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑚/𝑑𝑎𝑦]

xclim.indices._threshold.first_day_above(tasmin: DataArray, **kwargs)→ DataArray

xclim.indices._threshold.first_day_below(tasmin: DataArray, **kwargs)→ DataArray

xclim.indices._threshold.first_day_temperature_above(tas: DataArray, thresh: str = '0 degC', op: str
= '>', after_date: DayOfYearStr = '01-01',
window: int = 1, freq: str = 'YS')→ DataArray

16.1. xclim package 867

https://en.wikipedia.org/wiki/Growing_degree-day
https://en.wikipedia.org/wiki/Growing_degree-day

xclim Documentation, Release 0.39.0

First day of temperatures superior to a given temperature threshold.

Returns first day of period where temperature is superior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: January 1).

Warning: The default freq and after_date parameters are valid for the northern hemisphere.

Parameters
• tas (xarray.DataArray) – Daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

• after_date (str) – Date of the year after which to look for the first event. Should have the
format ‘%m-%d’.

• window (int) – Minimum number of days with temperature above threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when temperature is superior to a threshold
over a given number of days for the first time. If there is no such day, returns np.nan.

Notes

Let 𝑥𝑖 be the daily mean|max|min temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366.
The first day above temperature threshold is given by the smallest index 𝑖 for which

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be exceeded, and [𝑃] is 1 if 𝑃 is true,
and 0 if false.

xclim.indices._threshold.first_day_temperature_below(tas: DataArray, thresh: str = '0 degC', op: str
= '<', after_date: DayOfYearStr = '07-01',
window: int = 1, freq: str = 'YS')→ DataArray

First day of temperatures inferior to a given temperature threshold.

Returns first day of period where temperature is inferior to a threshold over a given number of days (default: 1),
limited to a starting calendar date (default: July 1).

Warning: The default freq and after_date parameters are valid for the northern hemisphere.

Parameters
• tas (xarray.DataArray) – Daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “>”.

868 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• after_date (str) – Date of the year after which to look for the first event. Should have the
format ‘%m-%d’.

• window (int) – Minimum number of days with temperature below threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when temperature is inferior to a threshold
over a given number of days for the first time. If there is no such day, returns np.nan.

xclim.indices._threshold.first_snowfall(prsn: DataArray, thresh: str = '0.5 mm/day', freq: str =
'AS-JUL')→ DataArray

First day with solid precipitation above a threshold.

Returns the first day of a period where the solid precipitation exceeds a threshold (default: 0.5 mm/day).

Warning: The default freq is valid for the northern hemisphere.

Parameters
• prsn (xarray.DataArray) – Solid precipitation flux.

• thresh (str) – Threshold precipitation flux on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – First day of the year when the solid precipitation is superior
to a threshold. If there is no such day, returns np.nan.

References

CBCL [2020].

xclim.indices._threshold.freshet_start(tas: DataArray, thresh='0 degC', window: int = 5, **kwargs)→
DataArray

xclim.indices._threshold.frost_free_season_end(tasmin: DataArray, thresh: str = '0.0 degC', mid_date:
DayOfYearStr = '07-01', window: int = 5, freq: str =
'YS')→ DataArray

End of the frost free season.

Day of the year of the start of a sequence of days with minimum temperatures consistently below a threshold
(default: 0℃), after a period of N days (default: 5) with minimum temperatures consistently above the same
threshold.

Warning: The default freq and mid_date parameters are valid for the northern hemisphere.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

16.1. xclim package 869

xclim Documentation, Release 0.39.0

• mid_date (str) – Date of the year after which to look for the end of the season. Should have
the format ‘%m-%d’.

• window (int) – Minimum number of days with temperature below threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when minimum temperature is inferior to
a threshold over a given number of days for the first time. If there is no such day or if a frost
free season is not detected, returns np.nan. If the frost free season does not end within the time
period, returns the last day of the period.

xclim.indices._threshold.frost_free_season_length(tasmin: DataArray, window: int = 5, mid_date:
Optional[DayOfYearStr] = '07-01', thresh: str =
'0.0 degC', freq: str = 'YS')→ DataArray

Frost free season length.

The number of days between the first occurrence of at least N (default: 5) consecutive days with minimum
daily temperature above a threshold (default: 0℃) and the first occurrence of at least N consecutive days with
minimum daily temperature below the same threshold. A mid-date can be given to limit the earliest day the end
of season can take.

Warning: The default freq and mid_date parameters are valid for the northern hemisphere.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• window (int) – Minimum number of days with temperature above threshold to mark the
beginning and end of frost free season.

• mid_date (str, optional) – Date the must be included in the season. It is the earliest the end
of the season can be. If None, there is no limit.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Frost free season length.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the
first occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 >= 0

and the first subsequent occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 < 0

870 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Examples

>>> from xclim.indices import frost_season_length
>>> tasmin = xr.open_dataset(path_to_tasmin_file).tasmin

For the Northern Hemisphere: >>> ffsl_nh = frost_free_season_length(tasmin, freq=”YS”)

If working in the Southern Hemisphere, one can use: >>> ffsl_sh = frost_free_season_length(tasmin, freq=”AS-
JUL”)

xclim.indices._threshold.frost_free_season_start(tasmin: DataArray, thresh: str = '0.0 degC',
window: int = 5, freq: str = 'YS')→ DataArray

Start of the frost free season.

Day of the year of the start of a sequence of days with minimum temperatures consistently above or equal to a
threshold (default: 0℃), after a period of N days (default: 5) with minimum temperatures consistently above the
same threshold.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• window (int) – Minimum number of days with temperature above threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when minimum temperature is superior to
a threshold over a given number of days for the first time. If there is no such day or if a frost free
season is not detected, returns np.nan.

Notes

Let 𝑥𝑖 be the daily mean temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366. The start
date of the start of growing season is given by the smallest index 𝑖 for which:

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 >= 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be met or exceeded, and [𝑃] is 1 if 𝑃 is
true, and 0 if false.

xclim.indices._threshold.frost_season_length(tasmin: DataArray, window: int = 5, mid_date:
Optional[DayOfYearStr] = '01-01', thresh: str = '0.0
degC', freq: str = 'AS-JUL')→ DataArray

Frost season length.

The number of days between the first occurrence of at least N (default: 5) consecutive days with minimum
daily temperature under a threshold (default: 0℃) and the first occurrence of at least N consecutive days with
minimum daily temperature above the same threshold. A mid-date can be given to limit the earliest day the end
of season can take.

Warning: The default freq and mid_date parameters are valid for the northern hemisphere.

16.1. xclim package 871

xclim Documentation, Release 0.39.0

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• window (int) – Minimum number of days with temperature below threshold to mark the
beginning and end of frost season.

• mid_date (str, optional) – Date the must be included in the season. It is the earliest the end
of the season can be. If None, there is no limit.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Frost season length.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the
first occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 > 0

and the first subsequent occurrence of at least N consecutive days with:

𝑇𝑁𝑖𝑗 < 0

Examples

>>> from xclim.indices import frost_season_length
>>> tasmin = xr.open_dataset(path_to_tasmin_file).tasmin

For the Northern Hemisphere: >>> fsl_nh = frost_season_length(tasmin, freq=”AS-JUL”)

If working in the Southern Hemisphere, one can use: >>> fsl_sh = frost_season_length(tasmin, freq=”YS”)

xclim.indices._threshold.growing_degree_days(tas: DataArray, thresh: str = '4.0 degC', freq: str = 'YS')
→ DataArray

Growing degree-days over threshold temperature value.

The sum of growing degree-days over a given mean daily temperature threshold (default: 4℃).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time][temperature] – The sum of growing degree-days above a given thresh-
old.

872 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then the growing degree days are:

𝐺𝐷4𝑗 =

𝐼∑︁
𝑖=1

(𝑇𝐺𝑖𝑗 − 4|𝑇𝐺𝑖𝑗 > 4)

xclim.indices._threshold.growing_season_end(tas: DataArray, thresh: str = '5.0 degC', mid_date:
DayOfYearStr = '07-01', window: int = 5, freq: str = 'YS')
→ DataArray

End of the growing season.

Day of the year of the start of a sequence of N (default: 5) days with mean temperatures consistently below a
given threshold (default: 5℃), occurring after a given calendar date (default: July 1).

Warning: The default freq and mid_date parameters are valid for the northern hemisphere.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• mid_date (str) – Date of the year after which to look for the end of the season. Should have
the format ‘%m-%d’.

• window (int) – Minimum number of days with temperature below threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when temperature is inferior to a threshold
over a given number of days for the first time. If there is no such day or if a growing season is
not detected, returns np.nan. If the growing season does not end within the time period, returns
the last day of the period.

xclim.indices._threshold.growing_season_length(tas: DataArray, thresh: str = '5.0 degC', window: int =
6, mid_date: DayOfYearStr = '07-01', freq: str = 'YS')
→ DataArray

Growing season length.

The number of days between the first occurrence of at least N (default: 6) consecutive days with mean daily
temperature over a threshold (default: 5℃) and the first occurrence of at least N consecutive days with mean
daily temperature below the same threshold after a certain date, usually July 1st (06-01) in the northern emispher
and January 1st (01-01) in the southern hemisphere.

Warning: The default freq and mid_date parameters are valid for the northern hemisphere.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

16.1. xclim package 873

xclim Documentation, Release 0.39.0

• window (int) – Minimum number of days with temperature above threshold to mark the
beginning and end of growing season.

• mid_date (str) – Date of the year after which to look for the end of the season. Should have
the format ‘%m-%d’.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Growing season length.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean temperature at day 𝑖 of period 𝑗. Then counted is the number of days between the first
occurrence of at least 6 consecutive days with:

𝑇𝐺𝑖𝑗 > 5

and the first occurrence after 1 July of at least 6 consecutive days with:

𝑇𝐺𝑖𝑗 < 5

Examples

>>> from xclim.indices import growing_season_length
>>> tas = xr.open_dataset(path_to_tas_file).tas

For the Northern Hemisphere: >>> gsl_nh = growing_season_length(tas, mid_date=”07-01”, freq=”AS”)

If working in the Southern Hemisphere, one can use: >>> gsl_sh = growing_season_length(tas, mid_date=”01-
01”, freq=”AS-JUL”)

References

Project team ECA&D and KNMI [2013]

xclim.indices._threshold.growing_season_start(tas: DataArray, thresh: str = '5.0 degC', window: int =
5, freq: str = 'YS')→ DataArray

Start of the growing season.

Day of the year of the start of a sequence of days with mean daily temperatures consistently above or equal to a
given threshold (default: 5℃).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• window (int) – Minimum number of days with temperature above threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when temperature is superior to a threshold
over a given number of days for the first time. If there is no such day or if a growing season is
not detected, returns np.nan.

874 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let 𝑥𝑖 be the daily mean temperature at day of the year 𝑖 for values of 𝑖 going from 1 to 365 or 366. The start
date of the start of growing season is given by the smallest index 𝑖 for which:

𝑖+𝑤∏︁
𝑗=𝑖

[𝑥𝑗 >= 𝑡ℎ𝑟𝑒𝑠ℎ]

is true, where 𝑤 is the number of days the temperature threshold should be met or exceeded, and [𝑃] is 1 if 𝑃 is
true, and 0 if false.

xclim.indices._threshold.heat_wave_index(tasmax: DataArray, thresh: str = '25.0 degC', window: int = 5,
freq: str = 'YS', op: str = '>')→ DataArray

Heat wave index.

Number of days that are part of a heatwave, defined as five or more consecutive days over a threshold of 25℃.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh (str) – Threshold temperature on which to designate a heatwave.

• window (int) – Minimum number of days with temperature above threshold to qualify as a
heatwave.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
DataArray, [time] – Heat wave index.

xclim.indices._threshold.heating_degree_days(tas: DataArray, thresh: str = '17.0 degC', freq: str =
'YS')→ DataArray

Heating degree days.

Sum of degree days below the temperature threshold (default: 17℃) at which spaces are heated.

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time][temperature] – Heating degree days index.

Notes

This index intentionally differs from its ECA&D [Project team ECA&D and KNMI, 2013] equivalent: HD17.
In HD17, values below zero are not clipped before the sum. The present definition should provide a better
representation of the energy demand for heating buildings to the given threshold.

Let 𝑇𝐺𝑖𝑗 be the daily mean temperature at day 𝑖 of period 𝑗. Then the heating degree days are:

𝐻𝐷17𝑗 =

𝐼∑︁
𝑖=1

(17− 𝑇𝐺𝑖𝑗)|𝑇𝐺𝑖𝑗 < 17)

16.1. xclim package 875

xclim Documentation, Release 0.39.0

xclim.indices._threshold.hot_spell_frequency(tasmax: DataArray, thresh_tasmax: str = '30 degC',
window: int = 3, freq: str = 'YS', op: str = '>')→
DataArray

Hot spell frequency.

Number of hot spells over a given period. A hot spell is defined as an event where the maximum daily temperature
exceeds a specific threshold (default: 30℃) over a minimum number of days (default: 3).

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmax (str) – The maximum temperature threshold needed to trigger a heatwave
event.

• window (int) – Minimum number of days with temperatures above thresholds to qualify as
a heatwave.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [dimensionless] – Number of heatwave at the wanted frequency

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indices._threshold.hot_spell_max_length(tasmax: DataArray, thresh_tasmax: str = '30 degC',
window: int = 1, freq: str = 'YS', op: str = '>')→
DataArray

Longest hot spell.

Longest spell of high temperatures over a given period. The longest series of consecutive days with tasmax at or
above 30°C. Here, there is no minimum threshold for number of days in a row that must be reached or exceeded
to count as a spell. A year with zero +30°C days will return a longest spell value of zero.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh_tasmax (str) – The maximum temperature threshold needed to trigger a heatwave
event.

• window (int) – Minimum number of days with temperatures above thresholds to qualify as
a heatwave.

• freq (str) – Resampling frequency.

876 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Maximum length of continuous hot days at the wanted frequency.

Notes

The thresholds of 22° and 25°C for night temperatures and 30° and 35°C for day temperatures were selected by
Health Canada professionals, following a temperature–mortality analysis. These absolute temperature thresh-
olds characterize the occurrence of hot weather events that can result in adverse health outcomes for Canadian
communities [Casati et al., 2013].

In Robinson [2001], the parameters would be thresh_tasmin=27.22, thresh_tasmax=39.44, window=2 (81F,
103F).

References

Casati, Yagouti, and Chaumont [2013], Robinson [2001]

xclim.indices._threshold.last_snowfall(prsn: DataArray, thresh: str = '0.5 mm/day', freq: str =
'AS-JUL')→ DataArray

Last day with solid precipitation above a threshold.

Returns the last day of a period where the solid precipitation exceeds a threshold (default: 0.5 mm/day).

Warning: The default freq is valid for the northern hemisphere.

Parameters
• prsn (xarray.DataArray) – Solid precipitation flux.

• thresh (str) – Threshold precipitation flux on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Last day of the year when the solid precipitation is superior
to a threshold. If there is no such day, returns np.nan.

References

CBCL [2020].

xclim.indices._threshold.last_spring_frost(tas: DataArray, thresh: str = '0 degC', before_date:
DayOfYearStr = '07-01', window: int = 1, freq: str = 'YS')
→ DataArray

Last day of temperatures inferior to a threshold temperature.

Returns last day of period where a temperature is inferior to a threshold over a given number of days (default: 1)
and limited to a final calendar date (default: July 1).

Warning: The default freq and before_date parameters are valid for the northern hemisphere.

16.1. xclim package 877

xclim Documentation, Release 0.39.0

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• before_date (str,) – Date of the year before which to look for the final frost event. Should
have the format ‘%m-%d’.

• window (int) – Minimum number of days with temperature below threshold needed for eval-
uation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – Day of the year when temperature is inferior to a threshold
over a given number of days for the first time. If there is no such day, returns np.nan.

xclim.indices._threshold.maximum_consecutive_dry_days(pr: DataArray, thresh: str = '1 mm/day', freq:
str = 'YS')→ DataArray

Maximum number of consecutive dry days.

Return the maximum number of consecutive days within the period where precipitation is below a certain thresh-
old (default: 1 mm/day).

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• thresh (str) – Threshold precipitation on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – The maximum number of consecutive dry days (precipitation <
threshold per period).

Notes

Let p = 𝑝0, 𝑝1, . . . , 𝑝𝑛 be a daily precipitation series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold under which a day is considered
dry. Then let s be the sorted vector of indices 𝑖 where [𝑝𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑝𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where
the precipitation crosses the threshold. Then the maximum number of consecutive dry days is given by

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑝𝑠𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indices._threshold.maximum_consecutive_frost_days(tasmin: DataArray, thresh: str = '0.0
degC', freq: str = 'AS-JUL')→ DataArray

Maximum number of consecutive frost days (Tn < 0℃).

The maximum number of consecutive days within the period where the minimum daily temperature is under a
given threshold (default: 0°C).

Warning: The default freq is valid for the northern hemisphere.

Parameters

878 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – The maximum number of consecutive frost days (tasmin < threshold
per period).

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a minimum daily temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold below which a day is
considered a frost day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that is,
the days where the temperature crosses the threshold. Then the maximum number of consecutive frost days is
given by

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 < 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indices._threshold.maximum_consecutive_frost_free_days(tasmin: DataArray, thresh: str = '0
degC', freq: str = 'YS')→ DataArray

Maximum number of consecutive frost free days (Tn >= 0℃).

Return the maximum number of consecutive days within the period where the minimum daily temperature is
above or equal to a certain threshold (default: 0℃).

Warning: The default freq is valid for the northern hemisphere.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – The maximum number of consecutive frost free days (tasmin >=
threshold per period).

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a daily minimum temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold above or equal to which
a day is considered a frost free day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 <= 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 <=
𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where the temperature crosses the threshold. Then the maximum number of consecutive
frost free days is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 >= 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

16.1. xclim package 879

xclim Documentation, Release 0.39.0

xclim.indices._threshold.maximum_consecutive_tx_days(tasmax: DataArray, thresh: str = '25 degC',
freq: str = 'YS')→ DataArray

Maximum number of consecutive days with tasmax above a threshold (summer days).

Return the maximum number of consecutive days within the period where the maximum daily temperature is
above a certain threshold (default: 25℃).

Parameters
• tasmax (xarray.DataArray) – Max daily temperature.

• thresh (str) – Threshold temperature.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – The maximum number of days with tasmax > thresh per periods
(summer days).

Notes

Let t = 𝑡0, 𝑡1, . . . , 𝑡𝑛 be a daily maximum temperature series and 𝑡ℎ𝑟𝑒𝑠ℎ the threshold above which a day is
considered a summer day. Let s be the sorted vector of indices 𝑖 where [𝑡𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑡𝑖+1 < 𝑡ℎ𝑟𝑒𝑠ℎ], that
is, the days where the temperature crosses the threshold. Then the maximum number of consecutive tx_days
(summer days) is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑡𝑠𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indices._threshold.maximum_consecutive_wet_days(pr: DataArray, thresh: str = '1 mm/day', freq:
str = 'YS', resample_before_rl: bool = True)
→ DataArray

Consecutive wet days.

Returns the maximum number of consecutive days with precipitation above a given threshold (default: 1
mm/day).

Parameters
• pr (xarray.DataArray) – Mean daily precipitation flux.

• thresh (str) – Threshold precipitation on which to base evaluation.

• freq (str) – Resampling frequency.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xarray.DataArray, [time] – The maximum number of consecutive wet days.

880 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Let x = 𝑥0, 𝑥1, . . . , 𝑥𝑛 be a daily precipitation series and s be the sorted vector of indices 𝑖 where [𝑝𝑖 >
𝑡ℎ𝑟𝑒𝑠ℎ] ̸= [𝑝𝑖+1 > 𝑡ℎ𝑟𝑒𝑠ℎ], that is, the days where the precipitation crosses the wet day threshold. Then the
maximum number of consecutive wet days is given by:

max(d) where 𝑑𝑗 = (𝑠𝑗 − 𝑠𝑗−1)[𝑥𝑠𝑗 > 0∘𝐶]

where [𝑃] is 1 if 𝑃 is true, and 0 if false. Note that this formula does not handle sequences at the start and end
of the series, but the numerical algorithm does.

xclim.indices._threshold.rprctot(pr: DataArray, prc: DataArray, thresh: str = '1.0 mm/day', freq: str =
'YS')→ DataArray

Proportion of accumulated precipitation arising from convective processes.

Return the proportion of total accumulated precipitation due to convection on days with total precipitation ex-
ceeding a given threshold (default: 1.0 mm/day) during the given period.

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• prc (xarray.DataArray) – Daily convective precipitation.

• thresh (str) – Precipitation value over which a day is considered wet.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [dimensionless] – The proportion of the total precipitation accounted for by
convective precipitation for each period.

xclim.indices._threshold.sea_ice_area(siconc: DataArray, areacello: DataArray, thresh: str = '15 pct')
→ DataArray

Total sea ice area.

Sea ice area measures the total sea ice covered area where sea ice concentration is above a threshold, usually set
to 15%.

Parameters
• siconc (xarray.DataArray) – Sea ice concentration (area fraction).

• areacello (xarray.DataArray) – Grid cell area (usually over the ocean).

• thresh (str) – Minimum sea ice concentration for a grid cell to contribute to the sea ice
extent.

Returns
xarray.DataArray, [length]^2 – Sea ice area.

Notes

To compute sea ice area over a subregion, first mask or subset the input sea ice concentration data.

16.1. xclim package 881

xclim Documentation, Release 0.39.0

References

“What is the difference between sea ice area and extent?” - NSIDC [2008]

xclim.indices._threshold.sea_ice_extent(siconc: DataArray, areacello: DataArray, thresh: str = '15
pct')→ DataArray

Total sea ice extent.

Sea ice extent measures the ice-covered area, where a region is considered ice-covered if its sea ice concentration
is above a threshold, usually set to 15%.

Parameters
• siconc (xarray.DataArray) – Sea ice concentration (area fraction).

• areacello (xarray.DataArray) – Grid cell area.

• thresh (str) – Minimum sea ice concentration for a grid cell to contribute to the sea ice
extent.

Returns
xarray.DataArray, [length]^2 – Sea ice extent.

Notes

To compute sea ice area over a subregion, first mask or subset the input sea ice concentration data.

References

“What is the difference between sea ice area and extent?” - NSIDC [2008]

xclim.indices._threshold.snow_cover_duration(snd: DataArray, thresh: str = '2 cm', freq: str =
'AS-JUL')→ DataArray

Number of days with snow depth above a threshold.

Number of days where surface snow depth is greater or equal to given threshold (default: 2 cm).

Warning: The default freq is valid for the northern hemisphere.

Parameters
• snd (xarray.DataArray) – Surface snow thickness.

• thresh (str) – Threshold snow thickness.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Number of days where snow depth is greater than or equal to thresh-
old.

xclim.indices._threshold.tg_days_above(tas: DataArray, thresh: str = '10.0 degC', freq: str = 'YS', op: str
= '>')

Number of days with tas above a threshold.

Number of days where mean daily temperature exceeds a threshold (default: 10℃).

Parameters

882 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Number of days where tas {op} threshold.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝐺𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices._threshold.tg_days_below(tas: DataArray, thresh: str = '10.0 degC', freq: str = 'YS', op: str
= '<')

Number of days with tas below a threshold.

Number of days where mean daily temperature is below a threshold (default: 10℃).

Parameters
• tas (xarray.DataArray) – Mean daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Number of days where tas {op} threshold.

Notes

Let 𝑇𝐺𝑖𝑗 be the mean daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝐺𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices._threshold.tn_days_above(tasmin: DataArray, thresh: str = '20.0 degC', freq: str = 'YS', op:
str = '>')

Number of days with tasmin above a threshold (number of tropical nights).

Number of days where minimum daily temperature exceeds a threshold (default: 20℃).

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Number of days where tasmin {op} threshold.

16.1. xclim package 883

xclim Documentation, Release 0.39.0

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices._threshold.tn_days_below(tasmin: DataArray, thresh: str = '-10.0 degC', freq: str = 'YS', op:
str = '<')→ DataArray

Number of days with tasmin below a threshold.

Number of days where minimum daily temperature is below a threshold (default: -10℃).

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Number of days where tasmin {op} threshold.

Notes

Let 𝑇𝑁𝑖𝑗 be the minimum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices._threshold.tropical_nights(tasmin: DataArray, thresh: str = '20.0 degC', freq: str = 'YS')
→ DataArray

Tropical nights.

The number of days with minimum daily temperature above threshold (default: 20℃).

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Number of days with minimum daily temperature above threshold.

Notes

Let 𝑇𝑁𝑖𝑗 be the daily minimum temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

Warning: The tropical_nights indice is being deprecated in favour of tn_days_above with thresh=”20
degC” by default. The indicator reflects this change. This indice will be removed in a future version of
xclim.

884 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indices._threshold.tx_days_above(tasmax: DataArray, thresh: str = '25.0 degC', freq: str = 'YS', op:
str = '>')→ DataArray

Number of days with tasmax above a threshold (number of summer days).

Number of days where maximum daily temperature exceeds a threshold (default: 25℃).

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Number of days where tasmax {op} threshold (number of summer
days).

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices._threshold.tx_days_below(tasmax: DataArray, thresh: str = '25.0 degC', freq: str = 'YS', op:
str = '<')

Number of days with tmax below a threshold.

Number of days where maximum daily temperature is below a threshold (default: 25℃).

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“<”, “<=”, “lt”, “le”}) – Comparison operation. Default: “<”.

Returns
xarray.DataArray, [time] – Number of days where tasmin {op} threshold.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑋𝑖𝑗 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices._threshold.warm_day_frequency(tasmax: DataArray, thresh: str = '30 degC', freq: str =
'YS', op: str = '>')→ DataArray

Frequency of extreme warm days.

Return the number of days with maximum daily temperature exceeding threshold (default: 30℃) per period.

Parameters
• tasmax (xarray.DataArray) – Maximum daily temperature.

16.1. xclim package 885

xclim Documentation, Release 0.39.0

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Number of days with tasmax {op} threshold per period.

Notes

Let 𝑇𝑋𝑖𝑗 be the maximum daily temperature at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑇𝑁𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[]

xclim.indices._threshold.warm_night_frequency(tasmin: DataArray, thresh: str = '22 degC', freq: str =
'YS', op: str = '>')→ DataArray

Frequency of extreme warm nights.

Return the number of days with minimum daily temperature exceeding threshold (default: 22℃) per period.

Parameters
• tasmin (xarray.DataArray) – Minimum daily temperature.

• thresh (str) – Threshold temperature on which to base evaluation.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>”.

Returns
xarray.DataArray, [time] – Number of days with tasmin {op} threshold per period.

xclim.indices._threshold.wetdays(pr: DataArray, thresh: str = '1.0 mm/day', freq: str = 'YS', op: str =
'>=')→ DataArray

Wet days.

Return the total number of days during period with precipitation over threshold (default: 1.0 mm/day).

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• thresh (str) – Precipitation value over which a day is considered wet.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>=”.

Returns
xarray.DataArray, [time] – The number of wet days for each period [day].

886 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Examples

The following would compute for each grid cell of file pr.day.nc the number days with precipitation over 5 mm
at the seasonal frequency, i.e. DJF, MAM, JJA, SON, DJF, etc.:

>>> from xclim.indices import wetdays
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> wd = wetdays(pr, thresh="5 mm/day", freq="QS-DEC")

xclim.indices._threshold.wetdays_prop(pr: DataArray, thresh: str = '1.0 mm/day', freq: str = 'YS', op: str
= '>=')→ DataArray

Proportion of wet days.

Return the proportion of days during period with precipitation over threshold (default: 1.0 mm/day).

Parameters
• pr (xarray.DataArray) – Daily precipitation.

• thresh (str) – Precipitation value over which a day is considered wet.

• freq (str) – Resampling frequency.

• op ({“>”, “>=”, “gt”, “ge”}) – Comparison operation. Default: “>=”.

Returns
xarray.DataArray, [time] – The proportion of wet days for each period [1].

Examples

The following would compute for each grid cell of file pr.day.nc the proportion of days with precipitation over 5
mm at the seasonal frequency, i.e. DJF, MAM, JJA, SON, DJF, etc.:

>>> from xclim.indices import wetdays_prop
>>> pr = xr.open_dataset(path_to_pr_file).pr
>>> wd = wetdays_prop(pr, thresh="5 mm/day", freq="QS-DEC")

xclim.indices._threshold.windy_days(sfcWind: DataArray, thresh: str = '10.8 m s-1', freq: str = 'MS')→
DataArray

Windy days.

The number of days with average near-surface wind speed above threshold (default: 10.8 m/s).

Parameters
• sfcWind (xarray.DataArray) – Daily average near-surface wind speed.

• thresh (str) – Threshold average near-surface wind speed on which to base evaluation.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray, [time] – Number of days with average near-surface wind speed above thresh-
old.

16.1. xclim package 887

xclim Documentation, Release 0.39.0

Notes

Let 𝑊𝑆𝑖𝑗 be the windspeed at day 𝑖 of period 𝑗. Then counted is the number of days where:

𝑊𝑆𝑖𝑗 >= 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑚𝑠− 1]

xclim.indices._threshold.winter_storm(snd: DataArray, thresh: str = '25 cm', freq: str = 'AS-JUL')→
DataArray

Days with snowfall over threshold.

Number of days with snowfall accumulation greater or equal to threshold (default: 25 cm).

Warning: The default freq is valid for the northern hemisphere.

Parameters
• snd (xarray.DataArray) – Surface snow depth.

• thresh (str) – Threshold on snowfall accumulation require to label an event a winter storm.

• freq (str) – Resampling frequency.

Returns
xarray.DataArray – Number of days per period identified as winter storms.

Notes

Snowfall accumulation is estimated by the change in snow depth.

xclim.indices.fwi module

xclim.indices.generic module

Generic indices submodule

Helper functions for common generic actions done in the computation of indices.

xclim.indices.generic.aggregate_between_dates(data: DataArray, start: Union[DataArray,
DayOfYearStr], end: Union[DataArray, DayOfYearStr],
op: str = 'sum', freq: Optional[str] = None)→
DataArray

Aggregate the data over a period between start and end dates and apply the operator on the aggregated data.

Parameters
• data (xr.DataArray) – Data to aggregate between start and end dates.

• start (xr.DataArray or DayOfYearStr) – Start dates (as day-of-year) for the aggregation pe-
riods.

• end (xr.DataArray or DayOfYearStr) – End (as day-of-year) dates for the aggregation peri-
ods.

• op ({‘min’, ‘max’, ‘sum’, ‘mean’, ‘std’}) – Operator.

888 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• freq (str, optional) – Resampling frequency defining the periods as defined in https://pandas.
pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default: None.

Returns
xr.DataArray, [dimensionless] – Aggregated data between the start and end dates. If the end date
is before the start date, returns np.nan. If there is no start and/or end date, returns np.nan.

xclim.indices.generic.compare(left: DataArray, op: str, right: float | int | numpy.ndarray | xarray.DataArray,
constrain: Optional[Sequence[str]] = None)→ DataArray

Compare a dataArray to a threshold using given operator.

Parameters
• left (xr.DataArray) – A DatArray being evaluated against right.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• right (float, int, np.ndarray, or xr.DataArray) – A value or array-like being evaluated against
left`.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Returns
xr.DataArray – Boolean mask of the comparison.

xclim.indices.generic.count_level_crossings(low_data: DataArray, high_data: DataArray, threshold:
str, freq: str, *, op_low: str = '<', op_high: str = '>=')→
DataArray

Calculate the number of times low_data is below threshold while high_data is above threshold.

First, the threshold is transformed to the same standard_name and units as the input data, then the thresholding
is performed, and finally, the number of occurrences is counted.

Parameters
• low_data (xr.DataArray) – Variable that must be under the threshold.

• high_data (xr.DataArray) – Variable that must be above the threshold.

• threshold (str) – Quantity.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• op_low ({“<”, “<=”, “lt”, “le”}) – Comparison operator for low_data. Default: “<”.

• op_high ({“>”, “>=”, “gt”, “ge”}) – Comparison operator for high_data. Default: “>=”.

Returns
xr.DataArray

xclim.indices.generic.count_occurrences(data: DataArray, threshold: str, freq: str, op: str, constrain:
Optional[Sequence[str]] = None)→ DataArray

Calculate the number of times some condition is met.

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, then this counts the number of times data <
threshold. Finally, count the number of occurrences when condition is met.

Parameters
• data (xr.DataArray) – An array.

16.1. xclim package 889

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

• threshold (str) – Quantity.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Returns
xr.DataArray

xclim.indices.generic.cumulative_difference(data: DataArray, threshold: str, op: str, freq:
Optional[str] = None)→ DataArray

Calculate the cumulative difference below/above a given value threshold.

Parameters
• data (xr.DataArray) – Data for which to determine the cumulative difference.

• threshold (str) – The value threshold.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”}) – Logical operator. e.g. arr > thresh.

• freq (str, optional) – Resampling frequency defining the periods as defined in https://pandas.
pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling. If None, no resam-
pling is performed. Default: None.

Returns
xr.DataArray

xclim.indices.generic.default_freq(**indexer)→ str
Return the default frequency.

xclim.indices.generic.degree_days(data: DataArray, threshold: str, op: str, freq=None)→ DataArray

xclim.indices.generic.diurnal_temperature_range(low_data: DataArray, high_data: DataArray,
reducer: str, freq: str)→ DataArray

Calculate the diurnal temperature range and reduce according to a statistic.

Parameters
• low_data (xr.DataArray) – The lowest daily temperature (tasmin).

• high_data (xr.DataArray) – The highest daily temperature (tasmax).

• reducer ({‘max’, ‘min’, ‘mean’, ‘sum’}) – Reducer.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xr.DataArray

xclim.indices.generic.domain_count(da: DataArray, low: float, high: float, freq: str)→ DataArray
Count number of days where value is within low and high thresholds.

A value is counted if it is larger than low, and smaller or equal to high, i.e. in]low, high].

Parameters
• da (xr.DataArray) – Input data.

• low (float) – Minimum threshold value.

890 Chapter 16. xclim

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

• high (float) – Maximum threshold value.

• freq (str) – Resampling frequency defining the periods defined in https://pandas.pydata.org/
pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xr.DataArray – The number of days where value is within [low, high] for each period.

xclim.indices.generic.doymax(da: DataArray)→ DataArray
Return the day of year of the maximum value.

xclim.indices.generic.doymin(da: DataArray)→ DataArray
Return the day of year of the minimum value.

xclim.indices.generic.extreme_temperature_range(low_data: DataArray, high_data: DataArray, freq:
str)→ DataArray

Calculate the extreme temperature range as the maximum of daily maximum temperature minus the minimum
of daily minimum temperature.

Parameters
• low_data (xr.DataArray) – The lowest daily temperature (tasmin).

• high_data (xr.DataArray) – The highest daily temperature (tasmax).

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xr.DataArray

xclim.indices.generic.first_day_threshold_reached(data: DataArray, *, threshold: str, op: str,
after_date: DayOfYearStr, window: int = 1, freq:
str = 'YS', constrain: Optional[Sequence[str]] =
None)→ DataArray

First day of values exceeding threshold.

Returns first day of period where values reach or exceed a threshold over a given number of days, limited to a
starting calendar date.

Parameters
• data (xarray.DataArray) – Dataset being evaluated.

• threshold (str) – Threshold on which to base evaluation.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• after_date (str) – Date of the year after which to look for the first event. Should have the
format ‘%m-%d’.

• window (int) – Minimum number of days with values above threshold needed for evaluation.
Default: 1.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling. Default: “YS”.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Returns
xarray.DataArray, [dimensionless] – Day of the year when value reaches or exceeds a threshold
over a given number of days for the first time. If there is no such day, returns np.nan.

16.1. xclim package 891

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

xclim.indices.generic.first_occurrence(data: DataArray, threshold: str, freq: str, op: str, constrain:
Optional[Sequence[str]] = None)→ DataArray

Calculate the first time some condition is met.

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding is
performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, locate the first occurrence
when condition is met.

Parameters
• data (xr.DataArray) – Input data.

• threshold (str) – Quantity.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Returns
xr.DataArray

xclim.indices.generic.get_daily_events(da: DataArray, threshold: float, op: str, constrain:
Optional[Sequence[str]] = None)→ DataArray

Return a 0/1 mask when a condition is True or False.

Parameters
• da (xr.DataArray) – Input data.

• threshold (float) – Threshold value.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Notes

The function returns:

• 1 where operator(da, da_value) is True

• 0 where operator(da, da_value) is False

• nan where da is nan

Returns
xr.DataArray

xclim.indices.generic.get_op(op: str, constrain: Optional[Sequence[str]] = None)→ Callable
Get python’s comparing function according to its name of representation and validate allowed usage.

Accepted op string are keys and values of xclim.indices.generic.binary_ops.

Parameters
• op (str) – Operator.

• constrain (sequence of str, optional) – A tuple of allowed operators.

892 Chapter 16. xclim

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

xclim.indices.generic.interday_diurnal_temperature_range(low_data: DataArray, high_data:
DataArray, freq: str)→ DataArray

Calculate the average absolute day-to-day difference in diurnal temperature range.

Parameters
• low_data (xr.DataArray) – The lowest daily temperature (tasmin).

• high_data (xr.DataArray) – The highest daily temperature (tasmax).

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xr.DataArray

xclim.indices.generic.last_occurrence(data: DataArray, threshold: str, freq: str, op: str, constrain:
Optional[Sequence[str]] = None)→ DataArray

Calculate the last time some condition is met.

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding is
performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, locate the last occurrence
when condition is met.

Parameters
• data (xr.DataArray) – Input data.

• threshold (str) – Quantity.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Returns
xr.DataArray

xclim.indices.generic.select_resample_op(da: DataArray, op: str, freq: str = 'YS', **indexer)→
DataArray

Apply operation over each period that is part of the index selection.

Parameters
• da (xr.DataArray) – Input data.

• op (str {‘min’, ‘max’, ‘mean’, ‘std’, ‘var’, ‘count’, ‘sum’, ‘argmax’, ‘argmin’} or func) –
Reduce operation. Can either be a DataArray method or a function that can be applied to a
DataArray.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• indexer ({dim: indexer, }, optional) – Time attribute and values over which to subset the
array. For example, use season=’DJF’ to select winter values, month=1 to select January, or
month=[6,7,8] to select summer months. If not indexer is given, all values are considered.

Returns
xr.DataArray – The maximum value for each period.

16.1. xclim package 893

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

xclim.indices.generic.spell_length(data: DataArray, threshold: str, reducer: str, freq: str, op: str)→
DataArray

Calculate statistics on lengths of spells.

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Then the spells are determined,
and finally the statistics according to the specified reducer are calculated.

Parameters
• data (xr.DataArray) – Input data.

• threshold (str) – Quantity.

• reducer ({‘max’, ‘min’, ‘mean’, ‘sum’}) – Reducer.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

Returns
xr.DataArray

xclim.indices.generic.statistics(data: DataArray, reducer: str, freq: str)→ DataArray
Calculate a simple statistic of the data.

Parameters
• data (xr.DataArray) – Input data.

• reducer ({‘max’, ‘min’, ‘mean’, ‘sum’}) – Reducer.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xr.DataArray

xclim.indices.generic.temperature_sum(data: DataArray, op: str, threshold: str, freq: str)→ DataArray
Calculate the temperature sum above/below a threshold.

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding
is performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, the sum is calculated
for those data values that fulfill the condition after subtraction of the threshold value. If the sum is for values
below the threshold the result is multiplied by -1.

Parameters
• data (xr.DataArray) – Input data.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”}) – Logical operator. e.g. arr > thresh.

• threshold (str) – Quantity.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

Returns
xr.DataArray

894 Chapter 16. xclim

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

xclim.indices.generic.threshold_count(da: DataArray, op: str, threshold: float | int | xarray.DataArray,
freq: str, constrain: Optional[Sequence[str]] = None)→
DataArray

Count number of days where value is above or below threshold.

Parameters
• da (xr.DataArray) – Input data.

• op ({“>”, “<”, “>=”, “<=”, “gt”, “lt”, “ge”, “le”}) – Logical operator. e.g. arr > thresh.

• threshold (Union[float, int]) – Threshold value.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• constrain (sequence of str, optional) – Optionally allowed conditions.

Returns
xr.DataArray – The number of days meeting the constraints for each period.

xclim.indices.generic.thresholded_statistics(data: DataArray, op: str, threshold: str, reducer: str,
freq: str, constrain: Optional[Sequence[str]] = None)→
DataArray

Calculate a simple statistic of the data for which some condition is met.

First, the threshold is transformed to the same standard_name and units as the input data. Then the thresholding is
performed as condition(data, threshold), i.e. if condition is <, data < threshold. Finally, the statistic is calculated
for those data values that fulfill the condition.

Parameters
• data (xr.DataArray) – Input data.

• op ({“>”, “gt”, “<”, “lt”, “>=”, “ge”, “<=”, “le”, “==”, “eq”, “!=”, “ne”}) – Logical
operator. e.g. arr > thresh.

• threshold (str) – Quantity.

• reducer ({‘max’, ‘min’, ‘mean’, ‘sum’}) – Reducer.

• freq (str) – Resampling frequency defining the periods as defined in https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#resampling.

• constrain (sequence of str, optional) – Optionally allowed conditions. Default: None.

Returns
xr.DataArray

xclim.indices.helpers module

Helper functions submodule

Functions that encapsulate some geophysical logic but could be shared by many indices.

xclim.indices.helpers._gather_lat(da: DataArray)→ DataArray
Gather latitude coordinate using cf-xarray.

Parameters
da (xarray.DataArray) – CF-conformant DataArray with a “latitude” coordinate.

16.1. xclim package 895

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling

xclim Documentation, Release 0.39.0

Returns
xarray.DataArray – Latitude coordinate.

xclim.indices.helpers._gather_lon(da: DataArray)→ DataArray
Gather longitude coordinate using cf-xarray.

Parameters
da (xarray.DataArray) – CF-conformant DataArray with a “longitude” coordinate.

Returns
xarray.DataArray – Longitude coordinate.

xclim.indices.helpers.cosine_of_solar_zenith_angle(declination: DataArray, lat: DataArray, lon:
Optional[DataArray] = None, time_correction:
Optional[DataArray] = None, hours:
Optional[DataArray] = None, interval:
Optional[int] = None, stat: str = 'integral')→
DataArray

Cosine of the solar zenith angle.

The solar zenith angle is the angle between a vertical line (perpendicular to the ground) and the sun rays. This
function computes a daily statistic of its cosine : its integral from sunrise to sunset or the average over the
same period. Based on Kalogirou [2014]. In addition, it computes instantaneous values of its cosine. Based on
Di Napoli et al. [2020].

Parameters
• declination (xr.DataArray) – Solar declination. See solar_declination().

• lat (xr.DataArray) – Latitude.

• lon (xr.DataArray, optional) – Longitude. This is necessary if stat is “instant”, “interval” or
“sunlit”.

• time_correction (xr.DataArray, optional) – Time correction for solar angle. See
time_correction_for_solar_angle() This is necessary if stat is “instant”.

• hours (xr.DataArray, optional) – Watch time hours. This is necessary if stat is “instant”,
“interval” or “sunlit”.

• interval (int, optional) – Time interval between two time steps in hours This is necessary if
stat is “interval” or “sunlit”.

• stat ({‘integral’, ‘average’, ‘instant’, ‘interval’, ‘sunlit’}) – Which daily statistic to return. If
“integral”, this returns the integral of the cosine of the zenith angle from sunrise to sunset. If
“average”, the integral is divided by the “duration” from sunrise to sunset. If “instant”, this
returns the instantaneous cosine of the zenith angle. If “interval”, this returns the cosine of
the zenith angle during each interval. If “sunlit”, this returns the cosine of the zenith angle
during the sunlit period of each interval.

Returns
xr.DataArray, [rad] or [dimensionless] – Cosine of the solar zenith angle. If stat is “integral”,
dimensions can be said to be “time” as the integral is on the hour angle. For seconds, multiply
by the number of seconds in a complete day cycle (24*60*60) and divide by 2.

896 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

This code was inspired by the thermofeel and PyWBGT package.

References

Di Napoli, Hogan, and Pappenberger [2020], Kalogirou [2014]

xclim.indices.helpers.day_lengths(dates: DataArray, lat: DataArray, method: str = 'spencer')→
DataArray

Day-lengths according to latitude and day of year.

See solar_declination() for the approximation used to compute the solar declination angle. Based on Kalo-
girou [2014].

Parameters
• dates (xr.DataArray) – Daily datetime data. This function makes no sense with data of other

frequency.

• lat (xarray.DataArray) – Latitude coordinate.

• method ({‘spencer’, ‘simple’}) – Which approximation to use when computing the solar
declination angle. See solar_declination().

Returns
xarray.DataArray, [hours] – Day-lengths in hours per individual day.

References

Kalogirou [2014]

xclim.indices.helpers.distance_from_sun(dates: DataArray)→ DataArray
Sun-earth distance.

The distance from sun to earth in astronomical units.

Parameters
dates (xr.DataArray) – Series of dates and time of days.

Returns
xr.DataArray, [astronomical units] – Sun-earth distance.

References

TODO: Find a way to reference this U.S. Naval Observatory:Astronomical Almanac. Washington, D.C.: U.S.
Government Printing Office (1985).

xclim.indices.helpers.eccentricity_correction_factor(day_angle: DataArray, method='spencer')
Eccentricity correction factor of the Earth’s orbit.

The squared ratio of the mean distance Earth-Sun to the distance at a specific moment. As approximated by
Spencer [1971].

Parameters
• day_angle (xr.DataArray) – Assuming the earth makes a full circle in a year, this is the

angle covered from the beginning of the year up to that timestep. Also called the “julian day
fraction”. See datetime_to_decimal_year().

16.1. xclim package 897

xclim Documentation, Release 0.39.0

• method (str) – Which approximation to use. The default (“spencer”) uses the first five terms
of the fourier series of the eccentricity, while “simple” approximates with only the first two.

Returns
xr.DataArray, [dimensionless] – Eccentricity correction factor.

References

Perrin [1975], Spencer [1971]

xclim.indices.helpers.extraterrestrial_solar_radiation(times: DataArray, lat: DataArray,
solar_constant: str = '1361 W m-2',
method='spencer')→ DataArray

Extraterrestrial solar radiation.

This is the daily energy received on a surface parallel to the ground at the mean distance of the earth to the sun.
It neglects the effect of the atmosphere. Computation is based on Kalogirou [2014] and the default solar constant
is taken from Matthes et al. [2017].

Parameters
• times (xr.DataArray) – Daily datetime data. This function makes no sense with data of other

frequency.

• lat (xr.DataArray) – Latitude.

• solar_constant (str) – The solar constant, the energy received on earth from the sun per
surface per time.

• method ({‘spencer’, ‘simple’}) – Which method to use when computing the solar
declination and the eccentricity correction factor. See solar_declination() and
eccentricity_correction_factor().

Returns
Extraterrestrial solar radiation, [J m-2 d-1]

References

Kalogirou [2014], Matthes, Funke, Andersson, Barnard, Beer, Charbonneau, Clilverd, Dudok de Wit, Haberre-
iter, Hendry, Jackman, Kretzschmar, Kruschke, Kunze, Langematz, Marsh, Maycock, Misios, Rodger, Scaife,
Seppälä, Shangguan, Sinnhuber, Tourpali, Usoskin, van de Kamp, Verronen, and Versick [2017]

xclim.indices.helpers.solar_declination(day_angle: DataArray, method='spencer')→ DataArray
Solar declination.

The angle between the sun rays and the earth’s equator, in radians, as approximated by Spencer [1971] or assum-
ing the orbit is a circle.

Parameters
• day_angle (xr.DataArray) – Assuming the earth makes a full circle in a year, this is the

angle covered from the beginning of the year up to that timestep. Also called the “julian day
fraction”. See datetime_to_decimal_year().

• method ({‘spencer’, ‘simple’}) – Which approximation to use. The default (“spencer”) uses
the first 7 terms of the Fourier series representing the observed declination, while “simple”
assumes the orbit is a circle with a fixed obliquity and that the solstice/equinox happen at
fixed angles on the orbit (the exact calendar date changes for leap years).

898 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Returns
xr.DataArray, [rad] – Solar declination angle.

References

Spencer [1971]

xclim.indices.helpers.time_correction_for_solar_angle(day_angle: DataArray)→ DataArray
Time correction for solar angle.

Every 1° of angular rotation on earth is equal to 4 minutes of time. The time correction is needed to adjust local
watch time to solar time.

Parameters
day_angle (xr.DataArray) – Assuming the earth makes a full circle in a year, this is the angle
covered from the beginning of the year up to that timestep. Also called the “julian day fraction”.
See datetime_to_decimal_year().

Returns
xr.DataArray, [rad] – Time correction of solar angle.

References

Di Napoli, Hogan, and Pappenberger [2020]

xclim.indices.helpers.wind_speed_height_conversion(ua: DataArray, h_source: str, h_target: str,
method: str = 'log')→ DataArray

Wind speed at two meters.

Parameters
• ua (xarray.DataArray) – Wind speed at height h

• h_source (str) – Height of the input wind speed ua (e.g. h == “10 m” for a wind speed at
10 meters)

• h_target (str) – Height of the output wind speed

• method ({“log”}) – Method used to convert wind speed from one height to another

Returns
xarray.DataArray – Wind speed at height h_target

References

Allen, Pereira, Raes, and Smith [1998]

16.1. xclim package 899

xclim Documentation, Release 0.39.0

xclim.indices.run_length module

TODO: Remove default values from Run length algorithms submodule ===============================

Computation of statistics on runs of True values in boolean arrays.

xclim.indices.run_length._cumsum_reset_on_zero(da: DataArray, dim: str = 'time')→ DataArray
Compute the cumulative sum for each series of numbers separated by zero.

Parameters
• da (xr.DataArray) – Input array.

• dim (str) – Dimension name along which the cumulative sum is taken.

Returns
xr.DataArray – An array with the partial cumulative sums.

xclim.indices.run_length._rle_1d(ia)

xclim.indices.run_length.first_run(da: DataArray, window: int, dim: str = 'time', freq: Optional[str] =
None, coord: str | bool | None = False, ufunc_1dim: str | bool =
'from_context')→ DataArray

Return the index of the first item of the first run of at least a given length.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive run to accumulate values. When equal to
1, an optimized version of the algorithm is used.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• freq (str) – Resampling frequency.

• coord (Optional[str]) – If not False, the function returns values along dim instead of indexes.
If dim has a datetime dtype, coord can also be a str of the name of the DateTimeAccessor
object to use (ex: ‘dayofyear’).

• ufunc_1dim (Union[str, bool]) – Use the 1d ‘ufunc’ version of this function : default (auto)
will attempt to select optimal usage based on number of data points. Using 1D_ufunc=True
is typically more efficient for DataArray with a small number of grid points. Ignored when
window=1. It can be modified globally through the “run_length_ufunc” global option.

Returns
xr.DataArray – Index (or coordinate if coord is not False) of first item in first valid run. Returns
np.nan if there are no valid runs.

xclim.indices.run_length.first_run_1d(arr: Sequence[int | float], window: int)→ int | np.nan
Return the index of the first item of a run of at least a given length.

Parameters
• arr (Sequence[Union[int, float]]) – Input array.

• window (int) – Minimum duration of consecutive run to accumulate values.

Returns
int or np.nan – Index of first item in first valid run. Returns np.nan if there are no valid runs.

900 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indices.run_length.first_run_after_date(da: DataArray, window: int, date:
Optional[DayOfYearStr] = '07-01', dim: str = 'time',
coord: bool | str | None = 'dayofyear')→ DataArray

Return the index of the first item of the first run after a given date.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive run to accumulate values.

• date (DayOfYearStr) – The date after which to look for the run.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• coord (Optional[Union[bool, str]]) – If not False, the function returns values along dim
instead of indexes. If dim has a datetime dtype, coord can also be a str of the name of the
DateTimeAccessor object to use (ex: ‘dayofyear’).

Returns
xr.DataArray – Index (or coordinate if coord is not False) of first item in the first valid run.
Returns np.nan if there are no valid runs.

xclim.indices.run_length.first_run_ufunc(x: Union[DataArray, Sequence[bool]], window: int, dim: str)
→ DataArray

Dask-parallel version of first_run_1d, ie: the first entry in array of consecutive true values.

Parameters
• x (Union[xr.DataArray, Sequence[bool]]) – Input array (bool).

• window (int) – Minimum run length.

• dim (str) – The dimension along which the runs are found.

Returns
xr.DataArray – A function operating along the time dimension of a dask-array.

xclim.indices.run_length.index_of_date(time: DataArray, date: Optional[Union[DateStr, DayOfYearStr]],
max_idxs: Optional[int] = None, default: int = 0)→ ndarray

Get the index of a date in a time array.

Parameters
• time (xr.DataArray) – An array of datetime values, any calendar.

• date (DayOfYearStr or DateStr, optional) – A string in the “yyyy-mm-dd” or “mm-dd” for-
mat. If None, returns default.

• max_idxs (int, optional) – Maximum number of returned indexes.

• default (int) – Index to return if date is None.

Raises
ValueError – If there are most instances of date in time than max_idxs.

Returns
numpy.ndarray – 1D array of integers, indexes of date in time.

xclim.indices.run_length.keep_longest_run(da: DataArray, dim: str = 'time', freq: Optional[str] = None)
→ DataArray

Keep the longest run along a dimension.

Parameters

16.1. xclim package 901

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

• da (xr.DataArray) – Boolean array.

• dim (str) – Dimension along which to check for the longest run.

• freq (str) – Resampling frequency.

Returns
xr.DataArray, [bool] – Boolean array similar to da but with only one run, the (first) longest.

xclim.indices.run_length.last_run(da: DataArray, window: int, dim: str = 'time', freq: Optional[str] =
None, coord: str | bool | None = False, ufunc_1dim: str | bool =
'from_context')→ DataArray

Return the index of the last item of the last run of at least a given length.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive run to accumulate values. When equal to
1, an optimized version of the algorithm is used.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• freq (str) – Resampling frequency.

• coord (Optional[str]) – If not False, the function returns values along dim instead of indexes.
If dim has a datetime dtype, coord can also be a str of the name of the DateTimeAccessor
object to use (ex: ‘dayofyear’).

• ufunc_1dim (Union[str, bool]) – Use the 1d ‘ufunc’ version of this function : default (auto)
will attempt to select optimal usage based on number of data points. Using 1D_ufunc=True
is typically more efficient for a DataArray with a small number of grid points. Ignored when
window=1. It can be modified globally through the “run_length_ufunc” global option.

Returns
xr.DataArray – Index (or coordinate if coord is not False) of last item in last valid run. Returns
np.nan if there are no valid runs.

xclim.indices.run_length.last_run_before_date(da: DataArray, window: int, date: DayOfYearStr =
'07-01', dim: str = 'time', coord: bool | str | None =
'dayofyear')→ DataArray

Return the index of the last item of the last run before a given date.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive run to accumulate values.

• date (DayOfYearStr) – The date before which to look for the last event.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• coord (Optional[Union[bool, str]]) – If not False, the function returns values along dim
instead of indexes. If dim has a datetime dtype, coord can also be a str of the name of the
DateTimeAccessor object to use (ex: ‘dayofyear’).

Returns
xr.DataArray – Index (or coordinate if coord is not False) of last item in last valid run. Returns
np.nan if there are no valid runs.

902 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indices.run_length.lazy_indexing(da: DataArray, index: DataArray, dim: Optional[str] = None)
→ DataArray

Get values of da at indices index in a NaN-aware and lazy manner.

Parameters
• da (xr.DataArray) – Input array. If not 1D, dim must be given and must not appear in index.

• index (xr.DataArray) – N-d integer indices, if da is not 1D, all dimensions of index must be
in da

• dim (str, optional) – Dimension along which to index, unused if da is 1D, should not be
present in index.

Returns
xr.DataArray – Values of da at indices index.

xclim.indices.run_length.longest_run(da: DataArray, dim: str = 'time', freq: Optional[str] = None,
ufunc_1dim: str | bool = 'from_context', index: str = 'first')→
DataArray

Return the length of the longest consecutive run of True values.

Parameters
• da (xr.DataArray) – N-dimensional array (boolean).

• dim (str) – Dimension along which to calculate consecutive run; Default: ‘time’.

• freq (str) – Resampling frequency.

• ufunc_1dim (Union[str, bool]) – Use the 1d ‘ufunc’ version of this function : default (auto)
will attempt to select optimal usage based on number of data points. Using 1D_ufunc=True is
typically more efficient for DataArray with a small number of grid points. It can be modified
globally through the “run_length_ufunc” global option.

• index ({‘first’, ‘last’}) – If ‘first’, the run length is indexed with the first element in the run.
If ‘last’, with the last element in the run.

Returns
xr.DataArray, [int] – Length of the longest run of True values along dimension (int).

xclim.indices.run_length.npts_opt = 9000

Arrays with less than this number of data points per slice will trigger the use of the ufunc version of run lengths
algorithms.

xclim.indices.run_length.resample_and_rl(da: DataArray, resample_before_rl: bool, compute, *args,
freq: str, dim: str = 'time', **kwargs)→ xarray.DataArray |
xarray.Dataset

Wrap run length algorithms to control if resampling occurs before or after the algorithms.

If resample_before_rl is ‘from_context’, the parameter is read from xclim’s global (or context) options.

Parameters
• da (xr.DataArray) – N-dimensional array (boolean).

• resample_before_rl (bool) – Determines whether if input arrays of runs da should be sep-
arated in period before or after the run length algorithms are applied

• compute – Run length function to apply

• args – Positional arguments needed in compute

• dim (str) – The dimension along which to find runs.

16.1. xclim package 903

xclim Documentation, Release 0.39.0

• freq (str) – Resampling frequency.

• kwargs – Keyword arguments needed in compute

Returns
xr.DataArray – Output of compute resampled according to frequency {freq}.

xclim.indices.run_length.rle(da: DataArray, dim: str = 'time', index: str = 'first')→ DataArray
Generate basic run length function.

Parameters
• da (xr.DataArray) – Input array.

• dim (str) – Dimension name.

• index ({‘first’, ‘last’}) – If ‘first’ (default), the run length is indexed with the first element in
the run. If ‘last’, with the last element in the run.

Returns
xr.DataArray – Values are 0 where da is False (out of runs).

xclim.indices.run_length.rle_1d(arr: Union[int, float, bool, Sequence[int | float | bool]])→
tuple[numpy.array, numpy.array, numpy.array]

Return the length, starting position and value of consecutive identical values.

Parameters
arr (Sequence[Union[int, float, bool]]) – Array of values to be parsed.

Returns
• values (np.array) – The values taken by arr over each run.

• run lengths (np.array) – The length of each run.

• start position (np.array) – The starting index of each run.

Examples

>>> from xclim.indices.run_length import rle_1d
>>> a = [1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3]
>>> rle_1d(a)
(array([1, 2, 3]), array([2, 4, 6]), array([0, 2, 6]))

xclim.indices.run_length.rle_statistics(da: DataArray, reducer: str, window: int, dim: str = 'time', freq:
Optional[str] = None, ufunc_1dim: str | bool = 'from_context',
index: str = 'first')→ DataArray

Return the length of consecutive run of True values, according to a reducing operator.

Parameters
• da (xr.DataArray) – N-dimensional array (boolean).

• reducer (str) – Name of the reducing function.

• window (int) – Minimal length of consecutive runs to be included in the statistics.

• dim (str) – Dimension along which to calculate consecutive run; Default: ‘time’.

• freq (str) – Resampling frequency.

904 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• ufunc_1dim (Union[str, bool]) – Use the 1d ‘ufunc’ version of this function : default (auto)
will attempt to select optimal usage based on number of data points. Using 1D_ufunc=True is
typically more efficient for DataArray with a small number of grid points. It can be modified
globally through the “run_length_ufunc” global option.

• index ({‘first’, ‘last’}) – If ‘first’ (default), the run length is indexed with the first element in
the run. If ‘last’, with the last element in the run.

Returns
xr.DataArray, [int] – Length of runs of True values along dimension, according to the reducing
function (float) If there are no runs (but the data is valid), returns 0.

xclim.indices.run_length.run_bounds(mask: DataArray, dim: str = 'time', coord: bool | str = True)
Return the start and end dates of boolean runs along a dimension.

Parameters
• mask (xr.DataArray) – Boolean array.

• dim (str) – Dimension along which to look for runs.

• coord (bool or str) – If True, return values of the coordinate, if a string, returns values from
dim.dt.<coord>. If False, return indexes.

Returns
xr.DataArray – With dim reduced to “events” and “bounds”. The events dim is as long as needed,
padded with NaN or NaT.

xclim.indices.run_length.run_end_after_date(da: DataArray, window: int, date: DayOfYearStr = '07-01',
dim: str = 'time', coord: bool | str | None = 'dayofyear')→
DataArray

Return the index of the first item after the end of a run after a given date.

The run must begin before the date.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive run to accumulate values.

• date (str) – The date after which to look for the end of a run.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• coord (Optional[Union[bool, str]]) – If not False, the function returns values along dim
instead of indexes. If dim has a datetime dtype, coord can also be a str of the name of the
DateTimeAccessor object to use (ex: ‘dayofyear’).

Returns
xr.DataArray – Index (or coordinate if coord is not False) of last item in last valid run. Returns
np.nan if there are no valid runs.

xclim.indices.run_length.season(da: DataArray, window: int, date: Optional[DayOfYearStr] = None, dim:
str = 'time', coord: str | bool | None = False)→ Dataset

Return the bounds of a season (along dim).

A “season” is a run of True values that may include breaks under a given length (window). The start is computed
as the first run of window True values, then end as the first subsequent run of window False values. If a date is
passed, it must be included in the season.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

16.1. xclim package 905

xclim Documentation, Release 0.39.0

• window (int) – Minimum duration of consecutive values to start and end the season.

• date (DayOfYearStr, optional) – The date (in MM-DD format) that a run must include to be
considered valid.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• coord (Optional[str]) – If not False, the function returns values along dim instead of indexes.
If dim has a datetime dtype, coord can also be a str of the name of the DateTimeAccessor
object to use (ex: ‘dayofyear’).

Returns
xr.Dataset – “dim” is reduced to “season_bnds” with 2 elements : season start and season end,
both indices of da[dim].

Notes

The run can include holes of False or NaN values, so long as they do not exceed the window size.

If a date is given, the season start and end are forced to be on each side of this date. This means that even if the
“real” season has been over for a long time, this is the date used in the length calculation. Example : Length of
the “warm season”, where T > 25°C, with date = 1st August. Let’s say the temperature is over 25 for all June,
but July and august have very cold temperatures. Instead of returning 30 days (June), the function will return 61
days (July + June).

xclim.indices.run_length.season_length(da: DataArray, window: int, date: Optional[DayOfYearStr] =
None, dim: str = 'time')→ DataArray

Return the length of the longest semi-consecutive run of True values (optionally including a given date).

A “season” is a run of True values that may include breaks under a given length (window). The start is computed
as the first run of window True values, then end as the first subsequent run of window False values. If a date is
passed, it must be included in the season.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum duration of consecutive values to start and end the season.

• date (DayOfYearStr, optional) – The date (in MM-DD format) that a run must include to be
considered valid.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

Returns
xr.DataArray, [int] – Length of the longest run of True values along a given dimension (inclusive
of a given date) without breaks longer than a given length.

Notes

The run can include holes of False or NaN values, so long as they do not exceed the window size.

If a date is given, the season start and end are forced to be on each side of this date. This means that even if the
“real” season has been over for a long time, this is the date used in the length calculation. Example : Length of
the “warm season”, where T > 25°C, with date = 1st August. Let’s say the temperature is over 25 for all June,
but July and august have very cold temperatures. Instead of returning 30 days (June), the function will return 61
days (July + June).

906 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.indices.run_length.statistics_run_1d(arr: Sequence[bool], reducer: str, window: int)→ int
Return statistics on lengths of run of identical values.

Parameters
• arr (Sequence[bool]) – Input array (bool)

• reducer ({‘mean’, ‘sum’, ‘min’, ‘max’, ‘std’}) – Reducing function name.

• window (int) – Minimal length of runs to be included in the statistics

Returns
int – Statistics on length of runs.

xclim.indices.run_length.statistics_run_ufunc(x: Union[DataArray, Sequence[bool]], reducer: str,
window: int, dim: str = 'time')→ DataArray

Dask-parallel version of statistics_run_1d, ie: the {reducer} number of consecutive true values in array.

Parameters
• x (Sequence[bool]) – Input array (bool)

• reducer ({‘min’, ‘max’, ‘mean’, ‘sum’, ‘std’}) – Reducing function name.

• window (int) – Minimal length of runs.

• dim (str) – The dimension along which the runs are found.

Returns
xr.DataArray – A function operating along the time dimension of a dask-array.

xclim.indices.run_length.suspicious_run(arr: DataArray, dim: str = 'time', window: int = 10, op: str =
'>', thresh: Optional[float] = None)→ DataArray

Return True where the array contains has runs of identical values, vectorized version.

In opposition to other run length functions, here the output has the same shape as the input.

Parameters
• arr (xr.DataArray) – Array of values to be parsed.

• dim (str) – Dimension along which to check for runs (default: “time”).

• window (int) – Minimum run length.

• op ({“>”, “>=”, “==”, “<”, “<=”, “eq”, “gt”, “lt”, “gteq”, “lteq”}) – Operator for
threshold comparison, defaults to “>”.

• thresh (float, optional) – Threshold above which values are checked for identical values.

Returns
xarray.DataArray

xclim.indices.run_length.suspicious_run_1d(arr: ndarray, window: int = 10, op: str = '>', thresh:
Optional[float] = None)→ ndarray

Return True where the array contains a run of identical values.

Parameters
• arr (numpy.ndarray) – Array of values to be parsed.

• window (int) – Minimum run length.

• op ({“>”, “>=”, “==”, “<”, “<=”, “eq”, “gt”, “lt”, “gteq”, “lteq”, “ge”, “le”}) –
Operator for threshold comparison. Defaults to “>”.

16.1. xclim package 907

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

• thresh (float, optional) – Threshold compared against which values are checked for identical
values.

Returns
numpy.ndarray – Whether or not the data points are part of a run of identical values.

xclim.indices.run_length.use_ufunc(ufunc_1dim: bool | str, da: DataArray, dim: str = 'time', freq:
Optional[str] = None, index: str = 'first')→ bool

Return whether the ufunc version of run length algorithms should be used with this DataArray or not.

If ufunc_1dim is ‘from_context’, the parameter is read from xclim’s global (or context) options. If it is ‘auto’,
this returns False for dask-backed array and for arrays with more than npts_opt points per slice along dim.

Parameters
• ufunc_1dim ({‘from_context’, ‘auto’, True, False}) – The method for handling the ufunc

parameters.

• da (xr.DataArray) – Input array.

• dim (str) – The dimension along which to find runs.

• index ({‘first’, ‘last’}) – If ‘first’ (default), the run length is indexed with the first element in
the run. If ‘last’, with the last element in the run.

Returns
bool – If ufunc_1dim is “auto”, returns True if the array is on dask or too large. Otherwise,
returns ufunc_1dim.

xclim.indices.run_length.windowed_run_count(da: DataArray, window: int, dim: str = 'time', freq:
Optional[str] = None, ufunc_1dim: str | bool =
'from_context', index: str = 'first')→ DataArray

Return the number of consecutive true values in array for runs at least as long as given duration.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum run length. When equal to 1, an optimized version of the algorithm
is used.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• freq (str) – Resampling frequency.

• ufunc_1dim (Union[str, bool]) – Use the 1d ‘ufunc’ version of this function : default (auto)
will attempt to select optimal usage based on number of data points. Using 1D_ufunc=True
is typically more efficient for DataArray with a small number of grid points. Ignored when
window=1. It can be modified globally through the “run_length_ufunc” global option.

• index ({‘first’, ‘last’}) – If ‘first’, the run length is indexed with the first element in the run.
If ‘last’, with the last element in the run.

Returns
xr.DataArray, [int] – Total number of True values part of a consecutive runs of at least window
long.

xclim.indices.run_length.windowed_run_count_1d(arr: Sequence[bool], window: int)→ int
Return the number of consecutive true values in array for runs at least as long as given duration.

Parameters
• arr (Sequence[bool]) – Input array (bool).

908 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• window (int) – Minimum duration of consecutive run to accumulate values.

Returns
int – Total number of true values part of a consecutive run at least window long.

xclim.indices.run_length.windowed_run_count_ufunc(x: Union[DataArray, Sequence[bool]], window:
int, dim: str)→ DataArray

Dask-parallel version of windowed_run_count_1d, ie: the number of consecutive true values in array for runs at
least as long as given duration.

Parameters
• x (Sequence[bool]) – Input array (bool).

• window (int) – Minimum duration of consecutive run to accumulate values.

• dim (str) – Dimension along which to calculate windowed run.

Returns
xr.DataArray – A function operating along the time dimension of a dask-array.

xclim.indices.run_length.windowed_run_events(da: DataArray, window: int, dim: str = 'time', freq:
Optional[str] = None, ufunc_1dim: str | bool =
'from_context', index: str = 'first')→ DataArray

Return the number of runs of a minimum length.

Parameters
• da (xr.DataArray) – Input N-dimensional DataArray (boolean).

• window (int) – Minimum run length. When equal to 1, an optimized version of the algorithm
is used.

• dim (str) – Dimension along which to calculate consecutive run (default: ‘time’).

• freq (str) – Resampling frequency.

• ufunc_1dim (Union[str, bool]) – Use the 1d ‘ufunc’ version of this function : default (auto)
will attempt to select optimal usage based on number of data points. Using 1D_ufunc=True
is typically more efficient for DataArray with a small number of grid points. Ignored when
window=1. It can be modified globally through the “run_length_ufunc” global option.

• index ({‘first’, ‘last’}) – If ‘first’, the run length is indexed with the first element in the run.
If ‘last’, with the last element in the run.

Returns
xr.DataArray, [int] – Number of distinct runs of a minimum length (int).

xclim.indices.run_length.windowed_run_events_1d(arr: Sequence[bool], window: int)→ DataArray
Return the number of runs of a minimum length.

Parameters
• arr (Sequence[bool]) – Input array (bool).

• window (int) – Minimum run length.

Returns
xr.DataArray, [int] – Number of distinct runs of a minimum length.

xclim.indices.run_length.windowed_run_events_ufunc(x: Union[DataArray, Sequence[bool]], window:
int, dim: str)→ DataArray

Dask-parallel version of windowed_run_events_1d, ie: the number of runs at least as long as given duration.

16.1. xclim package 909

xclim Documentation, Release 0.39.0

Parameters
• x (Sequence[bool]) – Input array (bool).

• window (int) – Minimum run length.

• dim (str) – Dimension along which to calculate windowed run.

Returns
xr.DataArray – A function operating along the time dimension of a dask-array.

xclim.indices.stats module

Statistic-related functions. See the frequency_analysis notebook for examples.

xclim.indices.stats._fit_start(x, dist, **fitkwargs)→ tuple[tuple, dict]
Return initial values for distribution parameters.

Providing the ML fit method initial values can help the optimizer find the global optimum.

Parameters
• x (array-like) – Input data.

• dist (str) – Name of the univariate distribution, e.g. beta, expon, genextreme, gamma, gum-
bel_r, lognorm, norm. (see :py:mod:scipy.stats). Only genextreme and weibull_exp distribu-
tions are supported.

• **fitkwargs – Kwargs passed to fit.

Returns
tuple, dict

References

Cohen and Whitten [2019], Coles [2001]

xclim.indices.stats.dist_method(function: str, fit_params: DataArray, arg: Optional[DataArray] = None,
**kwargs)→ DataArray

Vectorized statistical function for given argument on given distribution initialized with params.

Methods where “*args” are the distribution parameters can be wrapped, except those that return new dimensions
(Ex: ‘rvs’ with size != 1, ‘stats’ with more than one moment, ‘interval’, ‘support’)

Parameters
• function (str) – The name of the function to call.

• fit_params (xr.DataArray) – Distribution parameters are along dparams, in the same order
as given by fit(). Must have a scipy_dist attribute with the name of the distribution fitted.

• arg (array_like, optional) – The argument for the requested function.

• **kwargs – Other parameters to pass to the function call.

Returns
array_like – Same shape as arg.

See also:

scipy
scipy.stats.rv_continuous : for all available functions and their arguments.

910 Chapter 16. xclim

https://docs.scipy.org/doc/scipy/index.html#module-scipy

xclim Documentation, Release 0.39.0

xclim.indices.stats.fa(da: DataArray, t: Union[int, Sequence], dist: str = 'norm', mode: str = 'max')→
DataArray

Return the value corresponding to the given return period.

Parameters
• da (xr.DataArray) – Maximized/minimized input data with a time dimension.

• t (Union[int, Sequence]) – Return period. The period depends on the resolution of the input
data. If the input array’s resolution is yearly, then the return period is in years.

• dist (str) – Name of the univariate distribution, such as beta, expon, genextreme, gamma,
gumbel_r, lognorm, norm

• mode ({‘min’, ‘max}) – Whether we are looking for a probability of exceedance (max) or a
probability of non-exceedance (min).

Returns
xarray.DataArray – An array of values with a 1/t probability of exceedance (if mode==’max’).

See also:

scipy.stats
For descriptions of univariate distribution types.

xclim.indices.stats.fit(da: DataArray, dist: str = 'norm', method: str = 'ML', dim: str = 'time', **fitkwargs)
→ DataArray

Fit an array to a univariate distribution along the time dimension.

Parameters
• da (xr.DataArray) – Time series to be fitted along the time dimension.

• dist (str) – Name of the univariate distribution, such as beta, expon, genextreme, gamma,
gumbel_r, lognorm, norm (see :py:mod:scipy.stats for full list). If the PWM method is used,
only the following distributions are currently supported: ‘expon’, ‘gamma’, ‘genextreme’,
‘genpareto’, ‘gumbel_r’, ‘pearson3’, ‘weibull_min’.

• method ({“ML”, “PWM”, “APP”}) – Fitting method, either maximum likelihood (ML),
probability weighted moments (PWM), also called L-Moments, or approximate method
(APP) The PWM method is usually more robust to outliers.

• dim (str) – The dimension upon which to perform the indexing (default: “time”).

• **fitkwargs – Other arguments passed directly to _fitstart() and to the distribution’s fit.

Returns
xr.DataArray – An array of fitted distribution parameters.

Notes

Coordinates for which all values are NaNs will be dropped before fitting the distribution. If the array still contains
NaNs, the distribution parameters will be returned as NaNs.

xclim.indices.stats.frequency_analysis(da: DataArray, mode: str, t: Union[int, Sequence[int]], dist: str,
window: int = 1, freq: Optional[str] = None, **indexer)→
DataArray

Return the value corresponding to a return period.

Parameters

16.1. xclim package 911

https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

xclim Documentation, Release 0.39.0

• da (xarray.DataArray) – Input data.

• mode ({‘min’, ‘max’}) – Whether we are looking for a probability of exceedance (high) or a
probability of non-exceedance (low).

• t (int or sequence) – Return period. The period depends on the resolution of the input data.
If the input array’s resolution is yearly, then the return period is in years.

• dist (str) – Name of the univariate distribution, e.g. beta, expon, genextreme, gamma, gum-
bel_r, lognorm, norm.

• window (int) – Averaging window length (days).

• freq (str) – Resampling frequency. If None, the frequency is assumed to be ‘YS’ unless the
indexer is season=’DJF’, in which case freq would be set to AS-DEC.

• indexer ({dim: indexer, }, optional) – Time attribute and values over which to subset the
array. For example, use season=’DJF’ to select winter values, month=1 to select January, or
month=[6,7,8] to select summer months. If not indexer is given, all values are considered.

Returns
xarray.DataArray – An array of values with a 1/t probability of exceedance or non-exceedance
when mode is high or low respectively.

See also:

scipy.stats
For descriptions of univariate distribution types.

xclim.indices.stats.get_dist(dist)
Return a distribution object from scipy.stats.

xclim.indices.stats.get_lm3_dist(dist)
Return a distribution object from lmoments3.distr.

xclim.indices.stats.parametric_cdf(p: DataArray, v: Union[float, Sequence])→ DataArray
Return the cumulative distribution function corresponding to the given distribution parameters and value.

Parameters
• p (xr.DataArray) – Distribution parameters returned by the fit function. The array should

have dimension dparams storing the distribution parameters, and attribute scipy_dist, storing
the name of the distribution.

• v (Union[float, Sequence]) – Value to compute the CDF.

Returns
xarray.DataArray – An array of parametric CDF values estimated from the distribution param-
eters.

xclim.indices.stats.parametric_quantile(p: DataArray, q: Union[int, Sequence])→ DataArray
Return the value corresponding to the given distribution parameters and quantile.

Parameters
• p (xr.DataArray) – Distribution parameters returned by the fit function. The array should

have dimension dparams storing the distribution parameters, and attribute scipy_dist, storing
the name of the distribution.

• q (Union[float, Sequence]) – Quantile to compute, which must be between 0 and 1, inclusive.

Returns
xarray.DataArray – An array of parametric quantiles estimated from the distribution parameters.

912 Chapter 16. xclim

https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

xclim Documentation, Release 0.39.0

Notes

When all quantiles are above 0.5, the isf method is used instead of ppf because accuracy is sometimes better.

xclim.sdba package

Statistical Downscaling and Bias Adjustment

The xclim.sdba submodule provides bias-adjustment methods and will eventually provide statistical downscaling algo-
rithms. Almost all adjustment algorithms conform to the train - adjust scheme, formalized within TrainAdjust classes.
Given a reference time series (ref), historical simulations (hist) and simulations to be adjusted (sim), any bias-adjustment
method would be applied by first estimating the adjustment factors between the historical simulation and the observation
series, and then applying these factors to sim, which could be a future simulation:

Create the adjustment object by training it with reference and model data, plus␣
→˓certain arguments
Adj = Adjustment.train(ref, hist, group="time.month")
Get a scenario by applying the adjustment to a simulated timeseries.
scen = Adj.adjust(sim, interp="linear")
Adj.ds.af # adjustment factors.

The group argument allows adjustment factors to be estimated independently for different periods: the full time series,
months, seasons or day of the year. The interp argument then allows for interpolation between these adjustment factors
to avoid discontinuities in the bias-adjusted series (only applicable for monthly grouping).

Warning: If grouping according to the day of the year is needed, the xclim.core.calendar submodule contains
useful tools to manage the different calendars that the input data can have. By default, if 2 different calendars are
passed, the adjustment factors will always be interpolated to the largest range of day of the years but this can lead
to strange values, so we recommend converting the data beforehand to a common calendar.

The same interpolation principle is also used for quantiles. Indeed, for methods extracting adjustment factors by quan-
tile, interpolation is also done between quantiles. This can help reduce discontinuities in the adjusted time series, and
possibly reduce the number of quantile bins used.

Modular Approach

This module adopts a modular approach instead of implementing published and named methods directly. A generic
bias adjustment process is laid out as follows:

• preprocessing on ref, hist and sim (using methods in xclim.sdba.processing or xclim.sdba.
detrending)

• creating and training the adjustment object Adj = Adjustment.train(obs, sim, **kwargs) (from
xclim.sdba.adjustment)

• adjustment scen = Adj.adjust(sim, **kwargs)

• post-processing on scen (for example: re-trending)

The train-adjust approach allows to inspect the trained adjustment object. The training information is stored in the
underlying Adj.ds dataset and always has a af variable with the adjustment factors. Its layout and the other available
variables vary between the different algorithm, refer to Adjustment methods.

16.1. xclim package 913

xclim Documentation, Release 0.39.0

Parameters needed by the training and the adjustment are saved to the Adj.ds dataset as a adj_params attribute. Other
parameters, those only needed by the adjustment are passed in the adjust call and written to the history attribute in the
output scenario DataArray.

Grouping

For basic time period grouping (months, day of year, season), passing a string to the methods needing it is sufficient.
Most methods acting on grouped data also accept a window int argument to pad the groups with data from adjacent
ones. Units of window are the sampling frequency of the main grouping dimension (usually time). For more complex
grouping, one can pass an instance of xclim.sdba.base.Grouper directly.

Experimental wrap of SBCK

The SBCK python package implements various bias-adjustment methods, with an emphasis on multivariate methods
and with a care for performance. If the package is correctly installed alongside xclim, the methods will be wrapped
into xclim.sdba.adjustment.Adjust classes (names beginning with SBCK_) with a minimal overhead so that they
can be parallelized with dask and accept xarray objects. For now, these experimental classes can’t use the train-adjust
approach, instead they only provide one method, adjust(ref, hist, sim, multi_dim=None, **kwargs)which
performs all steps : initialization of the SBCK object, training (fit) and adjusting (predict). All SBCK wrappers accept
a multi_dim argument for specifying the name of the “multivariate” dimension. This wrapping is still experimental
and some bugs or inconsistencies might exist. To see how one can install that package, see Extra dependencies.

Notes for Developers

To be scalable and performant, the sdba module makes use of the special decorators
:py:func`xclim.sdba.base.map_blocks` and xclim.sdba.base.map_groups(). However, they have the incon-
venient that functions wrapped by them are unable to manage xarray attributes (including units) correctly and their
signatures are sometime wrong and often unclear. For this reason, the module is often divided in two parts : the
(decorated) compute functions in a “private” file (ex: _adjustment.py) and the user-facing functions or objects in
corresponding public file (ex: adjustment.py). See the sdba-advanced notebook for more info on the reasons for
this move.

Other restrictions : map_blocks will remove any “auxiliary” coordinates before calling the wrapped function and will
add them back on exit.

Submodules

xclim.sdba._adjustment module

Adjustment Algorithms

This file defines the different steps, to be wrapped into the Adjustment objects.

xclim.sdba._adjustment._extremes_train_1d(ref, hist, ref_params, *, q_thresh, cluster_thresh, dist, N)

Train for method ExtremeValues, only for 1D input along time.

xclim.sdba._adjustment._fit_cluster_and_cdf(data, thresh, dist, cluster_thresh)
Fit 1D cluster maximums and immediately compute CDF.

914 Chapter 16. xclim

https://github.com/yrobink/SBCK

xclim Documentation, Release 0.39.0

xclim.sdba._adjustment._fit_on_cluster(data, thresh, dist, cluster_thresh)
Extract clusters on 1D data and fit “dist” on the maximums.

xclim.sdba._adjustment.npdf_transform(ds: Dataset, **kwargs)→ Dataset
N-pdf transform : Iterative univariate adjustment in random rotated spaces.

Parameters
• ds (xr.Dataset) –

Dataset variables:
ref : Reference multivariate timeseries hist : simulated timeseries on the reference pe-
riod sim : Simulated timeseries on the projected period. rot_matrices : Random rotation
matrices.

• **kwargs – pts_dim : multivariate dimension name base : Adjustment class base_kws :
Kwargs for initialising the adjustment object adj_kws : Kwargs of the adjust call n_escore :
Number of elements to include in the e_score test (0 for all, < 0 to skip)

Returns
xr.Dataset – Dataset with scenh, scens and escores DataArrays, where scenh and scens are hist
and sim respectively after adjustment according to ref. If n_escore is negative, escores will be
filled with NaNs.

xclim.sdba._processing module

Compute functions of processing.py.

Here are defined the functions wrapped by map_blocks or map_groups, user-facing, metadata-handling functions
should be defined in processing.py.

xclim.sdba.adjustment module

Adjustment Methods

class xclim.sdba.adjustment.BaseAdjustment(*args, _trained=False, **kwargs)
Bases: ParametrizableWithDataset

Base class for adjustment objects.

Children classes should implement the train and / or the adjust method.

This base class defined the basic input and output checks. It should only be used for a real adjustment if neither
TrainAdjust nor Adjust fit the algorithm.

_adjust(sim, *args, **kwargs)

_allow_diff_calendars = True

_attribute = '_xclim_adjustment'

classmethod _check_inputs(*inputs, group)
Raise an error if there are chunks along the main dimension.

Also raises if BaseAdjustment._allow_diff_calendars is False and calendars differ.

16.1. xclim package 915

xclim Documentation, Release 0.39.0

classmethod _harmonize_units(*inputs, target: Optional[str] = None)
Convert all inputs to the same units.

If the target unit is not given, the units of the first input are used.

Returns the converted inputs and the target units.

classmethod _train(ref, hist, **kwargs)

class xclim.sdba.adjustment.DetrendedQuantileMapping(*args, _trained=False, **kwargs)
Bases: TrainAdjust

Detrended Quantile Mapping bias-adjustment.

The algorithm follows these steps, 1-3 being the ‘train’ and 4-6, the ‘adjust’ steps.

1. A scaling factor that would make the mean of hist match the mean of ref is computed.

2. ref and hist are normalized by removing the “dayofyear” mean.

3. Adjustment factors are computed between the quantiles of the normalized ref and hist.

4. sim is corrected by the scaling factor, and either normalized by “dayofyear” and detrended group-wise or
directly detrended per “dayofyear”, using a linear fit (modifiable).

5. Values of detrended sim are matched to the corresponding quantiles of normalized hist and corrected ac-
cordingly.

6. The trend is put back on the result.

𝐹−1
𝑟𝑒𝑓

{︂
𝐹ℎ𝑖𝑠𝑡

[︂
ℎ𝑖𝑠𝑡 · 𝑠𝑖𝑚

𝑠𝑖𝑚

]︂}︂
𝑠𝑖𝑚

ℎ𝑖𝑠𝑡

where 𝐹 is the cumulative distribution function (CDF) and 𝑥𝑦𝑧 is the linear trend of the data. This equation is
valid for multiplicative adjustment. Based on the DQM method of [Cannon et al., 2015].

Parameters
• Train step
• nquantiles (int or 1d array of floats) – The number of quantiles to use. See
equally_spaced_nodes(). An array of quantiles [0, 1] can also be passed. Defaults to 20
quantiles.

• kind ({‘+’, ‘’}*) – The adjustment kind, either additive or multiplicative. Defaults to “+”.

• group (Union[str, Grouper]) – The grouping information. See xclim.sdba.base.
Grouper for details. Default is “time”, meaning a single adjustment group along dimension
“time”.

• Adjust step
• interp ({‘nearest’, ‘linear’, ‘cubic’}) – The interpolation method to use when interpolating

the adjustment factors. Defaults to “nearest”.

• detrend (int or BaseDetrend instance) – The method to use when detrending. If an int is
passed, it is understood as a PolyDetrend (polynomial detrending) degree. Defaults to 1
(linear detrending)

• extrapolation ({‘constant’, ‘nan’}) – The type of extrapolation to use. See xclim.sdba.
utils.extrapolate_qm() for details. Defaults to “constant”.

916 Chapter 16. xclim

xclim Documentation, Release 0.39.0

References

Cannon, Sobie, and Murdock [2015]

_adjust(sim, interp='nearest', extrapolation='constant', detrend=1)

_allow_diff_calendars = False

classmethod _train(ref: DataArray, hist: DataArray, *, nquantiles: int | numpy.ndarray = 20, kind: str =
'+', group: str | xclim.sdba.base.Grouper = 'time')

class xclim.sdba.adjustment.EmpiricalQuantileMapping(*args, _trained=False, **kwargs)
Bases: TrainAdjust

Empirical Quantile Mapping bias-adjustment.

Adjustment factors are computed between the quantiles of ref and sim. Values of sim are matched to the corre-
sponding quantiles of hist and corrected accordingly.

𝐹−1
𝑟𝑒𝑓 (𝐹ℎ𝑖𝑠𝑡(𝑠𝑖𝑚))

where 𝐹 is the cumulative distribution function (CDF) and mod stands for model data.

Variables
• step (Adjust) –

• nquantiles (int or 1d array of floats) – The number of quantiles to use. Two
endpoints at 1e-6 and 1 - 1e-6 will be added. An array of quantiles [0, 1] can also be passed.
Defaults to 20 quantiles.

• kind ({'+', '*'}) – The adjustment kind, either additive or multiplicative. Defaults to “+”.

• group (Union[str, Grouper]) – The grouping information. See xclim.sdba.base.
Grouper for details. Default is “time”, meaning an single adjustment group along dimension
“time”.

• step –

• interp ({'nearest', 'linear', 'cubic'}) – The interpolation method to use when inter-
polating the adjustment factors. Defaults to “nearset”.

• extrapolation ({'constant', 'nan'}) – The type of extrapolation to use. See xclim.
sdba.utils.extrapolate_qm() for details. Defaults to “constant”.

References

Déqué [2007]

_adjust(sim, interp='nearest', extrapolation='constant')

_allow_diff_calendars = False

classmethod _train(ref: DataArray, hist: DataArray, *, nquantiles: int | numpy.ndarray = 20, kind: str =
'+', group: str | xclim.sdba.base.Grouper = 'time')

16.1. xclim package 917

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

class xclim.sdba.adjustment.ExtremeValues(*args, _trained=False, **kwargs)
Bases: TrainAdjust

Adjustment correction for extreme values.

The tail of the distribution of adjusted data is corrected according to the bias between the parametric Generalized
Pareto distributions of the simulated and reference data [RRJF2021]. The distributions are composed of the
maximal values of clusters of “large” values. With “large” values being those above cluster_thresh. Only extreme
values, whose quantile within the pool of large values are above q_thresh, are re-adjusted. See Notes.

This adjustment method should be considered experimental and used with care.

Parameters
• Train step
• cluster_thresh (Quantity (str with units)) – The threshold value for defining clusters.

• q_thresh (float) – The quantile of “extreme” values, [0, 1[. Defaults to 0.95.

• ref_params (xr.DataArray, optional) – Distribution parameters to use instead of fitting a
GenPareto distribution on ref.

• Adjust step
• scen (DataArray) – This is a second-order adjustment, so the adjust method needs the first-

order adjusted timeseries in addition to the raw “sim”.

• interp ({‘nearest’, ‘linear’, ‘cubic’}) – The interpolation method to use when interpolating
the adjustment factors. Defaults to “linear”.

• extrapolation ({‘constant’, ‘nan’}) – The type of extrapolation to use. See
extrapolate_qm() for details. Defaults to “constant”.

• frac (float) – Fraction where the cutoff happens between the original scen and the corrected
one. See Notes,]0, 1]. Defaults to 0.25.

• power (float) – Shape of the correction strength, see Notes. Defaults to 1.0.

Notes

Extreme values are extracted from ref, hist and sim by finding all “clusters”, i.e. runs of consecutive values
above cluster_thresh. The q_thresh`th percentile of these values is taken on `ref and hist and becomes thresh,
the extreme value threshold. The maximal value of each cluster, if it exceeds that new threshold, is taken and
Generalized Pareto distributions are fitted to them, for both ref and hist. The probabilities associated with each of
these extremes in hist is used to find the corresponding value according to ref ’s distribution. Adjustment factors
are computed as the bias between those new extremes and the original ones.

In the adjust step, a Generalized Pareto distributions is fitted on the cluster-maximums of sim and it is used to
associate a probability to each extreme, values over the thresh compute in the training, without the clustering. The
adjustment factors are computed by interpolating the trained ones using these probabilities and the probabilities
computed from hist.

Finally, the adjusted values (𝐶𝑖) are mixed with the pre-adjusted ones (scen, 𝐷𝑖) using the following transition
function:

𝑉𝑖 = 𝐶𝑖 * 𝜏 +𝐷𝑖 * (1− 𝜏)

Where 𝜏 is a function of sim’s extreme values (unadjusted, 𝑆𝑖) and of arguments frac (𝑓) and power (𝑝):

𝜏 =

(︂
1

𝑓

𝑆 −𝑚𝑖𝑛(𝑆)

𝑚𝑎𝑥(𝑆)−𝑚𝑖𝑛(𝑆)

)︂𝑝

918 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Code based on an internal Matlab source and partly ib the biascorrect_extremes function of the julia package
“ClimateTools.jl” [Roy et al., 2021].

Because of limitations imposed by the lazy computing nature of the dask backend, it is not possible to know
the number of cluster extremes in ref and hist at the moment the output data structure is created. This is why
the code tries to estimate that number and usually overestimates it. In the training dataset, this translated into a
quantile dimension that is too large and variables af and px_hist are assigned NaNs on extra elements. This has
no incidence on the calculations themselves but requires more memory than is useful.

References

Roy, Smith, Kelman, Nolet-Gravel, Saba, Thomet, TagBot, and Forget [2021]

Roy, Rondeau-Genesse, Jalbert, and Fournier [RRJF2021]

_adjust(sim: DataArray, scen: DataArray, *, frac: float = 0.25, power: float = 1.0, interp: str = 'linear',
extrapolation: str = 'constant')

classmethod _train(ref: DataArray, hist: DataArray, *, cluster_thresh: str, ref_params:
Optional[Dataset] = None, q_thresh: float = 0.95)

class xclim.sdba.adjustment.LOCI(*args, _trained=False, **kwargs)
Bases: TrainAdjust

Local Intensity Scaling (LOCI) bias-adjustment.

This bias adjustment method is designed to correct daily precipitation time series by considering wet and dry
days separately [Schmidli et al., 2006].

Multiplicative adjustment factors are computed such that the mean of hist matches the mean of ref for values
above a threshold.

The threshold on the training target ref is first mapped to hist by finding the quantile in hist having the same
exceedance probability as thresh in ref. The adjustment factor is then given by

𝑠 =
⟨𝑟𝑒𝑓 : 𝑟𝑒𝑓 ≥ 𝑡𝑟𝑒𝑓 ⟩ − 𝑡𝑟𝑒𝑓
⟨ℎ𝑖𝑠𝑡 : ℎ𝑖𝑠𝑡 ≥ 𝑡ℎ𝑖𝑠𝑡⟩ − 𝑡ℎ𝑖𝑠𝑡

In the case of precipitations, the adjustment factor is the ratio of wet-days intensity.

For an adjustment factor s, the bias-adjustment of sim is:

𝑠𝑖𝑚(𝑡) = max (𝑡𝑟𝑒𝑓 + 𝑠 · (ℎ𝑖𝑠𝑡(𝑡)− 𝑡ℎ𝑖𝑠𝑡), 0)

Variables
• step (Adjust) –

• group (Union[str, Grouper]) – The grouping information. See xclim.sdba.base.
Grouper for details. Default is “time”, meaning a single adjustment group along dimension
“time”.

• thresh (str) – The threshold in ref above which the values are scaled.

• step –

• interp ({'nearest', 'linear', 'cubic'}) – The interpolation method to use then inter-
polating the adjustment factors. Defaults to “linear”.

16.1. xclim package 919

xclim Documentation, Release 0.39.0

References

Schmidli, Frei, and Vidale [2006]

_adjust(sim, interp='linear')

_allow_diff_calendars = False

classmethod _train(ref: DataArray, hist: DataArray, *, thresh: str, group: str | xclim.sdba.base.Grouper
= 'time')

class xclim.sdba.adjustment.NpdfTransform(*args, _trained=False, **kwargs)
Bases: Adjust

N-dimensional probability density function transform.

This adjustment object combines both training and adjust steps in the adjust class method.

A multivariate bias-adjustment algorithm described by Cannon [2018], as part of the MBCn algorithm, based
on a color-correction algorithm described by Pitie et al. [2005].

This algorithm in itself, when used with QuantileDeltaMapping, is NOT trend-preserving. The full MBCn
algorithm includes a reordering step provided here by xclim.sdba.processing.reordering().

See notes for an explanation of the algorithm.

Parameters
• base (BaseAdjustment) – An univariate bias-adjustment class. This is untested for anything

else than QuantileDeltaMapping.

• base_kws (dict, optional) – Arguments passed to the training of the univariate adjustment.

• n_escore (int) – The number of elements to send to the escore function. The default, 0,
means all elements are included. Pass -1 to skip computing the escore completely. Small
numbers result in less significant scores, but the execution time goes up quickly with large
values.

• n_iter (int) – The number of iterations to perform. Defaults to 20.

• pts_dim (str) – The name of the “multivariate” dimension. Defaults to “multivar”, which is
the normal case when using xclim.sdba.base.stack_variables().

• adj_kws (dict, optional) – Dictionary of arguments to pass to the adjust method of the uni-
variate adjustment.

• rot_matrices (xr.DataArray, optional) – The rotation matrices as a 3D array (‘iterations’,
<pts_dim>, <anything>), with shape (n_iter, <N>, <N>). If left empty, random rotation
matrices will be automatically generated.

Notes

The historical reference (𝑇 , for “target”), simulated historical (𝐻) and simulated projected (𝑆) datasets are con-
structed by stacking the timeseries of N variables together. The algorithm is broken into the following steps:

1. Rotate the datasets in the N-dimensional variable space with R, a random rotation NxN matrix.

T̃ = TR H̃ = HR S̃ = SR

2. An univariate bias-adjustment ℱ is used on the rotated datasets. The adjustments are made in additive mode,
for each variable 𝑖.

Ĥ𝑖, Ŝ𝑖 = ℱ
(︁
T̃𝑖, H̃𝑖, S̃𝑖

)︁
920 Chapter 16. xclim

xclim Documentation, Release 0.39.0

3. The bias-adjusted datasets are rotated back.

H′ = ĤR

S′ = ŜR

These three steps are repeated a certain number of times, prescribed by argument n_iter. At each iteration, a
new random rotation matrix is generated.

The original algorithm [Pitie et al., 2005], stops the iteration when some distance score converges. Follow-
ing cite:t:sdba-cannon_multivariate_2018 and the MBCn implementation in Cannon [2020], we instead fix the
number of iterations.

As done by cite:t:sdba-cannon_multivariate_2018, the distance score chosen is the “Energy distance” from
Szekely and Rizzo [2004]. (see: xclim.sdba.processing.escore()).

The random matrices are generated following a method laid out by Mezzadri [2007].

This is only part of the full MBCn algorithm, see Statistical Downscaling and Bias-Adjustment for an example
on how to replicate the full method with xclim. This includes a standardization of the simulated data beforehand,
an initial univariate adjustment and the reordering of those adjusted series according to the rank structure of the
output of this algorithm.

References

Cannon [2018], Cannon [2020], Mezzadri [2007], Pitie, Kokaram, and Dahyot [2005], Szekely and Rizzo [2004]

classmethod _adjust(ref: ~xarray.DataArray, hist: ~xarray.DataArray, sim: ~xarray.DataArray, *, base:
~xclim.sdba.adjustment.TrainAdjust = <class
'xclim.sdba.adjustment.QuantileDeltaMapping'>, base_kws:
~typing.Optional[~typing.Mapping[str, ~typing.Any]] = None, n_escore: int = 0,
n_iter: int = 20, pts_dim: str = 'multivar', adj_kws:
~typing.Optional[~typing.Mapping[str, ~typing.Any]] = None, rot_matrices:
~typing.Optional[~xarray.DataArray] = None)

class xclim.sdba.adjustment.PrincipalComponents(*args, _trained=False, **kwargs)
Bases: TrainAdjust

Principal component adjustment.

This bias-correction method maps model simulation values to the observation space through principal compo-
nents [Hnilica et al., 2017]. Values in the simulation space (multiple variables, or multiple sites) can be thought
of as coordinate along axes, such as variable, temperature, etc. Principal components (PC) are a linear com-
binations of the original variables where the coefficients are the eigenvectors of the covariance matrix. Values
can then be expressed as coordinates along the PC axes. The method makes the assumption that bias-corrected
values have the same coordinates along the PC axes of the observations. By converting from the observation PC
space to the original space, we get bias corrected values. See Notes for a mathematical explanation.

Warning: Be aware that principal components is meant here as the algebraic operation defining a coordinate
system based on the eigenvectors, not statistical principal component analysis.

Variables
• group (Union[str, Grouper]) – The main dimension and grouping information. See

Notes. See xclim.sdba.base.Grouper for details. The adjustment will be performed
on each group independently. Default is “time”, meaning a single adjustment group along
dimension “time”.

16.1. xclim package 921

xclim Documentation, Release 0.39.0

• best_orientation ({'simple', 'full'}) – Which method to use when searching for
the best principal component orientation. See best_pc_orientation_simple() and
best_pc_orientation_full(). “full” is more precise, but it is much slower.

• crd_dim (str) – The data dimension along which the multiple simulation space dimen-
sions are taken. For a multivariate adjustment, this usually is “multivar”, as returned by
sdba.stack_variables. For a multisite adjustment, this should be the spatial dimension. The
training algorithm currently doesn’t support any chunking along either crd_dim. group.dim
and group.add_dims.

Notes

The input data is understood as a set of N points in a 𝑀 -dimensional space.

• 𝑀 is taken along crd_dim.

• 𝑁 is taken along the dimensions given through group : (the main dim but also, if requested, the add_dims
and window).

The principal components (PC) of hist and ref are used to defined new coordinate systems, centered on their
respective means. The training step creates a matrix defining the transformation from hist to ref :

𝑠𝑐𝑒𝑛 = 𝑒𝑅 +T(𝑠𝑖𝑚− 𝑒𝐻)

Where:

T = RH−1

R is the matrix transforming from the PC coordinates computed on ref to the data coordinates. Similarly, H is
transform from the hist PC to the data coordinates (H is the inverse transformation). 𝑒𝑅 and 𝑒𝐻 are the centroids
of the ref and hist distributions respectively. Upon running the adjust step, one may decide to use 𝑒𝑆 , the centroid
of the sim distribution, instead of 𝑒𝐻 .

References

Alavoine and Grenier [2021], Hnilica, Hanel, and Pus [2017]

_adjust(sim)

classmethod _train(ref: DataArray, hist: DataArray, *, crd_dim: str, best_orientation: str = 'simple',
group: str | xclim.sdba.base.Grouper = 'time')

class xclim.sdba.adjustment.QuantileDeltaMapping(*args, _trained=False, **kwargs)
Bases: EmpiricalQuantileMapping

Quantile Delta Mapping bias-adjustment.

Adjustment factors are computed between the quantiles of ref and hist. Quantiles of sim are matched to the
corresponding quantiles of hist and corrected accordingly.

𝑠𝑖𝑚
𝐹−1
𝑟𝑒𝑓 [𝐹𝑠𝑖𝑚(𝑠𝑖𝑚)]

𝐹−1
ℎ𝑖𝑠𝑡 [𝐹𝑠𝑖𝑚(𝑠𝑖𝑚)]

where 𝐹 is the cumulative distribution function (CDF). This equation is valid for multiplicative adjustment. The
algorithm is based on the “QDM” method of [Cannon et al., 2015].

Parameters

922 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• Train step
• nquantiles (int or 1d array of floats) – The number of quantiles to use. See
equally_spaced_nodes(). An array of quantiles [0, 1] can also be passed. Defaults to 20
quantiles.

• kind ({‘+’, ‘’}*) – The adjustment kind, either additive or multiplicative. Defaults to “+”.

• group (Union[str, Grouper]) – The grouping information. See xclim.sdba.base.
Grouper for details. Default is “time”, meaning a single adjustment group along dimension
“time”.

• Adjust step
• interp ({‘nearest’, ‘linear’, ‘cubic’}) – The interpolation method to use when interpolating

the adjustment factors. Defaults to “nearest”.

• extrapolation ({‘constant’, ‘nan’}) – The type of extrapolation to use. See xclim.sdba.
utils.extrapolate_qm() for details. Defaults to “constant”.

• Extra diagnostics
• —————–
• In adjustment
• quantiles (The quantile of each value of sim. The adjustment factor is interpolated using this

as the “quantile” axis on ds.af.)

References

Cannon, Sobie, and Murdock [2015]

_adjust(sim, interp='nearest', extrapolation='constant')

class xclim.sdba.adjustment.Scaling(*args, _trained=False, **kwargs)
Bases: TrainAdjust

Scaling bias-adjustment.

Simple bias-adjustment method scaling variables by an additive or multiplicative factor so that the mean of hist
matches the mean of ref.

Parameters
• Train step
• group (Union[str, Grouper]) – The grouping information. See xclim.sdba.base.
Grouper for details. Default is “time”, meaning an single adjustment group along dimension
“time”.

• kind ({‘+’, ‘’}*) – The adjustment kind, either additive or multiplicative. Defaults to “+”.

• Adjust step
• interp ({‘nearest’, ‘linear’, ‘cubic’}) – The interpolation method to use then interpolating

the adjustment factors. Defaults to “nearest”.

_adjust(sim, interp='nearest')

_allow_diff_calendars = False

classmethod _train(ref: DataArray, hist: DataArray, *, group: str | xclim.sdba.base.Grouper = 'time',
kind: str = '+')

16.1. xclim package 923

xclim Documentation, Release 0.39.0

xclim.sdba.base module

Base Classes and Developer Tools

class xclim.sdba.base.Grouper(group: str, window: int = 1, add_dims: Optional[Union[Sequence[str],
set[str]]] = None)

Bases: Parametrizable

Grouper inherited class for parameterizable classes.

ADD_DIMS = '<ADD_DIMS>'

DIM = '<DIM>'

PROP = '<PROP>'

_repr_hide_params = ['dim', 'prop']

apply(func: Union[Callable, str], da: Union[DataArray, Mapping[str, DataArray], Dataset], main_only:
bool = False, **kwargs)

Apply a function group-wise on DataArrays.

Parameters
• func (Callable or str) – The function to apply to the groups, either a callable or a

xr.core.groupby.GroupBy method name as a string. The function will be called as
func(group, dim=dims, **kwargs). See main_only for the behaviour of dims.

• da (xr.DataArray or Mapping[str, xr.DataArray] or xr.Dataset) – The DataArray on which
to apply the function. Multiple arrays can be passed through a dictionary. A dataset will
be created before grouping.

• main_only (bool) – Whether to call the function with the main dimension only (if True)
or with all grouping dims (if False, default) (including the window and dimensions given
through add_dims). The dimensions used are also written in the “group_compute_dims”
attribute. If all the input arrays are missing one of the ‘add_dims’, it is silently omitted.

• **kwargs – Other keyword arguments to pass to the function.

Returns
DataArray or Dataset – Attributes “group”, “group_window” and “group_compute_dims”
are added.

If the function did not reduce the array:

• The output is sorted along the main dimension.

• The output is rechunked to match the chunks on the input If multiple inputs with differing
chunking were given as inputs, the chunking with the smallest number of chunks is used.

If the function reduces the array:

• If there is only one group, the singleton dimension is squeezed out of the output

• The output is rechunked as to have only 1 chunk along the new dimension.

924 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

For the special case where a Dataset is returned, but only some of its variable where reduced by the grouping,
xarray’s GroupBy.map will broadcast everything back to the ungrouped dimensions. To overcome this issue,
function may add a “_group_apply_reshape” attribute set to True on the variables that should be reduced
and these will be re-grouped by calling da.groupby(self.name).first().

property freq

Format a frequency string corresponding to the group.

For use with xarray’s resampling functions.

classmethod from_kwargs(**kwargs)
Parameterize groups using kwargs.

get_coordinate(ds=None)
Return the coordinate as in the output of group.apply.

Currently, only implemented for groupings with prop == month or dayofyear. For prop == dayfofyear, a ds
(Dataset or DataArray) can be passed to infer the max day of year from the available years and calendar.

get_index(da: xarray.DataArray | xarray.Dataset, interp: Optional[bool] = None)
Return the group index of each element along the main dimension.

Parameters
• da (xr.DataArray or xr.Dataset) – The input array/dataset for which the group index is

returned. It must have Grouper.dim as a coordinate.

• interp (bool, optional) – If True, the returned index can be used for interpolation. Only
value for month grouping, where integer values represent the middle of the month, all other
days are linearly interpolated in between.

Returns
xr.DataArray – The index of each element along Grouper.dim. If Grouper.dim is time and
Grouper.prop is None, a uniform array of True is returned. If Grouper.prop is a time accessor
(month, dayofyear, etc), an numerical array is returned, with a special case of month and
interp=True. If Grouper.dim is not time, the dim is simply returned.

group(da: Optional[Union[DataArray, Dataset]] = None, main_only=False, **das: DataArray)
Return a xr.core.groupby.GroupBy object.

More than one array can be combined to a dataset before grouping using the das kwargs. A new window
dimension is added if self.window is larger than 1. If Grouper.dim is ‘time’, but ‘prop’ is None, the whole
array is grouped together.

When multiple arrays are passed, some of them can be grouped along the same group as self. They are
broadcast, merged to the grouping dataset and regrouped in the output.

property prop_name

Create a significant name for the grouping.

class xclim.sdba.base.Parametrizable

Bases: dict

Helper base class resembling a dictionary.

This object is _completely_ defined by the content of its internal dictionary, accessible through item access
(self[‘attr’]) or in self.parameters. When serializing and restoring this object, only members of that internal dict
are preserved. All other attributes set directly with self.attr = value will not be preserved upon serialization and

16.1. xclim package 925

xclim Documentation, Release 0.39.0

restoration of the object with [json]pickle dictionary. Other variables set with self.var = data will be lost in the
serialization process. This class is best serialized and restored with jsonpickle.

_repr_hide_params = []

property parameters

All parameters as a dictionary. Read-only.

class xclim.sdba.base.ParametrizableWithDataset

Bases: Parametrizable

Parametrizeable class that also has a ds attribute storing a dataset.

_attribute = '_xclim_parameters'

classmethod from_dataset(ds: Dataset)
Create an instance from a dataset.

The dataset must have a global attribute with a name corresponding to cls._attribute, and that attribute must
be the result of jsonpickle.encode(object) where object is of the same type as this object.

set_dataset(ds: Dataset)
Store an xarray dataset in the ds attribute.

Useful with custom object initialization or if some external processing was performed.

xclim.sdba.base._decode_cf_coords(ds)
Decode coords in-place.

xclim.sdba.base.duck_empty(dims, sizes, dtype='float64', chunks=None)
Return an empty DataArray based on a numpy or dask backend, depending on the chunks argument.

xclim.sdba.base.map_blocks(reduces: Optional[Sequence[str]] = None, **outvars)
Decorator for declaring functions and wrapping them into a map_blocks.

Takes care of constructing the template dataset. Dimension order is not preserved. The decorated function must
always have the signature: func(ds, **kwargs), where ds is a DataArray or a Dataset. It must always output
a dataset matching the mapping passed to the decorator.

Parameters
• reduces (sequence of strings) – Name of the dimensions that are removed by the function.

• **outvars – Mapping from variable names in the output to their new dimensions. The
placeholders Grouper.PROP, Grouper.DIM and Grouper.ADD_DIMS can be used to sig-
nify group.prop,``group.dim`` and group.add_dims respectively. If an output keeps a
dimension that another loses, that dimension name must be given in reduces and in the list
of new dimensions of the first output.

xclim.sdba.base.map_groups(reduces: Optional[Sequence[str]] = None, main_only: bool = False, **out_vars)
Decorator for declaring functions acting only on groups and wrapping them into a map_blocks.

This is the same as map_blocks but adds a call to group.apply() in the mapped func and the default value of
reduces is changed.

The decorated function must have the signature: func(ds, dim, **kwargs). Where ds is a DataAray or
Dataset, dim is the group.dim (and add_dims). The group argument is stripped from the kwargs, but must
evidently be provided in the call.

Parameters

926 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• reduces (sequence of str) – Dimensions that are removed from the inputs by the function.
Defaults to [Grouper.DIM, Grouper.ADD_DIMS] if main_only is False, and [Grouper.DIM]
if main_only is True. See map_blocks().

• main_only (bool) – Same as for Grouper.apply().

• **out_vars – Mapping from variable names in the output to their new dimensions.
The placeholders Grouper.PROP, Grouper.DIM and Grouper.ADD_DIMS can be used
to signify

group.prop,``group.dim`` and group.add_dims, respectively.
If an output keeps a dimension that another loses, that dimension name must be given in
reduces and in the list of new dimensions of the first output.

See also:
map_blocks

xclim.sdba.base.parse_group(func: Callable, kwargs=None, allow_only=None)→ Callable
Parse the kwargs given to a function to set the group arg with a Grouper object.

This function can be used as a decorator, in which case the parsing and updating of the kwargs is done at call
time. It can also be called with a function from which extract the default group and kwargs to update, in which
case it returns the updated kwargs.

If allow_only is given, an exception is raised when the parsed group is not within that list.

xclim.sdba.detrending module

Detrending Objects

class xclim.sdba.detrending.BaseDetrend(*, group: xclim.sdba.base.Grouper | str = 'time', kind: str = '+',
**kwargs)

Bases: ParametrizableWithDataset

Base class for detrending objects.

Defines three methods:

fit(da) : Compute trend from da and return a new _fitted_ Detrend object. detrend(da) : Return detrended array.
retrend(da) : Puts trend back on da.

A fitted Detrend object is unique to the trend coordinate of the object used in fit, (usually ‘time’). The computed
trend is stored in Detrend.ds.trend.

Subclasses should implement _get_trend_group() or _get_trend(). The first will be called in a group.
apply(..., main_only=True), and should return a single DataArray. The second allows the use of functions
wrapped in map_groups() and should also return a single DataArray.

The subclasses may reimplement _detrend and _retrend.

_detrend(da, trend)

_get_trend(da: DataArray)
Compute the trend along the self.group.dim as found on da.

If da is a DataArray (and has a dtype attribute), the trend is cast to have the same dtype.

16.1. xclim package 927

xclim Documentation, Release 0.39.0

Notes

This method applies _get_trend_group with self.group.

_get_trend_group(grpd, *, dim)

_retrend(da, trend)

detrend(da: DataArray)
Remove the previously fitted trend from a DataArray.

fit(da: DataArray)
Extract the trend of a DataArray along a specific dimension.

Returns a new object that can be used for detrending and retrending. Fitted objects are unique to the fitted
coordinate used.

property fitted

Return whether instance is fitted.

retrend(da: DataArray)
Put the previously fitted trend back on a DataArray.

class xclim.sdba.detrending.LoessDetrend(group='time', kind='+', f=0.2, niter=1, d=0, weights='tricube',
equal_spacing=None, skipna=True)

Bases: BaseDetrend

Detrend time series using a LOESS regression.

The fit is a piecewise linear regression. For each point, the contribution of all neighbors is weighted by a bell-
shaped curve (gaussian) with parameters sigma (std). The x-coordinate of the DataArray is scaled to [0,1] before
the regression is computed.

Parameters
• group (str or Grouper) – The grouping information. See xclim.sdba.base.Grouper for

details. The fit is performed along the group’s main dim.

• kind ({’’, ‘+’}*) – The way the trend is removed or added, either additive or multiplicative.

• d ([0, 1]) – Order of the local regression. Only 0 and 1 currently implemented.

• f (float) – Parameter controlling the span of the weights, between 0 and 1.

• niter (int) – Number of robustness iterations to execute.

• weights ([“tricube”, “gaussian”]) – Shape of the weighting function: “tricube” : a smooth
top-hat like curve, f gives the span of non-zero values. “gaussian” : a gaussian curve, f gives
the span for 95% of the values.

• skipna (bool) – If True (default), missing values are not included in the loess trend com-
putation and thus are not propagated. The output will have the same missing values as the
input.

928 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

LOESS smoothing is computationally expensive. As it relies on a loop on gridpoints, it can be useful to use
smaller than usual chunks. Moreover, it suffers from heavy boundary effects. As a rule of thumb, the outermost
N * f/2 points should be considered dubious. (N is the number of points along each group)

_get_trend(da)
Compute the trend along the self.group.dim as found on da.

If da is a DataArray (and has a dtype attribute), the trend is cast to have the same dtype.

Notes

This method applies _get_trend_group with self.group.

class xclim.sdba.detrending.MeanDetrend(*, group: xclim.sdba.base.Grouper | str = 'time', kind: str = '+',
**kwargs)

Bases: BaseDetrend

Simple detrending removing only the mean from the data, quite similar to normalizing.

_get_trend(da)
Compute the trend along the self.group.dim as found on da.

If da is a DataArray (and has a dtype attribute), the trend is cast to have the same dtype.

Notes

This method applies _get_trend_group with self.group.

class xclim.sdba.detrending.NoDetrend(*, group: xclim.sdba.base.Grouper | str = 'time', kind: str = '+',
**kwargs)

Bases: BaseDetrend

Convenience class for polymorphism. Does nothing.

_detrend(da, trend)

_get_trend_group(da, *, dim)

_retrend(da, trend)

class xclim.sdba.detrending.PolyDetrend(group='time', kind='+', degree=4, preserve_mean=False)
Bases: BaseDetrend

Detrend time series using a polynomial regression.

Parameters
• group (Union[str, Grouper]) – The grouping information. See xclim.sdba.base.
Grouper for details. The fit is performed along the group’s main dim.

• kind ({’’, ‘+’}*) – The way the trend is removed or added, either additive or multiplicative.

• degree (int) – The order of the polynomial to fit.

• preserve_mean (bool) – Whether to preserve the mean when de/re-trending. If True, the
trend has its mean removed before it is used.

16.1. xclim package 929

xclim Documentation, Release 0.39.0

_get_trend(da)
Compute the trend along the self.group.dim as found on da.

If da is a DataArray (and has a dtype attribute), the trend is cast to have the same dtype.

Notes

This method applies _get_trend_group with self.group.

class xclim.sdba.detrending.RollingMeanDetrend(group='time', kind='+', win=30, weights=None,
min_periods=None)

Bases: BaseDetrend

Detrend time series using a rolling mean.

Parameters
• group (str or Grouper) – The grouping information. See xclim.sdba.base.Grouper for

details. The fit is performed along the group’s main dim.

• kind ({’’, ‘+’}*) – The way the trend is removed or added, either additive or multiplicative.

• win (int) – The size of the rolling window. Units are the steps of the grouped data, which
means this detrending is best use with either group=’time’ or group=’time.dayofyear’. Other
grouping will have large jumps included within the windows and :py`:class:LoessDetrend
might offer a better solution.

• weights (sequence of floats, optional) – Sequence of length win. Defaults to None, which
means a flat window.

• min_periods (int, optional) – Minimum number of observations in window required to have
a value, otherwise the result is NaN. See xarray.DataArray.rolling(). Defaults to
None, which sets it equal to win. Setting both weights and this is not implemented yet.

Notes

As for the LoessDetrend detrending, important boundary effects are to be expected.

_get_trend(da)
Compute the trend along the self.group.dim as found on da.

If da is a DataArray (and has a dtype attribute), the trend is cast to have the same dtype.

Notes

This method applies _get_trend_group with self.group.

930 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.sdba.loess module

LOESS Smoothing Module

xclim.sdba.loess._constant_regression(xi, x, y, w)

xclim.sdba.loess._gaussian_weighting(x)
Kernel function for loess with a gaussian shape.

The span f covers 95% of the gaussian.

xclim.sdba.loess._linear_regression(xi, x, y, w)

xclim.sdba.loess._loess_nb(x, y, f=0.5, niter=2, weight_func=CPUDispatcher(<function
_tricube_weighting>), reg_func=CPUDispatcher(<function
_linear_regression>), dx=0, skipna=True)

1D Locally weighted regression: fits a nonparametric regression curve to a scatter plot.

The arrays x and y contain an equal number of elements; each pair (x[i], y[i]) defines a data point in the scatter
plot. The function returns the estimated (smooth) values of y. Originally proposed in Cleveland [1979].

Users should call utils.loess_smoothing. See that function for the main documentation.

Parameters
• x (np.ndarray) – X-coordinates of the points.

• y (np.ndarray) – Y-coordinates of the points.

• f (float) – Parameter controlling the shape of the weight curve. Behavior depends on the
weighting function.

• niter (int) – Number of robustness iterations to execute.

• weight_func (numba func) – Numba function giving the weights when passed abs(x - xi) /
hi

• dx (float) – The spacing of the x coordinates. If above 0, this enables the optimization for
equally spaced x coordinates. Must be 0 if spacing is unequal (default).

• skipna (bool) – If True (default), remove NaN values before computing the loess. The output
has the same missing values as the input.

References

Cleveland [1979]

Code adapted from: Gramfort [2015]

xclim.sdba.loess._tricube_weighting(x)
Kernel function for loess with a tricubic shape.

xclim.sdba.loess.loess_smoothing(da: DataArray, dim: str = 'time', d: int = 1, f: float = 0.5, niter: int = 2,
weights: Union[str, Callable] = 'tricube', equal_spacing: Optional[bool]
= None, skipna: bool = True)

Locally weighted regression in 1D: fits a nonparametric regression curve to a scatter plot.

Returns a smoothed curve along given dimension. The regression is computed for each point using a subset of
neighbouring points as given from evaluating the weighting function locally. Follows the procedure of Cleveland
[1979].

16.1. xclim package 931

xclim Documentation, Release 0.39.0

Parameters
• da (xr.DataArray) – The data to smooth using the loess approach.

• dim (str) – Name of the dimension along which to perform the loess.

• d ([0, 1]) – Degree of the local regression.

• f (float) – Parameter controlling the shape of the weight curve. Behavior depends on the
weighting function, but it usually represents the span of the weighting function in reference
to x-coordinates normalized from 0 to 1.

• niter (int) – Number of robustness iterations to execute.

• weights ([“tricube”, “gaussian”] or callable) – Shape of the weighting function, see notes.
The user can provide a function or a string: “tricube” : a smooth top-hat like curve. “gaus-
sian” : a gaussian curve, f gives the span for 95% of the values.

• equal_spacing (bool, optional) – Whether to use the equal spacing optimization. If None
(the default), it is activated only if the x-axis is equally-spaced. When activated, dx = x[1] -
x[0].

• skipna (bool) – If True (default), skip missing values (as marked by NaN). The output will
have the same missing values as the input.

Notes

As stated in Cleveland [1979], the weighting function 𝑊 (𝑥) should respect the following conditions:

• 𝑊 (𝑥) > 0 for |𝑥| < 1

• 𝑊 (−𝑥) = 𝑊 (𝑥)

• 𝑊 (𝑥) is non-increasing for 𝑥 ≥ 0

• 𝑊 (𝑥) = 0 for |𝑥| ≥ 0

If a Callable is provided, it should only accept the 1D np.ndarray 𝑥 which is an absolute value function going
from 1 to 0 to 1 around 𝑥𝑖, for all values where 𝑥 − 𝑥𝑖 < ℎ𝑖 with ℎ𝑖 the distance of the rth nearest neighbor of
𝑥𝑖, 𝑟 = 𝑓 * 𝑠𝑖𝑧𝑒(𝑥).

References

Cleveland [1979]

Code adapted from: Gramfort [2015]

xclim.sdba.measures module

Measures Submodule

SDBA diagnostic tests are made up of properties and measures. Measures compare adjusted simulations to a reference,
through statistical properties or directly. This framework for the diagnostic tests was inspired by the VALUE project.

class xclim.sdba.measures.StatisticalMeasure(**kwds)
Bases: Indicator

Base indicator class for statistical measures used when validating bias-adjusted outputs.

932 Chapter 16. xclim

http://www.value-cost.eu/

xclim Documentation, Release 0.39.0

Statistical measures use input data where the time dimension was reduced, usually by the computation of a
xclim.sdba.properties.StatisticalProperty instance. They usually take two arrays as input: “sim”
and “ref”, “sim” being measured against “ref”. The two arrays must have identical coordinates on their common
dimensions.

Statistical measures are generally unit-generic. If the inputs have different units, “sim” is converted to match
“ref”.

classmethod _ensure_correct_parameters(parameters)
Ensure the parameters are correctly set and ordered.

Sets the correct variable default to be sure.

_preprocess_and_checks(das, params)
Perform parent’s checks and also check convert units so that sim matches ref.

realm = 'generic'

class xclim.sdba.measures.StatisticalPropertyMeasure(**kwds)
Bases: Indicator

Base indicator class for statistical properties that include the comparison measure, used when validating bias-
adjusted outputs.

StatisticalPropertyMeasure objects combine the functionalities of xclim.sdba.properties.
StatisticalProperty and xclim.sdba.properties.StatisticalMeasure.

Statistical properties usually reduce the time dimension and sometimes more dimensions (for example in
spatial properties), sometimes adding a grouping dimension according to the passed value of group (e.g.:
group=’time.month’ means the loss of the time dimension and the addition of a month one).

Statistical measures usually take two arrays as input: “sim” and “ref”, “sim” being measured against “ref”.

Statistical property-measures are generally unit-generic. If the inputs have different units, “sim” is converted to
match “ref”.

classmethod _ensure_correct_parameters(parameters)
Ensure the parameters are correctly set and ordered.

Sets the correct variable default to be sure.

_postprocess(outs, das, params)
Squeeze group dim if needed.

_preprocess_and_checks(das, params)
Perform parent’s checks and also check convert units so that sim matches ref.

allowed_groups = None

A list of allowed groupings. A subset of dayofyear, week, month, season or group. The latter stands for no
temporal grouping.

aspect = None

marginal, temporal, multivariate or spatial.

Type
The aspect the statistical property studies

realm = 'generic'

16.1. xclim package 933

xclim Documentation, Release 0.39.0

xclim.sdba.measures._annual_cycle_correlation(sim: DataArray, ref: DataArray, window: int = 15,
group: str | xclim.sdba.base.Grouper = 'time')→
DataArray

Annual cycle correlation.

Pearson correlation coefficient between the smooth day-of-year averaged annual cycles of the simulation and the
reference. In the smooth day-of-year averaged annual cycles, each day-of-year is averaged over all years and over
a window of days around that day.

Parameters
• sim (xr.DataArray) – data from the simulation (a time-series for each grid-point)

• ref (xr.DataArray) – data from the reference (observations) (a time-series for each grid-
point)

• window (int) – Size of window around each day of year around which to take the mean. E.g.
If window=31, Jan 1st is averaged over from December 17th to January 16th.

• group (str) – Compute the property and measure for each temporal groups individually.
Currently not implemented.

Returns
xr.DataArray, [dimensionless] – Annual cycle correlation

xclim.sdba.measures._bias(sim: DataArray, ref: DataArray)→ DataArray
Bias.

The bias is the simulation minus the reference.

Parameters
• sim (xr.DataArray) – data from the simulation (one value for each grid-point)

• ref (xr.DataArray) – data from the reference (observations) (one value for each grid-point)

Returns
xr.DataArray, [same as ref] – Absolute bias

xclim.sdba.measures._circular_bias(sim: DataArray, ref: DataArray)→ DataArray
Circular bias.

Bias considering circular time series. E.g. The bias between doy 365 and doy 1 is 364, but the circular bias is -1.

Parameters
• sim (xr.DataArray) – data from the simulation (one value for each grid-point)

• ref (xr.DataArray) – data from the reference (observations) (one value for each grid-point)

Returns
xr.DataArray, [days] – Circular bias

xclim.sdba.measures._mae(sim: DataArray, ref: DataArray, group: str | xclim.sdba.base.Grouper = 'time')→
DataArray

Mean absolute error.

The mean absolute error on the time dimension between the simulation and the reference.

Parameters
• sim (xr.DataArray) – data from the simulation (a time-series for each grid-point)

• ref (xr.DataArray) – data from the reference (observations) (a time-series for each grid-
point)

934 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• group (str) – Compute the property and measure for each temporal groups individually.
Currently not implemented.

Returns
xr.DataArray, [same as ref] – Mean absolute error

xclim.sdba.measures._ratio(sim: DataArray, ref: DataArray)→ DataArray
Ratio.

The ratio is the quotient of the simulation over the reference.

Parameters
• sim (xr.DataArray) – data from the simulation (one value for each grid-point)

• ref (xr.DataArray) – data from the reference (observations) (one value for each grid-point)

Returns
xr.DataArray, [dimensionless] – Ratio

xclim.sdba.measures._relative_bias(sim: DataArray, ref: DataArray)→ DataArray
Relative Bias.

The relative bias is the simulation minus reference, divided by the reference.

Parameters
• sim (xr.DataArray) – data from the simulation (one value for each grid-point)

• ref (xr.DataArray) – data from the reference (observations) (one value for each grid-point)

Returns
xr.DataArray, [dimensionless] – Relative bias

xclim.sdba.measures._rmse(sim: DataArray, ref: DataArray, group: str | xclim.sdba.base.Grouper = 'time')→
DataArray

Root mean square error.

The root mean square error on the time dimension between the simulation and the reference.

Parameters
• sim (xr.DataArray) – Data from the simulation (a time-series for each grid-point)

• ref (xr.DataArray) – Data from the reference (observations) (a time-series for each grid-
point)

• group (str) – Compute the property and measure for each temporal groups individually.
Currently not implemented.

Returns
xr.DataArray, [same as ref] – Root mean square error

xclim.sdba.measures._scorr(sim: DataArray, ref: DataArray, *, dims: Optional[Sequence] = None, group: str
| xclim.sdba.base.Grouper = 'time')

Spatial correllogram.

Compute the inter-site correlations of each array, compute the difference in correlations and sum. Taken from
Vrac (2018). The spatial and temporal dimensions are reduced.

Parameters
• sim (xr.DataArray) – data from the simulation (a time-series for each grid-point)

16.1. xclim package 935

xclim Documentation, Release 0.39.0

• ref (xr.DataArray) – data from the reference (observations) (a time-series for each grid-
point)

• dims (sequence of strings, optional) – Name of the spatial dimensions. If None (default), all
dimensions except ‘time’ are used.

• group (str) – Compute the property and measure for each temporal groups individually.
Currently not implemented.

Returns
xr.DataArray, [dimensionless] – Sum of the inter-site correlation differences.

xclim.sdba.measures.annual_cycle_correlation(sim: Union[DataArray, str] = 'sim', ref:
Union[DataArray, str] = 'ref', *, window: int = 15, group:
str | Grouper = 'time', ds: Dataset = None)→ DataArray

Annual cycle correlation. (realm: generic)

Pearson correlation coefficient between the smooth day-of-year averaged annual cycles of the simulation and the
reference. In the smooth day-of-year averaged annual cycles, each day-of-year is averaged over all years and over
a window of days around that day.

Based on indice _annual_cycle_correlation().

Parameters
• sim (str or DataArray) – data from the simulation (a time-series for each grid-point) Default

: ds.sim.

• ref (str or DataArray) – data from the reference (observations) (a time-series for each grid-
point) Default : ds.ref.

• window (number) – Size of window around each day of year around which to take the mean.
E.g. If window=31, Jan 1st is averaged over from December 17th to January 16th. Default :
15.

• group (Any) – Compute the property and measure for each temporal groups individually.
Currently not implemented. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
annual_cycle_correlation (DataArray) – Annual cycle correlation

xclim.sdba.measures.bias(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref', *, ds:
Dataset = None)→ DataArray

Bias. (realm: generic)

The bias is the simulation minus the reference.

Based on indice _bias().

Parameters
• sim (str or DataArray) – data from the simulation (one value for each grid-point) Default :

ds.sim.

• ref (str or DataArray) – data from the reference (observations) (one value for each grid-
point) Default : ds.ref.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
bias (DataArray) – Absolute bias

936 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.sdba.measures.circular_bias(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref',
*, ds: Dataset = None)→ DataArray

Circular bias. (realm: generic)

Bias considering circular time series. E.g. The bias between doy 365 and doy 1 is 364, but the circular bias is -1.

Based on indice _circular_bias().

Parameters
• sim (str or DataArray) – data from the simulation (one value for each grid-point) Default :

ds.sim.

• ref (str or DataArray) – data from the reference (observations) (one value for each grid-
point) Default : ds.ref.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
circular_bias (DataArray) – Circular bias [days]

xclim.sdba.measures.mae(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref', *, group: str |
Grouper = 'time', ds: Dataset = None)→ DataArray

Mean absolute error. (realm: generic)

The mean absolute error on the time dimension between the simulation and the reference.

Based on indice _mae().

Parameters
• sim (str or DataArray) – data from the simulation (a time-series for each grid-point) Default

: ds.sim.

• ref (str or DataArray) – data from the reference (observations) (a time-series for each grid-
point) Default : ds.ref.

• group (Any) – Compute the property and measure for each temporal groups individually.
Currently not implemented. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
mae (DataArray) – Mean absolute error, with additional attributes: cell_methods: time: mean

xclim.sdba.measures.ratio(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref', *, ds:
Dataset = None)→ DataArray

Ratio. (realm: generic)

The ratio is the quotient of the simulation over the reference.

Based on indice _ratio().

Parameters
• sim (str or DataArray) – data from the simulation (one value for each grid-point) Default :

ds.sim.

• ref (str or DataArray) – data from the reference (observations) (one value for each grid-
point) Default : ds.ref.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
ratio (DataArray) – Ratio

16.1. xclim package 937

xclim Documentation, Release 0.39.0

xclim.sdba.measures.relative_bias(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref',
*, ds: Dataset = None)→ DataArray

Relative Bias. (realm: generic)

The relative bias is the simulation minus reference, divided by the reference.

Based on indice _relative_bias().

Parameters
• sim (str or DataArray) – data from the simulation (one value for each grid-point) Default :

ds.sim.

• ref (str or DataArray) – data from the reference (observations) (one value for each grid-
point) Default : ds.ref.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
relative_bias (DataArray) – Relative bias

xclim.sdba.measures.rmse(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref', *, group: str
| Grouper = 'time', ds: Dataset = None)→ DataArray

Root mean square error. (realm: generic)

The root mean square error on the time dimension between the simulation and the reference.

Based on indice _rmse().

Parameters
• sim (str or DataArray) – Data from the simulation (a time-series for each grid-point) Default

: ds.sim.

• ref (str or DataArray) – Data from the reference (observations) (a time-series for each grid-
point) Default : ds.ref.

• group (Any) – Compute the property and measure for each temporal groups individually.
Currently not implemented. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
rmse (DataArray) – Root mean square error, with additional attributes: cell_methods: time:
mean

xclim.sdba.measures.scorr(sim: Union[DataArray, str] = 'sim', ref: Union[DataArray, str] = 'ref', *, dims:
Sequence | None = None, group: str | Grouper = 'time', ds: Dataset = None)→
DataArray

Spatial correllogram. (realm: generic)

Compute the inter-site correlations of each array, compute the difference in correlations and sum. Taken from
Vrac (2018). The spatial and temporal dimensions are reduced.

Based on indice _scorr().

Parameters
• sim (str or DataArray) – data from the simulation (a time-series for each grid-point) Default

: ds.sim.

• ref (str or DataArray) – data from the reference (observations) (a time-series for each grid-
point) Default : ds.ref.

938 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• dims (Any) – Name of the spatial dimensions. If None (default), all dimensions except ‘time’
are used. Default : None.

• group (Any) – Compute the property and measure for each temporal groups individually.
Currently not implemented. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
Scorr (DataArray) – Sum of the inter-site correlation differences.

xclim.sdba.nbutils module

Numba-accelerated utilities

xclim.sdba.nbutils._autocorrelation(X)
Mean of the NxN pairwise distances of points in X of shape KxN.

Similar to scipy.spatial.distance.pdist(. . . , ‘euclidean’)

xclim.sdba.nbutils._correlation(X, Y)
Compute a correlation as the mean of pairwise distances between points in X and Y.

X is KxN and Y is KxM, the result is the mean of the MxN distances. Similar to scipy.spatial.distance.cdist(X,
Y, ‘euclidean’)

xclim.sdba.nbutils._euclidean_norm(v)
Compute the euclidean norm of vector v.

xclim.sdba.nbutils._extrapolate_on_quantiles(interp, oldx, oldg, oldy, newx, newg, method='constant')
Apply extrapolation to the output of interpolation on quantiles with a given grouping.

Arguments are the same as _interp_on_quantiles_2D.

xclim.sdba.nbutils._first_and_last_nonnull(arr)
For each row of arr, get the first and last non NaN elements.

xclim.sdba.nbutils._pairwise_haversine_and_bins(lond, latd)
Inter-site distances with the haversine approximation.

xclim.sdba.nbutils._quantile(arr, q)

xclim.sdba.nbutils.quantile(da, q, dim)

Compute the quantiles from a fixed list q.

xclim.sdba.nbutils.remove_NaNs(x)
Remove NaN values from series.

xclim.sdba.nbutils.vecquantiles(da, rnk, dim)

For when the quantile (rnk) is different for each point.

da and rnk must share all dimensions but dim.

16.1. xclim package 939

xclim Documentation, Release 0.39.0

xclim.sdba.processing module

Pre and post processing

xclim.sdba.processing._get_number_of_elements_by_year(time)
Get the number of elements in time in a year by inferring its sampling frequency.

Only calendar with uniform year lengths are supported : 360_day, noleap, all_leap.

xclim.sdba.processing.adapt_freq(ref: DataArray, sim: DataArray, *, group: xclim.sdba.base.Grouper | str,
thresh: str = '0 mm d-1')→ tuple[xarray.DataArray, xarray.DataArray,
xarray.DataArray]

Adapt frequency of values under thresh of sim, in order to match ref.

This is useful when the dry-day frequency in the simulations is higher than in the references. This function will
create new non-null values for sim/hist, so that adjustment factors are less wet-biased. Based on Themeßl et al.
[2012].

Parameters
• ds (xr.Dataset) – With variables : “ref”, Target/reference data, usually observed data. and

“sim”, Simulated data.

• dim (str) – Dimension name.

• group (str or Grouper) – Grouping information, see base.Grouper

• thresh (str) – Threshold below which values are considered zero, a quantity with units.

Returns
• sim_adj (xr.DataArray) – Simulated data with the same frequency of values under threshold

than ref. Adjustment is made group-wise.

• pth (xr.DataArray) – For each group, the smallest value of sim that was not frequency-
adjusted. All values smaller were either left as zero values or given a random value between
thresh and pth. NaN where frequency adaptation wasn’t needed.

• dP0 (xr.DataArray) – For each group, the percentage of values that were corrected in sim.

Notes

With 𝑃 𝑟
0 the frequency of values under threshold 𝑇0 in the reference (ref) and 𝑃 𝑠

0 the same for the simulated
values,
𝐷𝑒𝑙𝑡𝑎𝑃0 =
𝑓𝑟𝑎𝑐𝑃 𝑠

0 − 𝑃 𝑟
0𝑃

𝑠
0 , when positive, represents the proportion of values under 𝑇0 that need to be corrected.

The correction replaces a proportion
𝐷𝑒𝑙𝑡𝑎𝑃0 of the values under 𝑇0 in sim by a uniform random number between 𝑇0 and 𝑃𝑡ℎ, where 𝑃𝑡ℎ =
𝐹−1
𝑟𝑒𝑓 (𝐹𝑠𝑖𝑚(𝑇0)) and F(x) is the empirical cumulative distribution function (CDF).

940 Chapter 16. xclim

xclim Documentation, Release 0.39.0

References

Themeßl, Gobiet, and Heinrich [2012]

xclim.sdba.processing.construct_moving_yearly_window(da: Dataset, window: int = 21, step: int = 1,
dim: str = 'movingwin')

Construct a moving window DataArray.

Stack windows of da in a new ‘movingwin’ dimension. Windows are always made of full years, so calendar with
non-uniform year lengths are not supported.

Windows are constructed starting at the beginning of da, if number of given years is not a multiple of step, then
the last year(s) will be missing as a supplementary window would be incomplete.

Parameters
• da (xr.Dataset) – A DataArray with a time dimension.

• window (int) – The length of the moving window as a number of years.

• step (int) – The step between each window as a number of years.

• dim (str) – The new dimension name. If given, must also be given to un-
pack_moving_yearly_window.

Returns
xr.DataArray – A DataArray with a new movingwin dimension and a time dimension with a length
of 1 window. This assumes downstream algorithms do not make use of the _absolute_ year of
the data. The correct timeseries can be reconstructed with unpack_moving_yearly_window().
The coordinates of movingwin are the first date of the windows.

xclim.sdba.processing.escore(tgt: DataArray, sim: DataArray, dims: Sequence[str] = ('variables', 'time'), N:
int = 0, scale: bool = False)→ DataArray

Energy score, or energy dissimilarity metric, based on Szekely and Rizzo [2004] and Cannon [2018].

Parameters
• tgt (xr.DataArray) – Target observations.

• sim (xr.DataArray) – Candidate observations. Must have the same dimensions as tgt.

• dims (sequence of 2 strings) – The name of the dimensions along which the variables and
observation points are listed. tgt and sim can have different length along the second one, but
must be equal along the first one. The result will keep all other dimensions.

• N (int) – If larger than 0, the number of observations to use in the score computation. The
points are taken evenly distributed along obs_dim.

• scale (bool) – Whether to scale the data before computing the score. If True, both arrays as
scaled according to the mean and standard deviation of tgt along obs_dim. (std computed
with ddof=1 and both statistics excluding NaN values).

Returns
xr.DataArray – e-score with dimensions not in dims.

16.1. xclim package 941

xclim Documentation, Release 0.39.0

Notes

Explanation adapted from the “energy” R package documentation. The e-distance between two clusters 𝐶𝑖, 𝐶𝑗

(tgt and sim) of size 𝑛𝑖, 𝑛𝑗 proposed by Székely and Rizzo (2004) is defined by:

𝑒(𝐶𝑖, 𝐶𝑗) =
1

2

𝑛𝑖𝑛𝑗

𝑛𝑖 + 𝑛𝑗
[2𝑀𝑖𝑗𝑀𝑖𝑖𝑀𝑗𝑗]

where

𝑀𝑖𝑗 =
1

𝑛𝑖𝑛𝑗

𝑛𝑖∑︁
𝑝=1

𝑛𝑗∑︁
𝑞=1

‖𝑋𝑖𝑝𝑋𝑗𝑞‖ .

‖ · ‖ denotes Euclidean norm, 𝑋𝑖𝑝 denotes the p-th observation in the i-th cluster.

The input scaling and the factor 1
2 in the first equation are additions of Cannon [2018] to the metric. With that

factor, the test becomes identical to the one defined by Baringhaus and Franz [2004]. This version is tested
against values taken from Alex Cannon’s MBC R package [Cannon, 2020].

References

Baringhaus and Franz [2004], Cannon [2018], Cannon [2020], Szekely and Rizzo [2004]

xclim.sdba.processing.from_additive_space(data: DataArray, lower_bound: Optional[str] = None,
upper_bound: Optional[str] = None, trans: Optional[str] =
None, units: Optional[str] = None)

Transform back to the physical space a variable that was transformed with to_additive_space.

Based on Alavoine and Grenier [2021]. If parameters are not present on the attributes of the data, they must be
all given are arguments.

Parameters
• data (xr.DataArray) – A variable that was transform by to_additive_space().

• lower_bound (str, optional) – The smallest physical value of the variable, as a Quantity
string. The final data will have no value smaller or equal to this bound. If None (default),
the sdba_transform_lower attribute is looked up on data.

• upper_bound (str, optional) – The largest physical value of the variable, as a Quantity string.
Only relevant for the logit transformation. The final data will have no value larger or equal
to this bound. If None (default), the sdba_transform_upper attribute is looked up on data.

• trans ({‘log’, ‘logit’}, optional) – The transformation to use. See notes. If None (the default),
the sdba_transform attribute is looked up on data.

• units (str, optional) – The units of the data before transformation to the additive space. If
None (the default), the sdba_transform_units attribute is looked up on data.

Returns
xr.DataArray – The physical variable. Attributes are conserved, even if some might be incor-
rect. Except units which are taken from sdba_transform_units if available. All sdba_transform*
attributes are deleted.

942 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Notes

Given a variable that is not usable in an additive adjustment, to_additive_space() applied a transformation
to a space where additive methods are sensible. Given 𝑌 the transformed variable, 𝑏− the lower physical bound
of that variable and 𝑏+ the upper physical bound, two back-transformations are currently implemented to get 𝑋 ,
the physical variable.

• log

𝑋 = 𝑒𝑌 + 𝑏−

• logit

𝑋 ′ =
1

1 + 𝑒−𝑌
𝑋 = 𝑋 * (𝑏+ − 𝑏−) + 𝑏−

See also:

to_additive_space
for the original transformation.

References

Alavoine and Grenier [2021]

xclim.sdba.processing.jitter(x: DataArray, lower: Optional[str] = None, upper: Optional[str] = None,
minimum: Optional[str] = None, maximum: Optional[str] = None)→
DataArray

Replace values under a threshold and values above another by a uniform random noise.

Not to be confused with R’s jitter, which adds uniform noise instead of replacing values.

Parameters
• x (xr.DataArray) – Values.

• lower (str, optional) – Threshold under which to add uniform random noise to values, a
quantity with units. If None, no jittering is performed on the lower end.

• upper (str, optional) – Threshold over which to add uniform random noise to values, a quan-
tity with units. If None, no jittering is performed on the upper end.

• minimum (str, optional) – Lower limit (excluded) for the lower end random noise, a quantity
with units. If None but lower is not None, 0 is used.

• maximum (str, optional) – Upper limit (excluded) for the upper end random noise, a quantity
with units. If upper is not None, it must be given.

Returns
xr.DataArray – Same as x but values < lower are replaced by a uniform noise in range (minimum,
lower) and values >= upper are replaced by a uniform noise in range [upper, maximum). The two
noise distributions are independent.

16.1. xclim package 943

xclim Documentation, Release 0.39.0

xclim.sdba.processing.jitter_over_thresh(x: DataArray, thresh: str, upper_bnd: str)→ DataArray
Replace values greater than threshold by a uniform random noise.

Do not confuse with R’s jitter, which adds uniform noise instead of replacing values.

Parameters
• x (xr.DataArray) – Values.

• thresh (str) – Threshold over which to add uniform random noise to values, a quantity with
units.

• upper_bnd (str) – Maximum possible value for the random noise, a quantity with units.

Returns
xr.DataArray

Notes

If thresh is low, this will change the mean value of x.

xclim.sdba.processing.jitter_under_thresh(x: DataArray, thresh: str)→ DataArray
Replace values smaller than threshold by a uniform random noise.

Do not confuse with R’s jitter, which adds uniform noise instead of replacing values.

Parameters
• x (xr.DataArray) – Values.

• thresh (str) – Threshold under which to add uniform random noise to values, a quantity with
units.

Returns
xr.DataArray

Notes

If thresh is high, this will change the mean value of x.

xclim.sdba.processing.normalize(data: DataArray, norm: Optional[DataArray] = None, *, group:
xclim.sdba.base.Grouper | str, kind: str = '+')→ tuple[xarray.DataArray,
xarray.DataArray]

Normalize an array by removing its mean.

Normalization if performed group-wise and according to kind.

Parameters
• data (xr.DataArray) – The variable to normalize.

• norm (xr.DataArray, optional) – If present, it is used instead of computing the norm again.

• group (str or Grouper) – Grouping information. See xclim.sdba.base.Grouper for de-
tails..

• kind ({‘+’, ‘’}*) – If kind is “+”, the mean is subtracted from the mean and if it is ‘*’, it is
divided from the data.

Returns
• xr.DataArray – Groupwise anomaly.

944 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• norm (xr.DataArray) – Mean over each group.

xclim.sdba.processing.reordering(ref: DataArray, sim: DataArray, group: str = 'time')→ Dataset
Reorders data in sim following the order of ref.

The rank structure of ref is used to reorder the elements of sim along dimension “time”, optionally doing the
operation group-wise.

Parameters
• sim (xr.DataArray) – Array to reorder.

• ref (xr.DataArray) – Array whose rank order sim should replicate.

• group (str) – Grouping information. See xclim.sdba.base.Grouper for details.

Returns
xr.Dataset – sim reordered according to ref’s rank order.

References

Cannon [2018]

xclim.sdba.processing.stack_variables(ds: Dataset, rechunk: bool = True, dim: str = 'multivar')
Stack different variables of a dataset into a single DataArray with a new “variables” dimension.

Variable attributes are all added as lists of attributes to the new coordinate, prefixed with “_”. Variables are
concatenated in the new dimension in alphabetical order, to ensure coherent behaviour with different datasets.

Parameters
• ds (xr.Dataset) – Input dataset.

• rechunk (bool) – If True (default), dask arrays are rechunked with variables : -1.

• dim (str) – Name of dimension along which variables are indexed.

Returns
xr.DataArray – The transformed variable. Attributes are conserved, even if some might be incor-
rect. Except units, which are replaced with “”. Old units are stored in sdba_transformation_units.
A sdba_transform attribute is added, set to the transformation method. sdba_transform_lower
and sdba_transform_upper are also set if the requested bounds are different from the defaults.

Array with variables stacked along dim dimension. Units are set to “”.

xclim.sdba.processing.standardize(da: DataArray, mean: Optional[DataArray] = None, std:
Optional[DataArray] = None, dim: str = 'time')→
tuple[xarray.DataArray | xarray.Dataset, xarray.DataArray,
xarray.DataArray]

Standardize a DataArray by centering its mean and scaling it by its standard deviation.

Either of both of mean and std can be provided if need be.

Returns the standardized data, the mean and the standard deviation.

xclim.sdba.processing.to_additive_space(data: DataArray, lower_bound: str, upper_bound:
Optional[str] = None, trans: str = 'log')

Transform a non-additive variable into an additive space by the means of a log or logit transformation.

Based on Alavoine and Grenier [2021].

Parameters

16.1. xclim package 945

xclim Documentation, Release 0.39.0

• data (xr.DataArray) – A variable that can’t usually be bias-adjusted by additive methods.

• lower_bound (str) – The smallest physical value of the variable, excluded, as a Quantity
string. The data should only have values strictly larger than this bound.

• upper_bound (str, optional) – The largest physical value of the variable, excluded, as a
Quantity string. Only relevant for the logit transformation. The data should only have values
strictly smaller than this bound.

• trans ({‘log’, ‘logit’}) – The transformation to use. See notes.

Notes

Given a variable that is not usable in an additive adjustment, this applies a transformation to a space where
additive methods are sensible. Given 𝑋 the variable, 𝑏− the lower physical bound of that variable and 𝑏+ the
upper physical bound, two transformations are currently implemented to get 𝑌 , the additive-ready variable. ln
is the natural logarithm.

• log

𝑌 = ln (𝑋 − 𝑏−)

Usually used for variables with only a lower bound, like precipitation (pr, prsn, etc) and daily
temperature range (dtr). Both have a lower bound of 0.

• logit

𝑋 ′ = (𝑋 − 𝑏−)/(𝑏+ − 𝑏−)𝑌 = ln

(︂
𝑋 ′

1−𝑋 ′

)︂
Usually used for variables with both a lower and a upper bound, like relative and specific humidity,
cloud cover fraction, etc.

This will thus produce Infinity and NaN values where 𝑋 == 𝑏− or 𝑋 == 𝑏+. We recommend using
jitter_under_thresh() and jitter_over_thresh() to remove those issues.

See also:

from_additive_space
for the inverse transformation.

jitter_under_thresh
Remove values exactly equal to the lower bound.

jitter_over_thresh
Remove values exactly equal to the upper bound.

946 Chapter 16. xclim

xclim Documentation, Release 0.39.0

References

Alavoine and Grenier [2021]

xclim.sdba.processing.uniform_noise_like(da: DataArray, low: float = 1e-06, high: float = 0.001)→
DataArray

Return a uniform noise array of the same shape as da.

Noise is uniformly distributed between low and high. Alternative method to jitter_under_thresh for avoiding
zeroes.

xclim.sdba.processing.unpack_moving_yearly_window(da: DataArray, dim: str = 'movingwin',
append_ends: bool = True)

Unpack a constructed moving window dataset to a normal timeseries, only keeping the central data.

Unpack DataArrays created with construct_moving_yearly_window() and recreate a timeseries data. If
append_ends is False, only keeps the central non-overlapping years. The final timeseries will be (window - step)
years shorter than the initial one. If append_ends is True, the time points from first and last windows will be
included in the final timeseries.

The time points that are not in a window will never be included in the final timeseries. The window length and
window step are inferred from the coordinates.

Parameters
• da (xr.DataArray) – As constructed by construct_moving_yearly_window().

• dim (str) – The window dimension name as given to the construction function.

• append_ends (bool) – Whether to append the ends of the timeseries If False, the final time-
series will be (window - step) years shorter than the initial one, but all windows will con-
tribute equally. If True, the year before the middle years of the first window and the years after
the middle years of the last window are appended to the middle years. The final timeseries
will be the same length as the initial timeseries if the windows span the whole timeseries.
The time steps that are not in a window will be left out of the final timeseries.

xclim.sdba.processing.unstack_variables(da: DataArray, dim: Optional[str] = None)
Unstack a DataArray created by stack_variables to a dataset.

Parameters
• da (xr.DataArray) – Array holding different variables along dim dimension.

• dim (str) – Name of dimension along which the variables are stacked. If not specified (de-
fault), dim is inferred from attributes of the coordinate.

Returns
xr.Dataset – Dataset holding each variable in an individual DataArray.

xclim.sdba.processing.unstandardize(da: DataArray, mean: DataArray, std: DataArray)
Rescale a standardized array by performing the inverse operation of standardize.

16.1. xclim package 947

xclim Documentation, Release 0.39.0

xclim.sdba.properties module

Properties Submodule

SDBA diagnostic tests are made up of statistical properties and measures. Properties are calculated on both simulation
and reference datasets. They collapse the time dimension to one value.

This framework for the diagnostic tests was inspired by the VALUE project. Statistical Properties is the xclim term for
‘indices’ in the VALUE project.

class xclim.sdba.properties.StatisticalProperty(**kwds)
Bases: Indicator

Base indicator class for statistical properties used for validating bias-adjusted outputs.

Statistical properties reduce the time dimension, sometimes adding a grouping dimension according to the passed
value of group (e.g.: group=’time.month’ means the loss of the time dimension and the addition of a month one).

Statistical properties are generally unit-generic. To use those indicator in a workflow, it is recommended to wrap
them with a virtual submodule, creating one specific indicator for each variable input (or at least for each possible
dimensionality).

Statistical properties may restrict the sampling frequency of the input, they usually take in a single variable
(named “da” in unit-generic instances).

classmethod _ensure_correct_parameters(parameters)
Ensure the parameters are correctly set and ordered.

Sets the correct variable default to be sure.

_postprocess(outs, das, params)
Squeeze group dim if needed.

_preprocess_and_checks(das, params)
Perform parent’s checks and also check if group is allowed.

allowed_groups = None

A list of allowed groupings. A subset of dayofyear, week, month, season or group. The latter stands for no
temporal grouping.

aspect = None

marginal, temporal, multivariate or spatial.

Type
The aspect the statistical property studies

get_measure()

Get the statistical measure indicator that is best used with this statistical property.

measure = 'xclim.sdba.measures.BIAS'

The default measure to use when comparing the properties of two datasets. This gives the registry id. See
get_measure().

realm = 'generic'

xclim.sdba.properties._acf(da: DataArray, *, lag: int = 1, group: str | xclim.sdba.base.Grouper =
'time.season')→ DataArray

Autocorrelation.

Autocorrelation with a lag over a time resolution and averaged over all years.

948 Chapter 16. xclim

http://www.value-cost.eu/

xclim Documentation, Release 0.39.0

Parameters
• da (xr.DataArray) – Variable on which to calculate the diagnostic.

• lag (int) – Lag.

• group ({‘time.season’, ‘time.month’}) – Grouping of the output. E.g. If ‘time.month’, the au-
tocorrelation is calculated over each month separately for all years. Then, the autocorrelation
for all Jan/Feb/. . . is averaged over all years, giving 12 outputs for each grid point.

Returns
xr.DataArray, [dimensionless] – Lag-{lag} autocorrelation of the variable over a {group.prop}
and averaged over all years.

See also:
statsmodels.tsa.stattools.acf

References

Alavoine and Grenier [2021]

xclim.sdba.properties._annual_cycle(da: DataArray, *, stat: str = 'absamp', window: int = 31, group: str |
xclim.sdba.base.Grouper = 'time')→ DataArray

Annual cycle statistics.

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Parameters
• da (xr.DataArray) – Variable on which to calculate the diagnostic.

• stat ({‘absamp’,’relamp’, ‘phase’, ‘min’, ‘max’, ‘asymmetry’}) –

– ‘absamp’ is the peak-to-peak amplitude. (max - min). In the same units as the input.

– ‘relamp’ is a relative percentage. 100 * (max - min) / mean (Recommended for precipita-
tion). Dimensionless.

– ‘phase’ is the day of year of the maximum.

– ‘max’ is the maximum. Same units as the input.

– ‘min’ is the minimum. Same units as the input.

– ‘asymmetry’ is the length of the period going from the minimum to the maximum. In
years between 0 and 1.

• window (int) – Size of the window for the moving average filtering. Deactivate this feature
by passing window = 1.

Returns
xr.DataArray, [same units as input or dimensionless or time] – {stat} of the annual cycle.

xclim.sdba.properties._annual_statistic(da: DataArray, *, stat: str = 'absamp', window: int = 31, group:
str | xclim.sdba.base.Grouper = 'time')

Annual range statistics.

Compute a statistic on each year of data and return the interannual average. This is similar to the annual cycle,
but with the statistic and average operations inverted.

Parameters

16.1. xclim package 949

https://www.statsmodels.org/stable/generated/statsmodels.tsa.stattools.acf.html#statsmodels.tsa.stattools.acf

xclim Documentation, Release 0.39.0

• da (xr.DataArray) – Data.

• stat ({‘absamp’, ‘relamp’, ‘phase’}) – The statistic to return.

• window (int) – Size of the window for the moving average filtering. Deactivate this feature
by passing window = 1.

Returns
xr.DataArray, [same units as input or dimensionless] – Average annual {stat}.

xclim.sdba.properties._corr_btw_var(da1: DataArray, da2: DataArray, *, corr_type: str = 'Spearman',
group: str | xclim.sdba.base.Grouper = 'time', output: str =
'correlation')→ DataArray

Correlation between two variables.

Spearman or Pearson correlation coefficient between two variables at the time resolution.

Parameters
• da1 (xr.DataArray) – First variable on which to calculate the diagnostic.

• da2 (xr.DataArray) – Second variable on which to calculate the diagnostic.

• corr_type ({‘Pearson’,’Spearman’}) – Type of correlation to calculate.

• output ({‘correlation’, ‘pvalue’}) – Wheter to return the correlation coefficient or the p-
value.

• group ({‘time’, ‘time.season’, ‘time.month’}) – Grouping of the output. Eg. For
‘time.month’, the correlation would be calculated on each month separately, but with all
the years together.

Returns
xr.DataArray, [dimensionless] – {corr_type} correlation coefficient

xclim.sdba.properties._first_eof(da: DataArray, *, dims=None, kind='+', thresh='1 mm/d', group='time')
First Empirical Orthogonal Function.

Through principal component analysis (PCA), compute the predominant empirical orthogonal function. The
temporal dimension is reduced. The Eof is multiplied by the sign of its mean to ensure coherent signs as much
as possible. Needs the eofs package to run.

Parameters
• da (xr.DataArray) – Data.

• dims (sequence of string, optional) – Name of the spatial dimensions. If None (default), all
dimensions except “time” are used.

• kind ({‘+’, ‘’}*) – Variable “kind”. If multiplicative, the zero values are set to very small
values and the PCA is performed over the logarithm of the data.

• thresh (str) – If kind is multiplicative, this is the “zero” threshold passed to xclim.sdba.
processing.jitter_under_thresh().

• group (str) – Useless for now.

Returns
xr.DataArray, [dimensionless] – First empirical orthogonal function

xclim.sdba.properties._mean(da: DataArray, *, group: str | xclim.sdba.base.Grouper = 'time')→ DataArray
Mean.

Mean over all years at the time resolution.

950 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Parameters
• da (xr.DataArray) – Variable on which to calculate the diagnostic.

• group ({‘time’, ‘time.season’, ‘time.month’}) – Grouping of the output. E.g. If ‘time.month’,
the temporal average is performed separately for each month.

Returns
xr.DataArray, [same as input] – Mean of the variable.

xclim.sdba.properties._quantile(da: DataArray, *, q: float = 0.98, group: str | xclim.sdba.base.Grouper =
'time')→ DataArray

Quantile.

Returns the quantile q of the distribution of the variable over all years at the time resolution.

Parameters
• da (xr.DataArray) – Variable on which to calculate the diagnostic.

• q (float) – Quantile to be calculated. Should be between 0 and 1.

• group ({‘time’, ‘time.season’, ‘time.month’}) – Grouping of the output. E.g. If ‘time.month’,
the quantile is computed separately for each month.

Returns
xr.DataArray, [same as input] – Quantile {q} of the variable.

xclim.sdba.properties._relative_frequency(da: DataArray, *, op: str = '>=', thresh: str = '1 mm d-1',
group: str | xclim.sdba.base.Grouper = 'time')→ DataArray

Relative Frequency.

Relative Frequency of days with variable respecting a condition (defined by an operation and a threshold) at the
time resolution. The relative freqency is the number of days that satisfy the condition divided by the total number
of days.

Parameters
• da (xr.DataArray) – Variable on which to calculate the diagnostic.

• op ({“>”, “<”, “>=”, “<=”}) – Operation to verify the condition. The condition is variable
{op} threshold.

• thresh (str) – Threshold on which to evaluate the condition.

• group ({‘time’, ‘time.season’, ‘time.month’}) – Grouping on the output. Eg. For
‘time.month’, the relative frequency would be calculated on each month, with all years in-
cluded.

Returns
xr.DataArray, [dimensionless] – Relative frequency of values {op} {thresh}.

xclim.sdba.properties._return_value(da: DataArray, *, period: int = 20, op: str = 'max', method: str =
'ML', group: str | xclim.sdba.base.Grouper = 'time')→ DataArray

Return value.

Return the value corresponding to a return period. On average, the return value will be exceeded (or not exceed
for op=’min’) every return period (e.g. 20 years). The return value is computed by first extracting the variable
annual maxima/minima, fitting a statistical distribution to the maxima/minima, then estimating the percentile
associated with the return period (eg. 95th percentile (1/20) for 20 years)

Parameters
• da (xr.DataArray) – Variable on which to calculate the diagnostic.

16.1. xclim package 951

xclim Documentation, Release 0.39.0

• period (int) – Return period. Number of years over which to check if the value is exceeded
(or not for op=’min’).

• op ({‘max’,’min’}) – Whether we are looking for a probability of exceedance (‘max’, right
side of the distribution) or a probability of non-exceedance (min, left side of the distribution).

• method ({“ML”, “PWM”}) – Fitting method, either maximum likelihood (ML) or prob-
ability weighted moments (PWM), also called L-Moments. The PWM method is usu-
ally more robust to outliers. However, it requires the lmoments3 libraryto be installed
from the develop branch. pip install git+https://github.com/OpenHydrology/
lmoments3.git@develop#egg=lmoments3

• group ({‘time’, ‘time.season’, ‘time.month’}) – Grouping of the output. A distribution of the
extremums is done for each group.

Returns
xr.DataArray, [same as input] – {period}-{group.prop_name} {op} return level of the variable.

xclim.sdba.properties._skewness(da: DataArray, *, group: str | xclim.sdba.base.Grouper = 'time')→
DataArray

Skewness.

Skewness of the distribution of the variable over all years at the time resolution.

Parameters
• da (xr.DataArray) – Variable on which to calculate the diagnostic.

• group ({‘time’, ‘time.season’, ‘time.month’}) – Grouping of the output. E.g. If ‘time.month’,
the skewness is performed separately for each month.

Returns
xr.DataArray, [dimensionless] – Skewness of the variable.

See also:
scipy.stats.skew

xclim.sdba.properties._spatial_correlogram(da: DataArray, *, dims=None, bins=100, group='time')
Spatial correlogram.

Compute the pairwise spatial correlations (Spearman) and averages them based on the pairwise distances. This
collapses the spatial and temporal dimensions and returns a distance bins dimension. Needs coordinates for
longitude and latitude. This property is heavy to compute and it will need to create a NxN array in memory
(outside of dask), where N is the number of spatial points. There are shortcuts for all-nan time-slices or spatial
points, but scipy’s nan-omitting algorithm is extremely slow, so the presence of any lone NaN will increase the
computation time.

Parameters
• da (xr.DataArray) – Data.

• dims (sequence of strings) – Name of the spatial dimensions. Once these are stacked, the
longitude and latitude coordinates must be 1D.

• bins – Same as argument bins from xarray.DataArray.groupby_bins(). If given as
a scalar, the equal-width bin limits are generated here (instead of letting xarray do it) to
improve performance.

• group (str) – Useless for now.

Returns
xr.DataArray, [dimensionless] – Inter-site correlogram as a function of distance.

952 Chapter 16. xclim

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html#scipy.stats.skew

xclim Documentation, Release 0.39.0

xclim.sdba.properties._spell_length_distribution(da: DataArray, *, method: str = 'amount', op: str =
'>=', thresh: str = '1 mm d-1', stat: str = 'mean',
group: str | xclim.sdba.base.Grouper = 'time',
resample_before_rl: bool = True)→ DataArray

Spell length distribution.

Statistic of spell length distribution when the variable respects a condition (defined by an operation, a
method and

a threshold).

Parameters
• da (xr.DataArray) – Variable on which to calculate the diagnostic.

• method ({‘amount’, ‘quantile’}) – Method to choose the threshold. ‘amount’: The threshold
is directly the quantity in {thresh}. It needs to have the same units as {da}. ‘quantile’: The
threshold is calculated as the quantile {thresh} of the distribution.

• op ({“>”, “<”, “>=”, “<=”}) – Operation to verify the condition for a spell. The condition
for a spell is variable {op} threshold.

• thresh (str or float) – Threshold on which to evaluate the condition to have a spell. Str with
units if the method is “amount”. Float of the quantile if the method is “quantile”.

• stat ({‘mean’,’max’,’min’}) – Statistics to apply to the resampled input at the {group} (e.g.
1-31 Jan 1980) and then over all years (e.g. Jan 1980-2010)

• group ({‘time’, ‘time.season’, ‘time.month’}) – Grouping of the output. E.g. If ‘time.month’,
the spell lengths are coputed separately for each month.

• resample_before_rl (bool) – Determines if the resampling should take place before or after
the run length encoding (or a similar algorithm) is applied to runs.

Returns
xr.DataArray, [units of the sampling frequency] – {stat} of spell length distribution when the
variable is {op} the {method} {thresh}.

xclim.sdba.properties._trend(da: DataArray, *, group: str | xclim.sdba.base.Grouper = 'time', output: str =
'slope')→ DataArray

Linear Trend.

The data is averaged over each time resolution and the interannual trend is returned. This function will rechunk
along the grouping dimension.

Parameters
• da (xr.DataArray) – Variable on which to calculate the diagnostic.

• output ({‘slope’, ‘pvalue’}) – Attributes of the linear regression to return. ‘slope’ is the slope
of the regression line. ‘pvalue’ is for a hypothesis test whose null hypothesis is that the slope
is zero, using Wald Test with t-distribution of the test statistic.

• group ({‘time’, ‘time.season’, ‘time.month’}) – Grouping on the output.

Returns
xr.DataArray, [units of input per year or dimensionless] – {output} of the interannual linear
trend.

See also:
scipy.stats.linregress, numpy.polyfit

16.1. xclim package 953

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html#scipy.stats.linregress
https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html#numpy.polyfit

xclim Documentation, Release 0.39.0

xclim.sdba.properties._var(da: DataArray, *, group: str | xclim.sdba.base.Grouper = 'time')→ DataArray
Variance.

Variance of the variable over all years at the time resolution.

Parameters
• da (xr.DataArray) – Variable on which to calculate the diagnostic.

• group ({‘time’, ‘time.season’, ‘time.month’}) – Grouping of the output. E.g. If ‘time.month’,
the variance is performed separately for each month.

Returns
xr.DataArray, [square of the input units] – Variance of the variable.

xclim.sdba.properties.acf(da: Union[DataArray, str] = 'da', *, lag: int = 1, group: str | Grouper =
'time.season', ds: Dataset = None)→ DataArray

Autocorrelation. (realm: generic)

Autocorrelation with a lag over a time resolution and averaged over all years.

Based on indice _acf().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• lag (number) – Lag. Default : 1.

• group ({‘time.month’, ‘time.season’}) – Grouping of the output. E.g. If ‘time.month’, the
autocorrelation is calculated over each month separately for all years. Then, the autocorre-
lation for all Jan/Feb/. . . is averaged over all years, giving 12 outputs for each grid point.
Default : time.season.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
acf (DataArray) – Lag-{lag} autocorrelation of the variable over a {group.prop} and averaged
over all years.

References

Alavoine and Grenier [2021]

xclim.sdba.properties.annual_cycle_amplitude(da: Union[DataArray, str] = 'da', *, window: int = 31,
group: str | Grouper = 'time', ds: Dataset = None)→
DataArray

Annual cycle statistics. (realm: generic)

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Based on indice _annual_cycle(). With injected parameters: stat=absamp.

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

954 Chapter 16. xclim

xclim Documentation, Release 0.39.0

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
annual_cycle_amplitude (DataArray) – {stat} of the annual cycle., with additional attributes:
cell_methods: time: mean time: range

xclim.sdba.properties.annual_cycle_asymmetry(da: Union[DataArray, str] = 'da', *, window: int = 31,
group: str | Grouper = 'time', ds: Dataset = None)→
DataArray

Annual cycle statistics. (realm: generic)

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Based on indice _annual_cycle(). With injected parameters: stat=asymmetry.

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
annual_cycle_asymmetry (DataArray) – {stat} of the annual cycle. [yr]

xclim.sdba.properties.annual_cycle_maximum(da: Union[DataArray, str] = 'da', *, window: int = 31,
group: str | Grouper = 'time', ds: Dataset = None)→
DataArray

Annual cycle statistics. (realm: generic)

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Based on indice _annual_cycle(). With injected parameters: stat=max.

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
annual_cycle_maximum (DataArray) – {stat} of the annual cycle., with additional attributes:
cell_methods: time: mean time: max

xclim.sdba.properties.annual_cycle_minimum(da: Union[DataArray, str] = 'da', *, window: int = 31,
group: str | Grouper = 'time', ds: Dataset = None)→
DataArray

Annual cycle statistics. (realm: generic)

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Based on indice _annual_cycle(). With injected parameters: stat=min.

16.1. xclim package 955

xclim Documentation, Release 0.39.0

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
annual_cycle_minimum (DataArray) – {stat} of the annual cycle., with additional attributes:
cell_methods: time: mean time: min

xclim.sdba.properties.annual_cycle_phase(da: Union[DataArray, str] = 'da', *, window: int = 31, group:
str | Grouper = 'time', ds: Dataset = None)→ DataArray

Annual cycle statistics. (realm: generic)

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Based on indice _annual_cycle(). With injected parameters: stat=phase.

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
annual_cycle_phase (DataArray) – {stat} of the annual cycle., with additional attributes:
cell_methods: time: range

xclim.sdba.properties.corr_btw_var(da1: Union[DataArray, str] = 'da1', da2: Union[DataArray, str] =
'da2', *, corr_type: str = 'Spearman', output: str = 'correlation', group:
str | Grouper = 'time', ds: Dataset = None)→ DataArray

Correlation between two variables. (realm: generic)

Spearman or Pearson correlation coefficient between two variables at the time resolution.

Based on indice _corr_btw_var().

Parameters
• da1 (str or DataArray) – First variable on which to calculate the diagnostic. Default : ds.da1.

• da2 (str or DataArray) – Second variable on which to calculate the diagnostic. Default :
ds.da2.

• corr_type ({‘Spearman’, ‘Pearson’}) – Type of correlation to calculate. Default : Spearman.

• output ({‘pvalue’, ‘correlation’}) – Wheter to return the correlation coefficient or the p-
value. Default : correlation.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. Eg. For
‘time.month’, the correlation would be calculated on each month separately, but with all
the years together. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

956 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Returns
corr_btw_var (DataArray) – {corr_type} correlation coefficient

xclim.sdba.properties.first_eof(da: Union[DataArray, str] = 'da', *, dims=None, kind='+', thresh='1
mm/d', group='time', ds: Dataset = None)→ DataArray

First Empirical Orthogonal Function. (realm: generic)

Through principal component analysis (PCA), compute the predominant empirical orthogonal function. The
temporal dimension is reduced. The Eof is multiplied by the sign of its mean to ensure coherent signs as much
as possible. Needs the eofs package to run.

Based on indice _first_eof().

Parameters
• da (str or DataArray) – Data. Default : ds.da.

• dims (Any) – Name of the spatial dimensions. If None (default), all dimensions except “time”
are used. Default : None.

• kind ({‘+’, ‘’}*) – Variable “kind”. If multiplicative, the zero values are set to very small
values and the PCA is performed over the logarithm of the data. Default : +.

• thresh (Any) – If kind is multiplicative, this is the “zero” threshold passed to xclim.sdba.
processing.jitter_under_thresh(). Default : 1 mm/d.

• group (Any) – Useless for now. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
first_eof (DataArray) – First empirical orthogonal function

xclim.sdba.properties.mean(da: Union[DataArray, str] = 'da', *, group: str | Grouper = 'time', ds: Dataset =
None)→ DataArray

Mean. (realm: generic)

Mean over all years at the time resolution.

Based on indice _mean().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. E.g. If ‘time.month’,
the temporal average is performed separately for each month. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
mean (DataArray) – Mean of the variable., with additional attributes: cell_methods: time: mean

xclim.sdba.properties.mean_annual_phase(da: Union[DataArray, str] = 'da', *, window: int = 31, group:
str | Grouper = 'time', ds: Dataset = None)→ DataArray

Annual range statistics. (realm: generic)

Compute a statistic on each year of data and return the interannual average. This is similar to the annual cycle,
but with the statistic and average operations inverted.

Based on indice _annual_statistic(). With injected parameters: stat=phase.

Parameters
• da (str or DataArray) – Data. Default : ds.da.

16.1. xclim package 957

xclim Documentation, Release 0.39.0

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
mean_annual_phase (DataArray) – Average annual {stat}.

xclim.sdba.properties.mean_annual_range(da: Union[DataArray, str] = 'da', *, window: int = 31, group:
str | Grouper = 'time', ds: Dataset = None)→ DataArray

Annual range statistics. (realm: generic)

Compute a statistic on each year of data and return the interannual average. This is similar to the annual cycle,
but with the statistic and average operations inverted.

Based on indice _annual_statistic(). With injected parameters: stat=absamp.

Parameters
• da (str or DataArray) – Data. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
mean_annual_range (DataArray) – Average annual {stat}.

xclim.sdba.properties.mean_annual_relative_range(da: Union[DataArray, str] = 'da', *, window: int =
31, group: str | Grouper = 'time', ds: Dataset =
None)→ DataArray

Annual range statistics. (realm: generic)

Compute a statistic on each year of data and return the interannual average. This is similar to the annual cycle,
but with the statistic and average operations inverted.

Based on indice _annual_statistic(). With injected parameters: stat=relamp.

Parameters
• da (str or DataArray) – Data. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
mean_annual_relative_range (DataArray) – Average annual {stat}. [%]

xclim.sdba.properties.quantile(da: Union[DataArray, str] = 'da', *, q: float = 0.98, group: str | Grouper =
'time', ds: Dataset = None)→ DataArray

Quantile. (realm: generic)

Returns the quantile q of the distribution of the variable over all years at the time resolution.

Based on indice _quantile().

958 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• q (number) – Quantile to be calculated. Should be between 0 and 1. Default : 0.98.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. E.g. If ‘time.month’,
the quantile is computed separately for each month. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
quantile (DataArray) – Quantile {q} of the variable.

xclim.sdba.properties.relative_annual_cycle_amplitude(da: Union[DataArray, str] = 'da', *, window:
int = 31, group: str | Grouper = 'time', ds:
Dataset = None)→ DataArray

Annual cycle statistics. (realm: generic)

A daily climatology is calculated and optionnaly smoothed with a (circular) moving average. The requested
statistic is returned.

Based on indice _annual_cycle(). With injected parameters: stat=relamp.

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• window (number) – Size of the window for the moving average filtering. Deactivate this
feature by passing window = 1. Default : 31.

• group (Any) – Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
relative_annual_cycle_amplitude (DataArray) – {stat} of the annual cycle. [%], with addi-
tional attributes: cell_methods: time: mean time: range

xclim.sdba.properties.relative_frequency(da: Union[DataArray, str] = 'da', *, op: str = '>=', thresh: str
= '1 mm d-1', group: str | Grouper = 'time', ds: Dataset =
None)→ DataArray

Relative Frequency. (realm: generic)

Relative Frequency of days with variable respecting a condition (defined by an operation and a threshold) at the
time resolution. The relative freqency is the number of days that satisfy the condition divided by the total number
of days.

Based on indice _relative_frequency().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• op ({‘<’, ‘>’, ‘<=’, ‘>=’}) – Operation to verify the condition. The condition is variable
{op} threshold. Default : >=.

• thresh (str) – Threshold on which to evaluate the condition. Default : 1 mm d-1.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping on the output. Eg. For
‘time.month’, the relative frequency would be calculated on each month, with all years in-
cluded. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

16.1. xclim package 959

xclim Documentation, Release 0.39.0

Returns
relative_frequency (DataArray) – Relative frequency of values {op} {thresh}.

xclim.sdba.properties.return_value(da: Union[DataArray, str] = 'da', *, period: int = 20, op: str = 'max',
method: str = 'ML', group: str | Grouper = 'time', ds: Dataset = None)
→ DataArray

Return value. (realm: generic)

Return the value corresponding to a return period. On average, the return value will be exceeded (or not exceed
for op=’min’) every return period (e.g. 20 years). The return value is computed by first extracting the variable
annual maxima/minima, fitting a statistical distribution to the maxima/minima, then estimating the percentile
associated with the return period (eg. 95th percentile (1/20) for 20 years)

Based on indice _return_value().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• period (number) – Return period. Number of years over which to check if the value is
exceeded (or not for op=’min’). Default : 20.

• op ({‘max’, ‘min’}) – Whether we are looking for a probability of exceedance (‘max’, right
side of the distribution) or a probability of non-exceedance (min, left side of the distribution).
Default : max.

• method ({‘ML’, ‘PWM’}) – Fitting method, either maximum likelihood (ML) or prob-
ability weighted moments (PWM), also called L-Moments. The PWM method is usu-
ally more robust to outliers. However, it requires the lmoments3 libraryto be installed
from the develop branch. pip install git+https://github.com/OpenHydrology/
lmoments3.git@develop#egg=lmoments3 Default : ML.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. A distribution of the
extremums is done for each group. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
return_value (DataArray) – {period}-{group.prop_name} {op} return level of the variable.

xclim.sdba.properties.skewness(da: Union[DataArray, str] = 'da', *, group: str | Grouper = 'time', ds:
Dataset = None)→ DataArray

Skewness. (realm: generic)

Skewness of the distribution of the variable over all years at the time resolution.

Based on indice _skewness().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. E.g. If ‘time.month’,
the skewness is performed separately for each month. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
skewness (DataArray) – Skewness of the variable.

xclim.sdba.properties.spatial_correlogram(da: Union[DataArray, str] = 'da', *, dims=None, bins=100,
group='time', ds: Dataset = None)→ DataArray

960 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Spatial correlogram. (realm: generic)

Compute the pairwise spatial correlations (Spearman) and averages them based on the pairwise distances. This
collapses the spatial and temporal dimensions and returns a distance bins dimension. Needs coordinates for
longitude and latitude. This property is heavy to compute and it will need to create a NxN array in memory
(outside of dask), where N is the number of spatial points. There are shortcuts for all-nan time-slices or spatial
points, but scipy’s nan-omitting algorithm is extremely slow, so the presence of any lone NaN will increase the
computation time.

Based on indice _spatial_correlogram().

Parameters
• da (str or DataArray) – Data. Default : ds.da.

• dims (Any) – Name of the spatial dimensions. Once these are stacked, the longitude and
latitude coordinates must be 1D. Default : None.

• bins (Any) – Same as argument bins from xarray.DataArray.groupby_bins(). If given
as a scalar, the equal-width bin limits are generated here (instead of letting xarray do it) to
improve performance. Default : 100.

• group (Any) – Useless for now. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
spatial_correlogram (DataArray) – Inter-site correlogram as a function of distance.

xclim.sdba.properties.spell_length_distribution(da: Union[DataArray, str] = 'da', *, method: str =
'amount', op: str = '>=', thresh: str = '1 mm d-1', stat:
str = 'mean', group: str | Grouper = 'time',
resample_before_rl: bool = True, ds: Dataset =
None)→ DataArray

Spell length distribution. (realm: generic)

Statistic of spell length distribution when the variable respects a condition (defined by an operation, a method
and a threshold).

Based on indice _spell_length_distribution().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• method ({‘quantile’, ‘amount’}) – Method to choose the threshold. ‘amount’: The threshold
is directly the quantity in {thresh}. It needs to have the same units as {da}. ‘quantile’: The
threshold is calculated as the quantile {thresh} of the distribution. Default : amount.

• op ({‘<’, ‘>’, ‘<=’, ‘>=’}) – Operation to verify the condition for a spell. The condition for
a spell is variable {op} threshold. Default : >=.

• thresh (str) – Threshold on which to evaluate the condition to have a spell. Str with units if
the method is “amount”. Float of the quantile if the method is “quantile”. Default : 1 mm
d-1.

• stat ({‘max’, ‘mean’, ‘min’}) – Statistics to apply to the resampled input at the {group} (e.g.
1-31 Jan 1980) and then over all years (e.g. Jan 1980-2010) Default : mean.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. E.g. If ‘time.month’,
the spell lengths are coputed separately for each month. Default : time.

16.1. xclim package 961

xclim Documentation, Release 0.39.0

• resample_before_rl (boolean) – Determines if the resampling should take place before or
after the run length encoding (or a similar algorithm) is applied to runs. Default : True.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
spell_length_distribution (DataArray) – {stat} of spell length distribution when the variable is
{op} the {method} {thresh}.

xclim.sdba.properties.trend(da: Union[DataArray, str] = 'da', *, output: str = 'slope', group: str | Grouper =
'time', ds: Dataset = None)→ DataArray

Linear Trend. (realm: generic)

The data is averaged over each time resolution and the interannual trend is returned. This function will rechunk
along the grouping dimension.

Based on indice _trend().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• output ({‘pvalue’, ‘slope’}) – Attributes of the linear regression to return. ‘slope’ is the slope
of the regression line. ‘pvalue’ is for a hypothesis test whose null hypothesis is that the slope
is zero, using Wald Test with t-distribution of the test statistic. Default : slope.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping on the output. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
trend (DataArray) – {output} of the interannual linear trend.

xclim.sdba.properties.var(da: Union[DataArray, str] = 'da', *, group: str | Grouper = 'time', ds: Dataset =
None)→ DataArray

Variance. (realm: generic)

Variance of the variable over all years at the time resolution.

Based on indice _var().

Parameters
• da (str or DataArray) – Variable on which to calculate the diagnostic. Default : ds.da.

• group ({‘time.month’, ‘time’, ‘time.season’}) – Grouping of the output. E.g. If ‘time.month’,
the variance is performed separately for each month. Default : time.

• ds (Dataset, optional) – A dataset with the variables given by name. Default : None.

Returns
var (DataArray) – Variance of the variable., with additional attributes: cell_methods: time: var

962 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.sdba.utils module

Statistical Downscaling and Bias Adjustment Utilities

xclim.sdba.utils._ecdf_1d(x, value)

xclim.sdba.utils._interp_on_quantiles_1D(newx, oldx, oldy, method, extrap)

xclim.sdba.utils._interp_on_quantiles_2D(newx, newg, oldx, oldy, oldg, method, extrap)

xclim.sdba.utils._pairwise_spearman(da, dims)
Area-averaged pairwise temporal correlation.

With skipna-shortcuts for cases where all times or all points are NaN.

xclim.sdba.utils.add_cyclic_bounds(da: DataArray, att: str, cyclic_coords: bool = True)→
xarray.DataArray | xarray.Dataset

Reindex an array to include the last slice at the beginning and the first at the end.

This is done to allow interpolation near the end-points.

Parameters
• da (xr.DataArray or xr.Dataset) – An array

• att (str) – The name of the coordinate to make cyclic

• cyclic_coords (bool) – If True, the coordinates are made cyclic as well, if False, the new
values are guessed using the same step as their neighbour.

Returns
xr.DataArray or xr.Dataset – da but with the last element along att prepended and the last one
appended.

xclim.sdba.utils.apply_correction(x: DataArray, factor: DataArray, kind: Optional[str] = None)→
DataArray

Apply the additive or multiplicative correction/adjustment factors.

If kind is not given, default to the one stored in the “kind” attribute of factor.

xclim.sdba.utils.best_pc_orientation_full(R: ndarray, Hinv: ndarray, Rmean: ndarray, Hmean:
ndarray, hist: ndarray)→ ndarray

Return best orientation vector for A according to the method of Alavoine and Grenier [2021].

Eigenvectors returned by pc_matrix do not have a defined orientation. Given an inverse transform Hinv, a trans-
form R, the actual and target origins Hmean and Rmean and the matrix of training observations hist, this com-
putes a scenario for all possible orientations and return the orientation that maximizes the Spearman correlation
coefficient of all variables. The correlation is computed for each variable individually, then averaged.

This trick is explained in Alavoine and Grenier [2021]. See docstring of sdba.adjustment.
PrincipalComponentAdjustment().

Parameters
• R (np.ndarray) – MxM Matrix defining the final transformation.

• Hinv (np.ndarray) – MxM Matrix defining the (inverse) first transformation.

• Rmean (np.ndarray) – M vector defining the target distribution center point.

• Hmean (np.ndarray) – M vector defining the original distribution center point.

16.1. xclim package 963

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

• hist (np.ndarray) – MxN matrix of all training observations of the M variables/sites.

Returns
np.ndarray – M vector of orientation correction (1 or -1).

References

Alavoine and Grenier [2021]

xclim.sdba.utils.best_pc_orientation_simple(R: ndarray, Hinv: ndarray, val: float = 1000)→ ndarray
Return best orientation vector according to a simple test.

Eigenvectors returned by pc_matrix do not have a defined orientation. Given an inverse transform Hinv and a
transform R, this returns the orientation minimizing the projected distance for a test point far from the origin.

This trick is inspired by the one exposed in Hnilica et al. [2017]. For each possible orientation vector, the
test point is reprojected and the distance from the original point is computed. The orientation minimizing that
distance is chosen.

Parameters
• R (np.ndarray) – MxM Matrix defining the final transformation.

• Hinv (np.ndarray) – MxM Matrix defining the (inverse) first transformation.

• val (float) – The coordinate of the test point (same for all axes). It should be much greater
than the largest furthest point in the array used to define B.

Returns
np.ndarray – Mx1 vector of orientation correction (1 or -1).

See also:
sdba.adjustment.PrincipalComponentAdjustment

References

Hnilica, Hanel, and Pus [2017]

xclim.sdba.utils.broadcast(grouped: DataArray, x: DataArray, *, group: str | xclim.sdba.base.Grouper =
'time', interp: str = 'nearest', sel: Optional[Mapping[str, DataArray]] = None)
→ DataArray

Broadcast a grouped array back to the same shape as a given array.

Parameters
• grouped (xr.DataArray) – The grouped array to broadcast like x.

• x (xr.DataArray) – The array to broadcast grouped to.

• group (str or Grouper) – Grouping information. See xclim.sdba.base.Grouper for de-
tails.

• interp ({‘nearest’, ‘linear’, ‘cubic’}) – The interpolation method to use,

• sel (Mapping[str, xr.DataArray]) – Mapping of grouped coordinates to x coordinates (other
than the grouping one).

Returns
xr.DataArray

964 Chapter 16. xclim

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

xclim.sdba.utils.copy_all_attrs(ds: xarray.Dataset | xarray.DataArray, ref: xarray.Dataset |
xarray.DataArray)

Copy all attributes of ds to ref, including attributes of shared coordinates, and variables in the case of Datasets.

xclim.sdba.utils.ecdf(x: DataArray, value: float, dim: str = 'time')→ DataArray
Return the empirical CDF of a sample at a given value.

Parameters
• x (array) – Sample.

• value (float) – The value within the support of x for which to compute the CDF value.

• dim (str) – Dimension name.

Returns
xr.DataArray – Empirical CDF.

xclim.sdba.utils.ensure_longest_doy(func: Callable)→ Callable
Ensure that selected day is the longest day of year for x and y dims.

xclim.sdba.utils.equally_spaced_nodes(n: int, eps: Optional[float] = None)→ array
Return nodes with n equally spaced points within [0, 1], optionally adding two end-points.

Parameters
• n (int) – Number of equally spaced nodes.

• eps (float, optional) – Distance from 0 and 1 of added end nodes. If None (default), do not
add endpoints.

Returns
np.array – Nodes between 0 and 1. Nodes can be seen as the middle points of n equal bins.

Warning: Passing a small eps will effectively clip the scenario to the bounds of the reference on the histor-
ical period in most cases. With normal quantile mapping algorithms, this can give strange result when the
reference does not show as many extremes as the simulation does.

Notes

For n=4, eps=0 : 0—x——x——x——x—1

xclim.sdba.utils.get_clusters(data: DataArray, u1, u2, dim: str = 'time')→ Dataset
Get cluster count, maximum and position along a given dim.

See get_clusters_1d. Used by adjustment.ExtremeValues.

Parameters
• data (1D ndarray) – Values to get clusters from.

• u1 (float) – Extreme value threshold, at least one value in the cluster must exceed this.

• u2 (float) – Cluster threshold, values above this can be part of a cluster.

• dim (str) – Dimension name.

Returns
xr.Dataset –

With variables,

16.1. xclim package 965

xclim Documentation, Release 0.39.0

• nclusters : Number of clusters for each point (with dim reduced), int

• start : First index in the cluster (dim reduced, new cluster), int

• end : Last index in the cluster, inclusive (dim reduced, new cluster), int

• maxpos : Index of the maximal value within the cluster (dim reduced, new cluster), int

• maximum : Maximal value within the cluster (dim reduced, new cluster), same dtype as
data.

For start, end and maxpos, -1 means NaN and should always correspond to a NaN in maximum.
The length along cluster is half the size of “dim”, the maximal theoretical number of clusters.

xclim.sdba.utils.get_clusters_1d(data: ndarray, u1: float, u2: float)→ tuple[numpy.array, numpy.array,
numpy.array, numpy.array]

Get clusters of a 1D array.

A cluster is defined as a sequence of values larger than u2 with at least one value larger than u1.

Parameters
• data (1D ndarray) – Values to get clusters from.

• u1 (float) – Extreme value threshold, at least one value in the cluster must exceed this.

• u2 (float) – Cluster threshold, values above this can be part of a cluster.

Returns
(np.array, np.array, np.array, np.array)

References

getcluster of Extremes.jl (Jalbert [2022]).

xclim.sdba.utils.get_correction(x: DataArray, y: DataArray, kind: str)→ DataArray
Return the additive or multiplicative correction/adjustment factors.

xclim.sdba.utils.interp_on_quantiles(newx: DataArray, xq: DataArray, yq: DataArray, *, group: str |
xclim.sdba.base.Grouper = 'time', method: str = 'linear',
extrapolation: str = 'constant')

Interpolate values of yq on new values of x.

Interpolate in 2D with griddata() if grouping is used, in 1D otherwise, with interp1d. Any NaNs in xq or
yq are removed from the input map. Similarly, NaNs in newx are left NaNs.

Parameters
• newx (xr.DataArray) – The values at which to evaluate yq. If group has group informa-

tion, new should have a coordinate with the same name as the group name In that case, 2D
interpolation is used.

• xq, yq (xr.DataArray) – Coordinates and values on which to interpolate. The interpolation
is done along the “quantiles” dimension if group has no group information. If it does, inter-
polation is done in 2D on “quantiles” and on the group dimension.

• group (str or Grouper) – The dimension and grouping information. (ex: “time” or
“time.month”). Defaults to “time”.

• method ({‘nearest’, ‘linear’, ‘cubic’}) – The interpolation method.

• extrapolation ({‘constant’, ‘nan’}) – The extrapolation method used for values of newx out-
side the range of xq. See notes.

966 Chapter 16. xclim

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d

xclim Documentation, Release 0.39.0

Notes

Extrapolation methods:

• ‘nan’ : Any value of newx outside the range of xq is set to NaN.

• ‘constant’ : Values of newx smaller than the minimum of xq are set to the first value of yq and those larger
than the maximum, set to the last one (first and last non-nan values along the “quantiles” dimension). When
the grouping is “time.month”, these limits are linearly interpolated along the month dimension.

xclim.sdba.utils.invert(x: DataArray, kind: Optional[str] = None)→ DataArray
Invert a DataArray either by addition (-x) or by multiplication (1/x).

If kind is not given, default to the one stored in the “kind” attribute of x.

xclim.sdba.utils.map_cdf(ds: Dataset, *, y_value: DataArray, dim)

Return the value in x with the same CDF as y_value in y.

This function is meant to be wrapped in a Grouper.apply.

Parameters
• ds (xr.Dataset) – Variables: x, Values from which to pick, y, Reference values giving the

ranking

• y_value (float, array) – Value within the support of y.

• dim (str) – Dimension along which to compute quantile.

Returns
array – Quantile of x with the same CDF as y_value in y.

xclim.sdba.utils.map_cdf_1d(x, y, y_value)
Return the value in x with the same CDF as y_value in y.

xclim.sdba.utils.pc_matrix(arr: numpy.ndarray | dask.array.core.Array)→ numpy.ndarray |
dask.array.core.Array

Construct a Principal Component matrix.

This matrix can be used to transform points in arr to principal components coordinates. Note that this function
does not manage NaNs; if a single observation is null, all elements of the transformation matrix involving that
variable will be NaN.

Parameters
arr (numpy.ndarray or dask.array.Array) – 2D array (M, N) of the M coordinates of N points.

Returns
numpy.ndarray or dask.array.Array – MxM Array of the same type as arr.

xclim.sdba.utils.rand_rot_matrix(crd: DataArray, num: int = 1, new_dim: Optional[str] = None)→
DataArray

Generate random rotation matrices.

Rotation matrices are members of the SO(n) group, where n is the matrix size (crd.size). They can be character-
ized as orthogonal matrices with determinant 1. A square matrix 𝑅 is a rotation matrix if and only if 𝑅𝑡 = 𝑅1

and det𝑅 = 1.

Parameters
• crd (xr.DataArray) – 1D coordinate DataArray along which the rotation occurs. The output

will be square with the same coordinate replicated, the second renamed to new_dim.

16.1. xclim package 967

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

• num (int) – If larger than 1 (default), the number of matrices to generate, stacked along a
“matrices” dimension.

• new_dim (str) – Name of the new “prime” dimension, defaults to the same name as crd +
“_prime”.

Returns
xr.DataArray – float, NxN if num = 1, numxNxN otherwise, where N is the length of crd.

References

Mezzadri [2007]

xclim.sdba.utils.rank(da: DataArray, dim: str = 'time', pct: bool = False)→ DataArray
Ranks data along a dimension.

Replicates xr.DataArray.rank but as a function usable in a Grouper.apply(). Xarray’s docstring is below:

Equal values are assigned a rank that is the average of the ranks that would have been otherwise assigned to all
the values within that set. Ranks begin at 1, not 0. If pct, computes percentage ranks.

Parameters
• da (xr.DataArray) – Source array.

• dim (str, hashable) – Dimension over which to compute rank.

• pct (bool, optional) – If True, compute percentage ranks, otherwise compute integer ranks.

Returns
DataArray – DataArray with the same coordinates and dtype ‘float64’.

Notes

The bottleneck library is required. NaNs in the input array are returned as NaNs.

xclim.testing package

Helpers for testing xclim.

Submodules

xclim.testing.utils module

Testing and tutorial utilities’ module.

xclim.testing.utils.get_all_CMIP6_variables(get_cell_methods=True)

xclim.testing.utils.list_datasets(github_repo='Ouranosinc/xclim-testdata', branch='main')
Return a DataFrame listing all xclim test datasets available on the GitHub repo for the given branch.

The result includes the filepath, as passed to open_dataset, the file size (in KB) and the html url to the file. This
uses an unauthenticated call to GitHub’s REST API, so it is limited to 60 requests per hour (per IP). A single call
of this function triggers one request per subdirectory, so use with parsimony.

968 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.testing.utils.list_input_variables(submodules: Optional[Sequence[str]] = None, realms:
Optional[Sequence[str]] = None)→ dict

List all possible variables names used in xclim’s indicators.

Made for development purposes. Parses all indicator parameters with the xclim.core.utils.InputKind.
VARIABLE or OPTIONAL_VARIABLE kinds.

Parameters
• realms (Sequence of str, optional) – Restrict the output to indicators of a list of realms only.

Default None, which parses all indicators.

• submodules (str, optional) – Restrict the output to indicators of a list of submodules only.
Default None, which parses all indicators.

Returns
dict – A mapping from variable name to indicator class.

xclim.testing.utils.open_dataset(name: str | os.PathLike, suffix: Optional[str] = None, dap_url:
Optional[str] = None, github_url: str =
'https://github.com/Ouranosinc/xclim-testdata', branch: str = 'main',
cache: bool = True, cache_dir: Path =
PosixPath('/home/docs/.xclim_testing_data'), **kwargs)→ Dataset

Open a dataset from the online GitHub-like repository.

If a local copy is found then always use that to avoid network traffic.

Parameters
• name (str or os.PathLike) – Name of the file containing the dataset.

• suffix (str, optional) – If no suffix is given, assumed to be netCDF (‘.nc’ is appended). For
no suffix, set “”.

• dap_url (str, optional) – URL to OPeNDAP folder where the data is stored. If supplied,
supersedes github_url.

• github_url (str) – URL to GitHub repository where the data is stored.

• branch (str, optional) – For GitHub-hosted files, the branch to download from.

• cache_dir (Path) – The directory in which to search for and write cached data.

• cache (bool) – If True, then cache data locally for use on subsequent calls.

• kwargs – For NetCDF files, keywords passed to xarray.open_dataset().

Returns
Union[Dataset, Path]

See also:
xarray.open_dataset

xclim.testing.utils.publish_release_notes(style: str = 'md', file: Optional[Union[PathLike, StringIO,
TextIO]] = None)→ str | None

Format release history in Markdown or ReStructuredText.

Parameters
• style ({“rst”, “md”}) – Use ReStructuredText formatting or Markdown. Default: Mark-

down.

• file ({os.PathLike, StringIO, TextIO}, optional) – If provided, prints to the given file-like
object. Otherwise, returns a string.

16.1. xclim package 969

xclim Documentation, Release 0.39.0

Returns
str, optional

Notes

This function is solely for development purposes.

xclim.testing.utils.show_versions(file: Optional[Union[PathLike, StringIO, TextIO]] = None, deps:
Optional[list] = None)→ str | None

Print the versions of xclim and its dependencies.

Parameters
• file ({os.PathLike, StringIO, TextIO}, optional) – If provided, prints to the given file-like

object. Otherwise, returns a string.

• deps (list, optional) – A list of dependencies to gather and print version information from.
Otherwise, prints xclim dependencies.

Returns
str or None

xclim.testing.utils.update_variable_yaml(filename=None, xclim_needs_only=True)
Update a variable from a yaml file.

16.1.2 Submodules

16.1.3 xclim.analog module

Spatial analogues are maps showing which areas have a present-day climate that is analogous to the future climate of
a given place. This type of map can be useful for climate adaptation to see how well regions are coping today under
specific climate conditions. For example, officials from a city located in a temperate region that may be expecting
more heatwaves in the future can learn from the experience of another city where heatwaves are a common occurrence,
leading to more proactive intervention plans to better deal with new climate conditions.

Spatial analogues are estimated by comparing the distribution of climate indices computed at the target location over the
future period with the distribution of the same climate indices computed over a reference period for multiple candidate
regions. A number of methodological choices thus enter the computation:

• Climate indices of interest,

• Metrics measuring the difference between both distributions,

• Reference data from which to compute the base indices,

• A future climate scenario to compute the target indices.

The climate indices chosen to compute the spatial analogues are usually annual values of indices relevant to the intended
audience of these maps. For example, in the case of the wine grape industry, the climate indices examined could include
the length of the frost-free season, growing degree-days, annual winter minimum temperature and annual number of
very cold days [Roy et al., 2017].

See Spatial Analogues examples.

970 Chapter 16. xclim

xclim Documentation, Release 0.39.0

Methods to compute the (dis)similarity between samples

This module implements all methods described in Grenier, Parent, Huard, Anctil, and Chaumont [2013] to measure
the dissimilarity between two samples, plus the Székely-Rizzo energy distance, some of these algorithms can be used
to test whether two samples have been drawn from the same distribution. Here, they are used in finding areas with
analogue climate conditions to a target climate:

• Standardized Euclidean distance

• Nearest Neighbour distance

• Zech-Aslan energy statistic

• Székely-Rizzo energy distance

• Friedman-Rafsky runs statistic

• Kolmogorov-Smirnov statistic

• Kullback-Leibler divergence

All methods accept arrays, the first is the reference (n, D) and the second is the candidate (m, D). Where the climate
indicators vary along D and the distribution dimension along n or m. All methods output a single float. See their
documentation in Analogue metrics API .

Warning: Some methods are scale-invariant and others are not. This is indicated in the docstring of the methods
as it can change the results significantly. In most cases, scale-invariance is desirable and inputs may need to be
scaled beforehand for scale-dependent methods.

References

Roy, Grenier, Barriault, Logan, Blondlot, Bourgeois, and Chaumont [2017] Grenier, Parent, Huard, Anctil, and Chau-
mont [2013]

xclim.analog.friedman_rafsky(x: ndarray, y: ndarray)→ float
Compute a dissimilarity metric based on the Friedman-Rafsky runs statistics.

The algorithm builds a minimal spanning tree (the subset of edges connecting all points that minimizes the total
edge length) then counts the edges linking points from the same distribution. This method is scale-dependent.

Parameters
• x (np.ndarray (n,d)) – Reference sample.

• y (np.ndarray (m,d)) – Candidate sample.

Returns
float – Friedman-Rafsky dissimilarity metric ranging from 0 to (m+n-1)/(m+n).

16.1. xclim package 971

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

References

Friedman and Rafsky [1979]

xclim.analog.kldiv(x: ndarray, y: ndarray, *, k: Union[int, Sequence[int]] = 1)→ Union[float,
Sequence[float]]

Compute the Kullback-Leibler divergence between two multivariate samples.

where 𝑟𝑘(𝑥𝑖) and 𝑠𝑘(𝑥𝑖) are, respectively, the euclidean distance to the kth neighbour of 𝑥𝑖 in the x array (ex-
cepting 𝑥𝑖) and in the y array. This method is scale-dependent.

Parameters
• x (np.ndarray (n,d)) – Samples from distribution P, which typically represents the true dis-

tribution (reference).

• y (np.ndarray (m,d)) – Samples from distribution Q, which typically represents the approx-
imate distribution (candidate)

• k (int or sequence) – The kth neighbours to look for when estimating the density of the
distributions. Defaults to 1, which can be noisy.

Returns
float or sequence – The estimated Kullback-Leibler divergence D(P||Q) computed from the dis-
tances to the kth neighbour.

Notes

In information theory, the Kullback–Leibler divergence [Perez-Cruz, 2008] is a non-symmetric measure of the
difference between two probability distributions P and Q, where P is the “true” distribution and Q an approxi-
mation. This nuance is important because 𝐷(𝑃 ||𝑄) is not equal to 𝐷(𝑄||𝑃).

For probability distributions P and Q of a continuous random variable, the K–L divergence is defined as:

𝐷𝐾𝐿(𝑃 ||𝑄) =

∫︁
𝑝(𝑥) log

(︂
𝑝(𝑥)

𝑞(𝑥)

)︂
𝑑𝑥

This formula assumes we have a representation of the probability densities 𝑝(𝑥) and 𝑞(𝑥). In many cases, we
only have samples from the distribution, and most methods first estimate the densities from the samples and then
proceed to compute the K-L divergence. In Perez-Cruz [2008], the author proposes an algorithm to estimate the
K-L divergence directly from the sample using an empirical CDF. Even though the CDFs do not converge to their
true values, the paper proves that the K-L divergence almost surely does converge to its true value.

References

Perez-Cruz [2008]

xclim.analog.kolmogorov_smirnov(x: ndarray, y: ndarray)→ float
Compute the Kolmogorov-Smirnov statistic applied to two multivariate samples as described by Fasano and
Franceschini.

This method is scale-dependent.

Parameters
• x (np.ndarray (n,d)) – Reference sample.

• y (np.ndarray (m,d)) – Candidate sample.

972 Chapter 16. xclim

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

Returns
float – Kolmogorov-Smirnov dissimilarity metric ranging from 0 to 1.

References

Fasano and Franceschini [1987]

xclim.analog.metric(func)
Register a metric function in the metrics mapping and add some preparation/checking code.

All metric functions accept 2D inputs. This reshapes 1D inputs to (n, 1) and (m, 1). All metric functions are
invalid when any non-finite values are present in the inputs.

xclim.analog.nearest_neighbor(x: ndarray, y: ndarray)→ ndarray
Compute a dissimilarity metric based on the number of points in the pooled sample whose nearest neighbor
belongs to the same distribution.

This method is scale-invariant.

Parameters
• x (np.ndarray (n,d)) – Reference sample.

• y (np.ndarray (m,d)) – Candidate sample.

Returns
float – Nearest-Neighbor dissimilarity metric ranging from 0 to 1.

References

Henze [1988]

xclim.analog.seuclidean(x: ndarray, y: ndarray)→ float
Compute the Euclidean distance between the mean of a multivariate candidate sample with respect to the mean
of a reference sample.

This method is scale-invariant.

Parameters
• x (np.ndarray (n,d)) – Reference sample.

• y (np.ndarray (m,d)) – Candidate sample.

Returns
float – Standardized Euclidean Distance between the mean of the samples ranging from 0 to
infinity.

Notes

This metric considers neither the information from individual points nor the standard deviation of the candidate
distribution.

16.1. xclim package 973

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

References

Veloz, Williams, Lorenz, Notaro, Vavrus, and Vimont [2012]

xclim.analog.spatial_analogs(target: Dataset, candidates: Dataset, dist_dim: Union[str, Sequence[str]] =
'time', method: str = 'kldiv', **kwargs)

Compute dissimilarity statistics between target points and candidate points.

Spatial analogues based on the comparison of climate indices. The algorithm compares the distribution of the
reference indices with the distribution of spatially distributed candidate indices and returns a value measuring
the dissimilarity between both distributions over the candidate grid.

Parameters
• target (xr.Dataset) – Dataset of the target indices. Only indice variables should be included

in the dataset’s data_vars. They should have only the dimension(s) dist_dim `in common
with `candidates.

• candidates (xr.Dataset) – Dataset of the candidate indices. Only indice variables should be
included in the dataset’s data_vars.

• dist_dim (str) – The dimension over which the distributions are constructed. This can be a
multi-index dimension.

• method ({‘seuclidean’, ‘nearest_neighbor’, ‘zech_aslan’, ‘kolmogorov_smirnov’, ‘fried-
man_rafsky’, ‘kldiv’}) – Which method to use when computing the dissimilarity statistic.

• **kwargs – Any other parameter passed directly to the dissimilarity method.

Returns
xr.DataArray – The dissimilarity statistic over the union of candidates’ and target’s dimensions.
The range depends on the method.

xclim.analog.standardize(x: ndarray, y: ndarray)→ tuple[numpy.ndarray, numpy.ndarray]
Standardize x and y by the square root of the product of their standard deviation.

Parameters
• x (np.ndarray) – Array to be compared.

• y (np.ndarray) – Array to be compared.

Returns
(ndarray, ndarray) – Standardized arrays.

xclim.analog.szekely_rizzo(x: ndarray, y: ndarray, *, standardize: bool = True)→ float
Compute the Székely-Rizzo energy distance dissimilarity metric based on an analogy with Newton’s gravitational
potential energy.

This method is scale-invariant when standardize=True (default), scale-dependent otherwise.

Parameters
• x (ndarray (n,d)) – Reference sample.

• y (ndarray (m,d)) – Candidate sample.

• standardize (bool) – If True (default), the standardized euclidean norm is used, instead of
the conventional one.

Returns
float – Székely-Rizzo’s energy distance dissimilarity metric ranging from 0 to infinity.

974 Chapter 16. xclim

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

Notes

The e-distance between two variables 𝑋 , 𝑌 (target and candidates) of sizes 𝑛, 𝑑 and 𝑚, 𝑑 proposed by Szekely
and Rizzo [2004] is defined by:

𝑒(𝑋,𝑌) =
𝑛𝑚

𝑛+𝑚
[2𝜑𝑥𝑦𝜑𝑥𝑥𝜑𝑦𝑦]

where

𝜑𝑥𝑦 =
1

𝑛𝑚

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

‖𝑋𝑖𝑌𝑗‖

𝜑𝑥𝑥 =
1

𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

‖𝑋𝑖𝑋𝑗‖

𝜑𝑦𝑦 =
1

𝑚2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

‖𝑋𝑖𝑌𝑗‖

and where ‖ · ‖ denotes the Euclidean norm, 𝑋𝑖 denotes the i-th observation of 𝑋 . When standardized=False,
this corresponds to the 𝑇 test of Rizzo and Székely [2016] (p. 28) and to the eqdist.e function of the energy
R package (with two samples) and gives results twice as big as xclim.sdba.processing.escore(). The
standardization was added following the logic of [Grenier et al., 2013] to make the metric scale-invariant.

References

Grenier, Parent, Huard, Anctil, and Chaumont [2013], Rizzo and Székely [2016], Szekely and Rizzo [2004]

xclim.analog.zech_aslan(x: ndarray, y: ndarray, *, dmin: float = 1e-12)→ float
Compute a modified Zech-Aslan energy distance dissimilarity metric based on an analogy with the energy of a
cloud of electrical charges.

This method is scale-invariant.

Parameters
• x (np.ndarray (n,d)) – Reference sample.

• y (np.ndarray (m,d)) – Candidate sample.

• dmin (float) – The cut-off for low distances to avoid singularities on identical points.

Returns
float – Zech-Aslan dissimilarity metric ranging from -infinity to infinity.

Notes

The energy measure between two variables 𝑋 , 𝑌 (target and candidates) of sizes 𝑛, 𝑑 and 𝑚, 𝑑 proposed by
Aslan and Zech [2003] is defined by:

𝑒(𝑋,𝑌) = [𝜑𝑥𝑥 + 𝜑𝑦𝑦 − 𝜑𝑥𝑦]

𝜑𝑥𝑦 =
1

𝑛𝑚

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑅 [𝑆𝐸𝐷(𝑋𝑖, 𝑌𝑗)]

𝜑𝑥𝑥 =
1

𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑅 [𝑆𝐸𝐷(𝑋𝑖, 𝑋𝑗)]

𝜑𝑦𝑦 =
1

𝑚2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖+1

𝑅 [𝑆𝐸𝐷(𝑋𝑖, 𝑌𝑗)]

16.1. xclim package 975

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

xclim Documentation, Release 0.39.0

where 𝑋𝑖 denotes the i-th observation of 𝑋 . 𝑅 is a weight function and 𝑆𝐸𝐷(𝐴,𝐵) denotes the standardized
Euclidean distance.

𝑅(𝑟) =

{︂
− ln 𝑟 for 𝑟 > 𝑑𝑚𝑖𝑛

− ln 𝑑𝑚𝑖𝑛 for 𝑟 ≤ 𝑑𝑚𝑖𝑛

𝑆𝐸𝐷(𝑋𝑖, 𝑌𝑗) =

⎯⎸⎸⎷ 𝑑∑︁
𝑘=1

(𝑋𝑖(𝑘)− 𝑌𝑖(𝑘))
2

𝜎𝑥(𝑘)𝜎𝑦(𝑘)

where 𝑘 is a counter over dimensions (indices in the case of spatial analogs) and 𝜎𝑥(𝑘) is the standard deviation
of 𝑋 in dimension 𝑘. Finally, 𝑑𝑚𝑖𝑛 is a cut-off to avoid poles when 𝑟 → 0, it is controllable through the dmin
parameter.

This version corresponds the 𝐷𝑍𝐴𝐸 test of Grenier et al. [2013] (eq. 7), which is a version of 𝜑𝑁𝑀 from Aslan
and Zech [2003], modified by using the standardized euclidean distance, the log weight function and choosing
𝑑𝑚𝑖𝑛 = 10−12.

References

Aslan and Zech [2003], Grenier, Parent, Huard, Anctil, and Chaumont [2013], Zech and Aslan [2003]

16.1.4 xclim.cli module

xclim command line interface module.

class xclim.cli.XclimCli(name: Optional[str] = None, invoke_without_command: bool = False,
no_args_is_help: Optional[bool] = None, subcommand_metavar: Optional[str] =
None, chain: bool = False, result_callback: Optional[Callable[[...], Any]] = None,
**attrs: Any)

Bases: MultiCommand

Main cli class.

get_command(ctx, name)
Return the requested command.

list_commands(ctx)
Return the available commands (other than the indicators).

xclim.cli._create_command(indicator_name)
Generate a Click.Command from an xclim Indicator.

xclim.cli._format_dict(data, formatter, key_fg='blue', spaces=2)

xclim.cli._get_indicator(indicator_name)

xclim.cli._get_input(ctx)
Return the input dataset stored in the given context.

If the dataset is not open, opens it with open_dataset if a single path was given, or with open_mfdataset if a tuple
or glob path was given.

xclim.cli._get_output(ctx)
Return the output dataset stored in the given context.

If the output dataset doesn’t exist, create it.

976 Chapter 16. xclim

xclim Documentation, Release 0.39.0

xclim.cli._process_indicator(indicator, ctx, **params)
Add given climate indicator to the output dataset from variables in the input dataset.

Computation is not triggered here if dask is enabled.

xclim.cli.write_file(ctx, *args, **kwargs)
Write the output dataset to file.

16.1.5 xclim.subset module

Mock subset module for API compatibility.

See also:
clisops.core.subset

16.1. xclim package 977

https://clisops.readthedocs.io/en/latest/api.html#module-clisops.core.subset

xclim Documentation, Release 0.39.0

978 Chapter 16. xclim

BIBLIOGRAPHY

[FFDI-dolling_2005] Klaus Dolling, Pao-Shin Chu, and Francis Fujioka. A climatological study of the keetch/byram
drought index and fire activity in the hawaiian islands. Agricultural and Forest Meteorology, 133(1-
4):17–27, 2005.

[FFDI-dowdy_2018] Andrew J Dowdy. Climatological variability of fire weather in australia. Journal of Applied Me-
teorology and Climatology, 57(2):221–234, 2018.

[FFDI-finkele_2006] Klara Finkele, Graham A Mills, Grant Beard, and David A Jones. National gridded drought
factors and comparison of two soil moisture deficit formulations used in prediction of forest fire danger
index in australia. Australian Meteorological Magazine, 55(3):183–197, 2006.

[FFDI-griffiths_1999] Deryn Griffiths. Improved formula for the drought factor in mcarthur's forest fire danger meter.
Australian Forestry, 62(2):202–206, 1999.

[FFDI-holgate_2017] Chiara M Holgate, Albert IJM Van DIjk, Geoffrey J Cary, and Marta Yebra. Using alternative
soil moisture estimates in the mcarthur forest fire danger index. International Journal of Wildland Fire,
26(9):806–819, 2017.

[FFDI-keetch_1968] John James Keetch and George Marsden Byram. A drought index for forest fire control. Vol-
ume 38. US Department of Agriculture, Forest Service, Southeastern Forest Experiment . . . , 1968.

[FFDI-noble_1980] IR Noble, AM Gill, and GAV Bary. Mcarthur's fire-danger meters expressed as equations. Aus-
tralian Journal of Ecology, 5(2):201–203, 1980.

[CODE-cantin_canadian_2014] Alan Cantin, Xianli Wang, Marc-André Parisien, Mike Wotton, Kerry Anderson,
Brett Moore, Tom Schiks, and Mike Flannigan. Canadian Forest Fire Danger Rating System (CFFDRS).
2014. URL: https://r-forge.r-project.org/projects/cffdrs/.

[CODE-natural_resources_canada_data_nodate] Natural Resources Canada. Data Sources and Methods for Daily
Maps. URL: https://cwfis.cfs.nrcan.gc.ca/background/dsm/fwi (visited on 2022-07-29).

[FIRE-field_development_2015] R. D. Field, A. C. Spessa, N. A. Aziz, A. Camia, A. Cantin, R. Carr, W. J. de Groot,
A. J. Dowdy, M. D. Flannigan, K. Manomaiphiboon, F. Pappenberger, V. Tanpipat, and X. Wang. Develop-
ment of a Global Fire Weather Database. Natural Hazards and Earth System Sciences, 15(6):1407–1423,
June 2015. Publisher: Copernicus GmbH. URL: https://nhess.copernicus.org/articles/15/1407/2015/ (vis-
ited on 2022-07-29), doi:10.5194/nhess-15-1407-2015.

[FIRE-lawson_weather_2008] B. D. Lawson and O. B. Armitage. Weather Guide for the Canadian Forest Fire Danger
Rating System. Technical Report C2009-980001-2, Canadian Forest Service, Northern Forestry Centre,
2008. ISSN 0831-8247. URL: https://cfs.nrcan.gc.ca/pubwarehouse/pdfs/29152.pdf (visited on 2022-07-
29).

[FIRE-wang_updated_2015] Y. Wang, K. R. Anderson, and R. M. Suddaby. Updated source code for calculating
fire danger indices in the Canadian Forest Fire Weather Index System. Information Report NOR-X-424,

979

https://r-forge.r-project.org/projects/cffdrs/
https://cwfis.cfs.nrcan.gc.ca/background/dsm/fwi
https://nhess.copernicus.org/articles/15/1407/2015/
https://doi.org/10.5194/nhess-15-1407-2015
https://cfs.nrcan.gc.ca/pubwarehouse/pdfs/29152.pdf

xclim Documentation, Release 0.39.0

Canadian Forest Service, Northern Forestry Centre, 2015. ISSN: 0831-8247. URL: http://cfs.nrcan.gc.ca/
publications?id=36461 (visited on 2022-07-29).

[FIRE-wotton_length_1993] B. M. Wotton and M. D. Flannigan. Length of the fire season in a changing climate. The
Forestry Chronicle, 69(2):187–192, April 1993. Publisher: Canadian Institute of Forestry. URL: https:
//pubs.cif-ifc.org/doi/abs/10.5558/tfc69187-2 (visited on 2022-07-29), doi:10.5558/tfc69187-2.

[DROUGHT-cantin_canadian_2014] Alan Cantin, Xianli Wang, Marc-André Parisien, Mike Wotton, Kerry Anderson,
Brett Moore, Tom Schiks, and Mike Flannigan. Canadian Forest Fire Danger Rating System (CFFDRS).
2014. URL: https://r-forge.r-project.org/projects/cffdrs/.

[DROUGHT-field_development_2015] R. D. Field, A. C. Spessa, N. A. Aziz, A. Camia, A. Cantin, R. Carr, W. J.
de Groot, A. J. Dowdy, M. D. Flannigan, K. Manomaiphiboon, F. Pappenberger, V. Tanpipat, and
X. Wang. Development of a Global Fire Weather Database. Natural Hazards and Earth System Sciences,
15(6):1407–1423, June 2015. Publisher: Copernicus GmbH. URL: https://nhess.copernicus.org/articles/
15/1407/2015/ (visited on 2022-07-29), doi:10.5194/nhess-15-1407-2015.

[DROUGHT-lawson_weather_2008] B. D. Lawson and O. B. Armitage. Weather Guide for the Canadian Forest Fire
Danger Rating System. Technical Report C2009-980001-2, Canadian Forest Service, Northern Forestry
Centre, 2008. ISSN 0831-8247. URL: https://cfs.nrcan.gc.ca/pubwarehouse/pdfs/29152.pdf (visited on
2022-07-29).

[DROUGHT-mcelhinny_high-resolution_2020] Megan McElhinny, Justin F. Beckers, Chelene Hanes, Mike Flanni-
gan, and Piyush Jain. A high-resolution reanalysis of global fire weather from 1979 to 2018 – over-
wintering the Drought Code. Earth System Science Data, 12(3):1823–1833, August 2020. Publisher:
Copernicus GmbH. URL: https://essd.copernicus.org/articles/12/1823/2020/ (visited on 2022-07-29),
doi:10.5194/essd-12-1823-2020.

[DROUGHT-van_wagner_drought_1985] C. E. Van Wagner. Drought, Timelag, and Fire Danger Rating. In Society of
American Foresters, 178–185. Detroit, Michigan, May 1985. URL: http://cfs.nrcan.gc.ca/pubwarehouse/
pdfs/23550.pdf (visited on 2022-07-29).

[RRJF2021] Roy, P., Rondeau-Genesse, G., Jalbert, J., Fournier, É. 2021. Climate Scenarios of Extreme Precipitation
Using a Combination of Parametric and Non-Parametric Bias Correction Methods. Submitted to Climate
Services, April 2021.

[agbazo_characterizing_2020] Médard Noukpo Agbazo and Patrick Grenier. Characterizing and avoiding physical in-
consistency generated by the application of univariate quantile mapping on daily minimum and maximum
temperatures over Hudson Bay. International Journal of Climatology, 40(8):3868–3884, 2020. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/joc.6432. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/joc.6432 (visited on 2022-08-03), doi:10.1002/joc.6432.

[alavoine_distinct_2021] Mégane Alavoine and Patrick Grenier. The distinct problems of physical inconsistency and
of multivariate bias potentially involved in the statistical adjustment of climate simulations. November
2021. URL: http://eartharxiv.org/repository/view/2876/ (visited on 2022-07-29), doi:10.31223/X5C34C.

[alexander_global_2006] L. V. Alexander, X. Zhang, T. C. Peterson, J. Caesar, B. Gleason, A. M. G. Klein Tank,
M. Haylock, D. Collins, B. Trewin, F. Rahimzadeh, A. Tagipour, K. Rupa Kumar, J. Revadekar,
G. Griffiths, L. Vincent, D. B. Stephenson, J. Burn, E. Aguilar, M. Brunet, M. Taylor, M. New,
P. Zhai, M. Rusticucci, and J. L. Vazquez-Aguirre. Global observed changes in daily climate ex-
tremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 2006. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2005JD006290. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1029/2005JD006290 (visited on 2022-07-29), doi:10.1029/2005JD006290.

[allen_crop_1998] Richard G. Allen, Luis S. Pereira, Dirk Raes, and Martin Smith. Crop evapotranspiration: Guide-
lines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy,
1998. URL: https://www.unirc.it/documentazione/materiale_didattico/1462_2016_412_24101.pdf (vis-
ited on 2022-08-19).

980 Bibliography

http://cfs.nrcan.gc.ca/publications?id=36461
http://cfs.nrcan.gc.ca/publications?id=36461
https://pubs.cif-ifc.org/doi/abs/10.5558/tfc69187-2
https://pubs.cif-ifc.org/doi/abs/10.5558/tfc69187-2
https://doi.org/10.5558/tfc69187-2
https://r-forge.r-project.org/projects/cffdrs/
https://nhess.copernicus.org/articles/15/1407/2015/
https://nhess.copernicus.org/articles/15/1407/2015/
https://doi.org/10.5194/nhess-15-1407-2015
https://cfs.nrcan.gc.ca/pubwarehouse/pdfs/29152.pdf
https://essd.copernicus.org/articles/12/1823/2020/
https://doi.org/10.5194/essd-12-1823-2020
http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/23550.pdf
http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/23550.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/joc.6432
https://onlinelibrary.wiley.com/doi/abs/10.1002/joc.6432
https://doi.org/10.1002/joc.6432
http://eartharxiv.org/repository/view/2876/
https://doi.org/10.31223/X5C34C
https://onlinelibrary.wiley.com/doi/abs/10.1029/2005JD006290
https://onlinelibrary.wiley.com/doi/abs/10.1029/2005JD006290
https://doi.org/10.1029/2005JD006290
https://www.unirc.it/documentazione/materiale_didattico/1462_2016_412_24101.pdf

xclim Documentation, Release 0.39.0

[aslan_new_2003] B. Aslan and G. Zech. A new class of binning free, multivariate goodness-of-fit tests: the energy
tests. April 2003. arXiv:hep-ex/0203010. URL: http://arxiv.org/abs/hep-ex/0203010 (visited on 2022-07-
29), doi:10.48550/arXiv.hep-ex/0203010.

[audet_atlas_2012] René Audet, Hélène Côté, Denise Bachand, and Alain Mailhot. Atlas agroclimatique du Québec.
Évaluation des opportunités et des risques agroclimatiques dans un climat en évolution. INRS, Centre Eau,
Terre et Environnement, Québec, June 2012. ISBN 978-2-89146-817-6. Issue: R1518 Number: R1518.
URL: https://espace.inrs.ca/id/eprint/2406/ (visited on 2022-07-29).

[baier_estimation_1965] W. Baier and Geo. W. Robertson. Estimation of latent evaporation from simple weather
observations. Canadian Journal of Plant Science, 45(3):276–284, May 1965. Publisher: NRC Re-
search Press. URL: https://cdnsciencepub.com/doi/abs/10.4141/cjps65-051 (visited on 2022-07-29),
doi:10.4141/cjps65-051.

[baker_new_2004] David B. Baker, R. Peter Richards, Timothy T. Loftus, and Jack W. Kramer. A New
Flashiness Index: Characteristics and Applications to Midwestern Rivers and Streams1.
JAWRA Journal of the American Water Resources Association, 40(2):503–522, 2004. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1752-1688.2004.tb01046.x. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1752-1688.2004.tb01046.x (visited on 2022-07-29), doi:10.1111/j.1752-
1688.2004.tb01046.x.

[beniston_trends_2009] Martin Beniston. Trends in joint quantiles of temperature and precipitation in Europe since
1901 and projected for 2100. Geophysical Research Letters, 2009. URL: https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1029/2008GL037119 (visited on 2019-07-02), doi:10.1029/2008GL037119.

[blazejczyk_comparison_2012] Krzysztof Blazejczyk, Yoram Epstein, Gerd Jendritzky, Henning Staiger, and Birger
Tinz. Comparison of UTCI to selected thermal indices. International Journal of Biometeorology,
56(3):515–535, May 2012. URL: https://doi.org/10.1007/s00484-011-0453-2 (visited on 2022-08-08),
doi:10.1007/s00484-011-0453-2.

[bohren_atmospheric_1998] Craig F. Bohren and Bruce A. Albrecht. Atmospheric Thermodynamics. Oxford Univer-
sity Press, 1998. ISBN 978-0-19-509904-1. Google-Books-ID: SSJJ_RWJGe8C.

[bootsma_impacts_2005] A. Bootsma and S. Gameda and D.W. McKenney. Impacts of potential climate change on
selected agroclimatic indices in Atlantic Canada. Canadian Journal of Soil Science, 85(2):329–343,
May 2005. URL: http://www.nrcresearchpress.com/doi/10.4141/S04-019 (visited on 2021-07-29),
doi:10.4141/S04-019.

[bootsma_risk_1999] Andrew Bootsma, Gilles Tremblay, and Pierre Filion. Risk analyses of heat units available for
corn and soybean production in Quebec. Monographe Technical Bulletin No. 991396, Eastern Cereal
and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, 1999. URL: https:
//publications.gc.ca/pub?id=9.647569&sl=0 (visited on 2022-08-11).

[brimicombe_thermofeel_2021] C. Brimicombe, C. Di Napoli, C., T. Quintino, F. Pappenberger, R. Cornforth, and
H. Cloke. Thermofeel: a python thermal comfort indices library. July 2021. URL: https://doi.org/10.
21957/mp6v-fd16.

[brode_utci_2009] Peter Bröde. UTCI. October 2009. URL: http://www.utci.org/public/UTCI%20Program%20Code/
UTCI_a002.f90.

[blazejczyk_introduction_2013] Krzysztof Błażejczyk, Gerd Jendritzky, Peter Bröde, Dusan Fiala, George
Havenith, Yoram Epstein, Agnes Psikuta, and Bernhardt Kampmann. An introduction to the Uni-
versal Thermal Climate Index (UTCI). Geographica Polonica, 86(1):5–10, January 2013. Pub-
lisher: Loughborough University. URL: https://repository.lboro.ac.uk/articles/journal_contribution/An_
introduction_to_the_Universal_Thermal_Climate_Index_UTCI_/9347024/1 (visited on 2022-07-29),
doi:10.7163/GPol.2013.1.

[canada_glossary_2011] Environment and Climate Change Canada. Glossary - Climate - Environment and Climate
Change Canada. October 2011. Last Modified: 2022-05-25. URL: https://climate.weather.gc.ca/glossary_
e.html (visited on 2022-08-08).

Bibliography 981

http://arxiv.org/abs/hep-ex/0203010
https://doi.org/10.48550/arXiv.hep-ex/0203010
https://espace.inrs.ca/id/eprint/2406/
https://cdnsciencepub.com/doi/abs/10.4141/cjps65-051
https://doi.org/10.4141/cjps65-051
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-1688.2004.tb01046.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-1688.2004.tb01046.x
https://doi.org/10.1111/j.1752-1688.2004.tb01046.x
https://doi.org/10.1111/j.1752-1688.2004.tb01046.x
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008GL037119
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008GL037119
https://doi.org/10.1029/2008GL037119
https://doi.org/10.1007/s00484-011-0453-2
https://doi.org/10.1007/s00484-011-0453-2
http://www.nrcresearchpress.com/doi/10.4141/S04-019
https://doi.org/10.4141/S04-019
https://publications.gc.ca/pub?id=9.647569&sl=0
https://publications.gc.ca/pub?id=9.647569&sl=0
https://doi.org/10.21957/mp6v-fd16
https://doi.org/10.21957/mp6v-fd16
http://www.utci.org/public/UTCI%20Program%20Code/UTCI_a002.f90
http://www.utci.org/public/UTCI%20Program%20Code/UTCI_a002.f90
https://repository.lboro.ac.uk/articles/journal_contribution/An_introduction_to_the_Universal_Thermal_Climate_Index_UTCI_/9347024/1
https://repository.lboro.ac.uk/articles/journal_contribution/An_introduction_to_the_Universal_Thermal_Climate_Index_UTCI_/9347024/1
https://doi.org/10.7163/GPol.2013.1
https://climate.weather.gc.ca/glossary_e.html
https://climate.weather.gc.ca/glossary_e.html

xclim Documentation, Release 0.39.0

[cannon_selecting_2015] Alex J. Cannon. Selecting GCM Scenarios that Span the Range of Changes in a
Multimodel Ensemble: Application to CMIP5 Climate Extremes Indices. Journal of Climate,
28(3):1260–1267, February 2015. Publisher: American Meteorological Society. Section: Journal of
Climate. URL: https://journals.ametsoc.org/view/journals/clim/28/3/jcli-d-14-00636.1.xml (visited on
2022-07-29), doi:10.1175/JCLI-D-14-00636.1.

[cantin_canadian_2014] Alan Cantin, Xianli Wang, Marc-André Parisien, Mike Wotton, Kerry Anderson, Brett
Moore, Tom Schiks, and Mike Flannigan. Canadian Forest Fire Danger Rating System (CFFDRS). 2014.
URL: https://r-forge.r-project.org/projects/cffdrs/.

[casajus_objective_2016] Nicolas Casajus, Catherine Périé, Travis Logan, Marie-Claude Lambert, Sylvie de Blois,
and Dominique Berteaux. An Objective Approach to Select Climate Scenarios when Projecting Species
Distribution under Climate Change. PLOS ONE, 11(3):e0152495, March 2016. Publisher: Public Library
of Science. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152495 (visited on
2022-07-29), doi:10.1371/journal.pone.0152495.

[casati_regional_2013] Barbara Casati, Abderrahmane Yagouti, and Diane Chaumont. Regional Climate Projections
of Extreme Heat Events in Nine Pilot Canadian Communities for Public Health Planning. Journal of
Applied Meteorology and Climatology, 52(12):2669–2698, July 2013. URL: https://journals.ametsoc.org/
doi/full/10.1175/JAMC-D-12-0341.1 (visited on 2019-07-02), doi:10.1175/JAMC-D-12-0341.1.

[chaumont_elaboration_2017] Diane Chaumont, Alain Mailhot, Emilia P. Diaconescu, Élyse Fournier, and Travis Lo-
gan. Élaboration du portrait bioclimatique futur du Nunavik – Tome II. Rapport présenté au Ministère de la
forêt, de la faune et des parcs, MFFP, Montreal, Quebec, 2017. URL: https://mffp.gouv.qc.ca/documents/
forets/inventaire/Portrait_bioclimatique_Nunavik_Tome_2.pdf (visited on 2022-07-29).

[cohen_parameter_2019] A Clifford Cohen and Betty Jones Whitten. Parameter Estimation in Reliability and Life
Span Models. CRC Press, September 2019. ISBN 978-0-367-40334-8.

[coles_introduction_2001] Stuart Coles. An Introduction to Statistical Modeling of Extreme Values. Springer Series
in Statistics. Springer-Verlag, London, UK, August 2001. ISBN 978-1-85233-459-8. URL: https://link.
springer.com/book/10.1007/978-1-4471-3675-0 (visited on 2022-07-29).

[collins_long-term_2013] Matthew Collins, Reto Knutti, Julie Arblaster, Jean-Louis Dufresne, Thierry Fichefet, Xue-
jie Gao, William J Gutowski Jr, Tim Johns, Gerhard Krinner, Mxolisi Shongwe, Andrew J Weaver, Michael
Wehner, Myles R Allen, Tim Andrews, Urs Beyerle, Cecilia M Bitz, Sandrine Bony, Ben B B Booth,
Harold E Brooks, Victor Brovkin, Oliver Browne, Claire Brutel-Vuilmet, Mark Cane, Robin Chadwick,
Ed Cook, Kerry H Cook, Michael Eby, John Fasullo, Chris E Forest, Piers Forster, Peter Good, Hugues
Goosse, Jonathan M Gregory, Gabriele C Hegerl, Paul J Hezel, Kevin I Hodges, Marika M Holland,
Markus Huber, Manoj Joshi, Viatcheslav Kharin, Yochanan Kushnir, David M Lawrence, Robert W Lee,
Spencer Liddicoat, Christopher Lucas, Wolfgang Lucht, Jochem Marotzke, François Massonnet, H Da-
mon Matthews, Malte Meinshausen, Colin Morice, Alexander Otto, Christina M Patricola, Gwenaëlle
Philippon, Stefan Rahmstorf, William J Riley, Oleg Saenko, Richard Seager, Jan Sedlácek, Len C Shaf-
frey, Drew Shindell, Jana Sillmann, Bjorn Stevens, Peter A Stott, Robert Webb, Giuseppe Zappa, Kirsten
Zickfeld, Sylvie Joussaume, Abdalah Mokssit, Karl Taylor, and Simon Tett. Long-term Climate Change:
Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Con-
tribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, pages 1029–1136. Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA, 2013.

[di_napoli_mean_2020] Claudia Di Napoli, Robin J. Hogan, and Florian Pappenberger. Mean radiant tempera-
ture from global-scale numerical weather prediction models. International Journal of Biometeorology,
64(7):1233–1245, July 2020. URL: https://doi.org/10.1007/s00484-020-01900-5 (visited on 2022-07-
29), doi:10.1007/s00484-020-01900-5.

[fasano_multidimensional_1987] G. Fasano and A. Franceschini. A multidimensional version of the Kol-
mogorov–Smirnov test. Monthly Notices of the Royal Astronomical Society, 225(1):155–170, March 1987.
URL: https://doi.org/10.1093/mnras/225.1.155 (visited on 2022-07-29), doi:10.1093/mnras/225.1.155.

982 Bibliography

https://journals.ametsoc.org/view/journals/clim/28/3/jcli-d-14-00636.1.xml
https://doi.org/10.1175/JCLI-D-14-00636.1
https://r-forge.r-project.org/projects/cffdrs/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152495
https://doi.org/10.1371/journal.pone.0152495
https://journals.ametsoc.org/doi/full/10.1175/JAMC-D-12-0341.1
https://journals.ametsoc.org/doi/full/10.1175/JAMC-D-12-0341.1
https://doi.org/10.1175/JAMC-D-12-0341.1
https://mffp.gouv.qc.ca/documents/forets/inventaire/Portrait_bioclimatique_Nunavik_Tome_2.pdf
https://mffp.gouv.qc.ca/documents/forets/inventaire/Portrait_bioclimatique_Nunavik_Tome_2.pdf
https://link.springer.com/book/10.1007/978-1-4471-3675-0
https://link.springer.com/book/10.1007/978-1-4471-3675-0
https://doi.org/10.1007/s00484-020-01900-5
https://doi.org/10.1007/s00484-020-01900-5
https://doi.org/10.1093/mnras/225.1.155
https://doi.org/10.1093/mnras/225.1.155

xclim Documentation, Release 0.39.0

[friedman_multivariate_1979] Jerome H. Friedman and Lawrence C. Rafsky. Multivariate Generalizations of the
Wald-Wolfowitz and Smirnov Two-Sample Tests. The Annals of Statistics, 7(4):697–717, July 1979. Pub-
lisher: Institute of Mathematical Statistics. URL: https://projecteuclid.org/journals/annals-of-statistics/
volume-7/issue-4/Multivariate-Generalizations-of-the-Wald-Wolfowitz-and-Smirnov-Two-Sample/10.
1214/aos/1176344722.full (visited on 2022-07-29), doi:10.1214/aos/1176344722.

[gladstones_viticulture_1992] John Gladstones. Viticulture and Environment. Winetitles, Adelaide, 1992. ISBN 1-
875130-12-3.

[goff_low-pressure_1946] J. A. Goff and S. Gratch. Low-pressure properties of water from -160 to 212 °F. In Trans-
actions of the American Society of Heating and Ventilating Engineers, The 52nd annual meeting of the
American Society of Heating and Ventilating Engineers, 95–122. New York, NY, 1946.

[grenier_two_2018] Patrick Grenier. Two Types of Physical Inconsistency to Avoid with Univariate Quantile Map-
ping: A Case Study over North America Concerning Relative Humidity and Its Parent Variables. Journal
of Applied Meteorology and Climatology, 57(2):347–364, February 2018. Publisher: American Meteoro-
logical Society Section: Journal of Applied Meteorology and Climatology. URL: https://journals.ametsoc.
org/view/journals/apme/57/2/jamc-d-17-0177.1.xml (visited on 2022-08-03), doi:10.1175/JAMC-D-17-
0177.1.

[grenier_assessment_2013] Patrick Grenier, Annie-Claude Parent, David Huard, François Anctil, and Diane Chau-
mont. An Assessment of Six Dissimilarity Metrics for Climate Analogs. Journal of Applied Meteorology
and Climatology, 52(4):733–752, April 2013. Publisher: American Meteorological Society Section: Jour-
nal of Applied Meteorology and Climatology. URL: https://journals.ametsoc.org/view/journals/apme/52/
4/jamc-d-12-0170.1.xml (visited on 2022-07-29), doi:10.1175/JAMC-D-12-0170.1.

[hall_spatial_2010] A. Hall and Gregory V. Jones. Spatial analysis of climate in winegrape-growing regions in
Australia. Australian Journal of Grape and Wine Research, 16(3):389–404, October 2010. URL:
http://onlinelibrary.wiley.com/doi/10.1111/j.1755-0238.2010.00100.x/abstract (visited on 2016-07-08),
doi:10.1111/j.1755-0238.2010.00100.x.

[hardy_its-90_1998] Bob Hardy. ITS-90 FORMULATIONS FOR VAPOR PRESSURE, FROSTPOINT TEMPERA-
TURE, DEWPOINT TEMPERATURE, AND ENHANCEMENT FACTORS IN THE RANGE –100 TO
+100 C. In The Proceedings of the Third International Symposium on Humidity & Moisture, 1–8. 1998.
URL: https://www.thunderscientific.com/tech_info/reflibrary/its90formulas.pdf.

[henze_multivariate_1988] Norbert Henze. A Multivariate Two-Sample Test Based on the Number of Nearest
Neighbor Type Coincidences. The Annals of Statistics, 16(2):772–783, June 1988. Publisher: Insti-
tute of Mathematical Statistics. URL: https://projecteuclid.org/journals/annals-of-statistics/volume-16/
issue-2/A-Multivariate-Two-Sample-Test-Based-on-the-Number-of/10.1214/aos/1176350835.full (vis-
ited on 2022-08-08), doi:10.1214/aos/1176350835.

[hoffmann_meteorologically_2012] Holger Hoffmann and Thomas Rath. Meteorologically consistent bias cor-
rection of climate time series for agricultural models. Theoretical and Applied Climatology,
110(1):129–141, October 2012. URL: https://doi.org/10.1007/s00704-012-0618-x (visited on 2022-08-
03), doi:10.1007/s00704-012-0618-x.

[huglin_nouveau_1978] P. Huglin. Nouveau mode d'évaluation des possibilités héliothermiques d'un milieu viticole.
In Symposium International sur l'Écologie de la Vigne, 1, pages 89–98. Ministère de l'Agriculture et de
l'Industrie Alimentaire, Constança, Roumanie, 1978.

[hyndman_sample_1996] Rob J. Hyndman and Yanan Fan. Sample Quantiles in Statistical Packages.
The American Statistician, 50(4):361–365, November 1996. Publisher: Taylor & Fran-
cis _eprint: https://www.tandfonline.com/doi/pdf/10.1080/00031305.1996.10473566. URL:
https://www.tandfonline.com/doi/abs/10.1080/00031305.1996.10473566 (visited on 2022-08-03),
doi:10.1080/00031305.1996.10473566.

Bibliography 983

https://projecteuclid.org/journals/annals-of-statistics/volume-7/issue-4/Multivariate-Generalizations-of-the-Wald-Wolfowitz-and-Smirnov-Two-Sample/10.1214/aos/1176344722.full
https://projecteuclid.org/journals/annals-of-statistics/volume-7/issue-4/Multivariate-Generalizations-of-the-Wald-Wolfowitz-and-Smirnov-Two-Sample/10.1214/aos/1176344722.full
https://projecteuclid.org/journals/annals-of-statistics/volume-7/issue-4/Multivariate-Generalizations-of-the-Wald-Wolfowitz-and-Smirnov-Two-Sample/10.1214/aos/1176344722.full
https://doi.org/10.1214/aos/1176344722
https://journals.ametsoc.org/view/journals/apme/57/2/jamc-d-17-0177.1.xml
https://journals.ametsoc.org/view/journals/apme/57/2/jamc-d-17-0177.1.xml
https://doi.org/10.1175/JAMC-D-17-0177.1
https://doi.org/10.1175/JAMC-D-17-0177.1
https://journals.ametsoc.org/view/journals/apme/52/4/jamc-d-12-0170.1.xml
https://journals.ametsoc.org/view/journals/apme/52/4/jamc-d-12-0170.1.xml
https://doi.org/10.1175/JAMC-D-12-0170.1
http://onlinelibrary.wiley.com/doi/10.1111/j.1755-0238.2010.00100.x/abstract
https://doi.org/10.1111/j.1755-0238.2010.00100.x
https://www.thunderscientific.com/tech_info/reflibrary/its90formulas.pdf
https://projecteuclid.org/journals/annals-of-statistics/volume-16/issue-2/A-Multivariate-Two-Sample-Test-Based-on-the-Number-of/10.1214/aos/1176350835.full
https://projecteuclid.org/journals/annals-of-statistics/volume-16/issue-2/A-Multivariate-Two-Sample-Test-Based-on-the-Number-of/10.1214/aos/1176350835.full
https://doi.org/10.1214/aos/1176350835
https://doi.org/10.1007/s00704-012-0618-x
https://doi.org/10.1007/s00704-012-0618-x
https://www.tandfonline.com/doi/abs/10.1080/00031305.1996.10473566
https://doi.org/10.1080/00031305.1996.10473566

xclim Documentation, Release 0.39.0

[jackson_prediction_1988] D. I. Jackson and N. J. Cherry. Prediction of a District's Grape-Ripening Capacity Using
a Latitude-Temperature Index (LTI). American Journal of Enology and Viticulture, 39(1):19–28, January
1988. URL: http://www.ajevonline.org/content/39/1/19.abstract.

[kalogirou_chapter_2014] Soteris A. Kalogirou. Chapter 2 - Environmental Characteristics. In Soteris A. Kalogirou,
editor, Solar Energy Engineering (Second Edition), pages 51–123. Academic Press, Boston, January 2014.
URL: https://www.sciencedirect.com/science/article/pii/B9780123972705000029 (visited on 2022-07-
29), doi:10.1016/B978-0-12-397270-5.00002-9.

[katsavounidis_new_1994] I. Katsavounidis, C.-C. Jay Kuo, and Zhen Zhang. A new initialization technique for gener-
alized Lloyd iteration. IEEE Signal Processing Letters, 1(10):144–146, October 1994. Conference Name:
IEEE Signal Processing Letters. doi:10.1109/97.329844.

[kenny_assessment_1992] G. J. Kenny and J. Shao. An assessment of a latitude-temperature index for predicting cli-
mate suitability for grapes in Europe. Journal of Horticultural Science, 67(2):239–246, January 1992.
Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00221589.1992.11516243. URL: https://doi.
org/10.1080/00221589.1992.11516243 (visited on 2021-06-16), doi:10.1080/00221589.1992.11516243.

[knutti_robustness_2013] Reto Knutti and Jan Sedlácek. Robustness and uncertainties in the new CMIP5 climate
model projections. Nature Climate Change, 3(4):369–373, April 2013. Number: 4 Publisher: Na-
ture Publishing Group. URL: https://www.nature.com/articles/nclimate1716 (visited on 2022-07-29),
doi:10.1038/nclimate1716.

[lawrence_relationship_2005] Mark G. Lawrence. The Relationship between Relative Humidity and the Dewpoint
Temperature in Moist Air: A Simple Conversion and Applications. Bulletin of the American Meteorolog-
ical Society, 86(2):225–234, February 2005. Publisher: American Meteorological Society Section: Bul-
letin of the American Meteorological Society. URL: https://journals.ametsoc.org/view/journals/bams/86/
2/bams-86-2-225.xml (visited on 2022-08-03), doi:10.1175/BAMS-86-2-225.

[lopker_yamale_2022] Bo Lopker. Yamale (ya·ma·lē). August 2022. original-date: 2014-01-27T09:30:25Z. URL:
https://github.com/23andMe/Yamale (visited on 2022-08-03).

[masterton_humidex_1979] J. M. Masterton and F. A. Richardson. Humidex : a Method of Quantifying Human Dis-
comfort Due to Excessive Heat and Humidity. CLI. Environment Canada, Atmospheric Environment,
Downsview, Ontario, Canada, 1979. Google-Books-ID: qzPbOAAACAAJ.

[matthes_solar_2017] Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbon-
neau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman,
Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C.
Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam
Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick.
Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 10(6):2247–2302, June 2017. Pub-
lisher: Copernicus GmbH. URL: https://gmd.copernicus.org/articles/10/2247/2017/ (visited on 2022-07-
29), doi:10.5194/gmd-10-2247-2017.

[matthews_planning_2017] Lindsay Matthews, Jean Andrey, and Ian Picketts. Planning for Winter Road Maintenance
in the Context of Climate Change. Weather, Climate, and Society, 9(3):521–532, July 2017. Publisher:
American Meteorological Society Section: Weather, Climate, and Society. URL: https://journals.ametsoc.
org/view/journals/wcas/9/3/wcas-d-16-0103_1.xml (visited on 2022-07-29), doi:10.1175/WCAS-D-16-
0103.1.

[mcguinness_comparison_1972] J. L. McGuinness and Erich F. Borone. A Comparison of Lysimeter-Derived Po-
tential Evapotranspiration With Computed Values. Technical Report 171893, United States Department
of Agriculture, Economic Research Service, 1972. Publication Title: Technical Bulletins. URL: https:
//ideas.repec.org/p/ags/uerstb/171893.html (visited on 2022-07-29).

[mckee_relationship_1993] Thomas B. McKee, Nolan J. Doesken, and John Kleist. The Relationship of Drought Fre-
quency and Duration to Time Scales. In 8th Conference on Applied Climatology, Am. Meteorol. Soc.
Anaheim, 1993. American Meteorological Society.

984 Bibliography

http://www.ajevonline.org/content/39/1/19.abstract
https://www.sciencedirect.com/science/article/pii/B9780123972705000029
https://doi.org/10.1016/B978-0-12-397270-5.00002-9
https://doi.org/10.1109/97.329844
https://doi.org/10.1080/00221589.1992.11516243
https://doi.org/10.1080/00221589.1992.11516243
https://doi.org/10.1080/00221589.1992.11516243
https://www.nature.com/articles/nclimate1716
https://doi.org/10.1038/nclimate1716
https://journals.ametsoc.org/view/journals/bams/86/2/bams-86-2-225.xml
https://journals.ametsoc.org/view/journals/bams/86/2/bams-86-2-225.xml
https://doi.org/10.1175/BAMS-86-2-225
https://github.com/23andMe/Yamale
https://gmd.copernicus.org/articles/10/2247/2017/
https://doi.org/10.5194/gmd-10-2247-2017
https://journals.ametsoc.org/view/journals/wcas/9/3/wcas-d-16-0103_1.xml
https://journals.ametsoc.org/view/journals/wcas/9/3/wcas-d-16-0103_1.xml
https://doi.org/10.1175/WCAS-D-16-0103.1
https://doi.org/10.1175/WCAS-D-16-0103.1
https://ideas.repec.org/p/ags/uerstb/171893.html
https://ideas.repec.org/p/ags/uerstb/171893.html

xclim Documentation, Release 0.39.0

[mekis_observed_2015] Éva Mekis, Lucie A. Vincent, Mark W. Shephard, and Xuebin Zhang. Observed Trends in
Severe Weather Conditions Based on Humidex, Wind Chill, and Heavy Rainfall Events in Canada for
1953–2012. Atmosphere-Ocean, 53(4):383–397, August 2015. URL: http://www.tandfonline.com/doi/
full/10.1080/07055900.2015.1086970 (visited on 2022-07-29), doi:10.1080/07055900.2015.1086970.

[melton_atmosphericvarscalcf90_2019] Joe Melton. atmosphericVarsCalc.f90. October 2019. URL: https://gitlab.
com/cccma/classic/-/blob/master/src/atmosphericVarsCalc.f90 (visited on 2022-08-03).

[osczevski_new_2005] Randall Osczevski and Maurice Bluestein. The New Wind Chill Equivalent Temperature
Chart. Bulletin of the American Meteorological Society, 86(10):1453–1458, October 2005. Publisher:
American Meteorological Society Section: Bulletin of the American Meteorological Society. URL:
https://journals.ametsoc.org/view/journals/bams/86/10/bams-86-10-1453.xml (visited on 2022-07-29),
doi:10.1175/BAMS-86-10-1453.

[perez-cruz_kullback-leibler_2008] Fernando Perez-Cruz. Kullback-Leibler divergence estimation of continuous dis-
tributions. In 2008 IEEE International Symposium on Information Theory, 1666–1670. Toronto, ON,
Canada, June 2008. IEEE. ISSN: 2157-8117. doi:10.1109/ISIT.2008.4595271.

[perrin_estimation_1975] De Brichambaut C. Perrin. Estimation Des Ressources Energetiques Solaires en France.
Association francaise pour l'etude et le developpement des applications de l'energie solaire, 1975.

[pierce_statistical_2014] David W. Pierce, Daniel R. Cayan, and Bridget L. Thrasher. Statistical Downscaling Us-
ing Localized Constructed Analogs (LOCA). Journal of Hydrometeorology, 15(6):2558–2585, De-
cember 2014. Publisher: American Meteorological Society Section: Journal of Hydrometeorology.
URL: https://journals.ametsoc.org/view/journals/hydr/15/6/jhm-d-14-0082_1.xml (visited on 2022-08-
03), doi:10.1175/JHM-D-14-0082.1.

[qian_observed_2010] Budong Qian, Xuebin Zhang, Kai Chen, Yang Feng, and Ted O’Brien. Observed Long-
Term Trends for Agroclimatic Conditions in Canada. Journal of Applied Meteorology and Climatology,
49(4):604–618, April 2010. Publisher: American Meteorological Society Section: Journal of Applied Me-
teorology and Climatology. URL: https://journals.ametsoc.org/view/journals/apme/49/4/2009jamc2275.
1.xml (visited on 2021-08-02), doi:10.1175/2009JAMC2275.1.

[rizzo_energy_2016] Maria L. Rizzo and Gábor J. Székely. Energy distance. WIREs Computational Statistics,
8(1):27–38, 2016. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.1375. URL: https://
onlinelibrary.wiley.com/doi/abs/10.1002/wics.1375 (visited on 2022-07-15), doi:10.1002/wics.1375.

[robinson_definition_2001] Peter J. Robinson. On the Definition of a Heat Wave. Journal of Applied Mete-
orology and Climatology, 40(4):762–775, April 2001. Publisher: American Meteorological Soci-
ety Section: Journal of Applied Meteorology and Climatology. URL: https://journals.ametsoc.org/
view/journals/apme/40/4/1520-0450_2001_040_0762_otdoah_2.0.co_2.xml (visited on 2022-07-29),
doi:https://doi.org/10.1175/1520-0450%282001%29040<0762:OTDOAH>2.0.CO;2.

[roy_probabilistic_2017] Philippe Roy, Patrick Grenier, Evelyne Barriault, Travis Logan, Anne Blondlot, Gaétan Bour-
geois, and Diane Chaumont. Probabilistic climate change scenarios for viticultural potential in Québec.
Climatic Change, 143(1):43–58, July 2017. URL: https://doi.org/10.1007/s10584-017-1960-x (visited on
2022-07-29), doi:10.1007/s10584-017-1960-x.

[sirangelo_combining_2020] Beniamino Sirangelo, Tommaso Caloiero, Roberto Coscarelli, Ennio Ferrari, and
Francesco Fusto. Combining stochastic models of air temperature and vapour pressure for the analysis
of the bioclimatic comfort through the Humidex. Scientific Reports, 10(1):11395, July 2020. Number: 1
Publisher: Nature Publishing Group. URL: https://www.nature.com/articles/s41598-020-68297-4 (vis-
ited on 2022-08-08), doi:10.1038/s41598-020-68297-4.

[sonntag_important_1990] D SONNTAG. Important new values of the physical constants of 1986, vapour pressure for-
mulations based on the ITS-90, and psychrometer formulae. Zeitschrift für Meteorologie, 40(5):340–344,
1990. Place: Berlin Publisher: Akademie-Verlag.

[spencer_fourier_1971] J. W. Spencer. Fourier series representation of the position of the sun. Search, 2(5):172, 1971.
URL: https://cir.nii.ac.jp/crid/1571980074286566912 (visited on 2022-07-29).

Bibliography 985

http://www.tandfonline.com/doi/full/10.1080/07055900.2015.1086970
http://www.tandfonline.com/doi/full/10.1080/07055900.2015.1086970
https://doi.org/10.1080/07055900.2015.1086970
https://gitlab.com/cccma/classic/-/blob/master/src/atmosphericVarsCalc.f90
https://gitlab.com/cccma/classic/-/blob/master/src/atmosphericVarsCalc.f90
https://journals.ametsoc.org/view/journals/bams/86/10/bams-86-10-1453.xml
https://doi.org/10.1175/BAMS-86-10-1453
https://doi.org/10.1109/ISIT.2008.4595271
https://journals.ametsoc.org/view/journals/hydr/15/6/jhm-d-14-0082_1.xml
https://doi.org/10.1175/JHM-D-14-0082.1
https://journals.ametsoc.org/view/journals/apme/49/4/2009jamc2275.1.xml
https://journals.ametsoc.org/view/journals/apme/49/4/2009jamc2275.1.xml
https://doi.org/10.1175/2009JAMC2275.1
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1375
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1375
https://doi.org/10.1002/wics.1375
https://journals.ametsoc.org/view/journals/apme/40/4/1520-0450_2001_040_0762_otdoah_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/apme/40/4/1520-0450_2001_040_0762_otdoah_2.0.co_2.xml
https://doi.org/https://doi.org/10.1175/1520-0450%282001%29040\T1\textless {}0762:OTDOAH\T1\textgreater {}2.0.CO;2
https://doi.org/10.1007/s10584-017-1960-x
https://doi.org/10.1007/s10584-017-1960-x
https://www.nature.com/articles/s41598-020-68297-4
https://doi.org/10.1038/s41598-020-68297-4
https://cir.nii.ac.jp/crid/1571980074286566912

xclim Documentation, Release 0.39.0

[szekely_testing_2004] Gabor Szekely and Maria Rizzo. Testing for equal distributions in high dimension. InterStat,
November 2004.

[tanguy_historical_2018] Maliko Tanguy, Christel Prudhomme, Katie Smith, and Jamie Hannaford. Historical grid-
ded reconstruction of potential evapotranspiration for the UK. Earth System Science Data, 10(2):951–968,
June 2018. Publisher: Copernicus GmbH. URL: https://essd.copernicus.org/articles/10/951/2018/ (vis-
ited on 2022-07-29), doi:10.5194/essd-10-951-2018.

[tebaldi_mapping_2011] Claudia Tebaldi, Julie M. Arblaster, and Reto Knutti. Mapping model
agreement on future climate projections. Geophysical Research Letters, 2011. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011GL049863. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1029/2011GL049863 (visited on 2022-07-29), doi:10.1029/2011GL049863.

[tetens_uber_1930] Otto Tetens. Über einige meteorologische Begriffe. Zeitschrift für Geophysik, 6:297–309, 1930.
Google-Books-ID: ey5UtAEACAAJ.

[thornthwaite_approach_1948] C. W. Thornthwaite. An Approach Toward a Rational Classification of Climate.
Soil Science, 66(1):77, July 1948. URL: https://journals.lww.com/soilsci/Citation/1948/07000/An_
Approach_Toward_a_Rational_Classification_of.7.aspx (visited on 2022-07-29).

[thrasher_technical_2012] B. Thrasher, E. P. Maurer, C. McKellar, and P. B. Duffy. Technical Note: Bias correct-
ing climate model simulated daily temperature extremes with quantile mapping. Hydrology and Earth
System Sciences, 16(9):3309–3314, September 2012. Publisher: Copernicus GmbH. URL: https://hess.
copernicus.org/articles/16/3309/2012/ (visited on 2022-08-03), doi:10.5194/hess-16-3309-2012.

[tonietto_multicriteria_2004] Jorge Tonietto and Alain Carbonneau. A multicriteria climatic classification system for
grape-growing regions worldwide. Agricultural and Forest Meteorology, 124(1–2):81–97, July 2004.
URL: http://www.sciencedirect.com/science/article/pii/S0168192304000115 (visited on 2014-02-19),
doi:10.1016/j.agrformet.2003.06.001.

[us_department_of_commerce_wind_nodate] NOAA US Department of Commerce. Wind Chill Questions. Publisher:
NOAA's National Weather Service. URL: https://www.weather.gov/safety/cold-faqs (visited on 2022-07-
29).

[veloz_identifying_2012] Samuel Veloz, John W. Williams, David Lorenz, Michael Notaro, Steve Vavrus, and
Daniel J. Vimont. Identifying climatic analogs for Wisconsin under 21st-century climate-change scenar-
ios. Climatic Change, 112(3):1037–1058, June 2012. URL: https://doi.org/10.1007/s10584-011-0261-z
(visited on 2022-08-08), doi:10.1007/s10584-011-0261-z.

[verseghy_class_2009] Diana Verseghy. CLASS – The Canadian Land Surface Scheme (Version 3.4), Technical Doc-
umentation. 2009. Version 1.1. URL: https://wiki.usask.ca/download/attachments/223019286/CLASS_
v3.6_Documentation.pdf?version=1&modificationDate=1478106693000&api=v2.

[vomel_saturation_2016] Holger Vömel. Saturation vapoor pressure formulations. December 2016. URL: https://
cires1.colorado.edu/~voemel/vp.html (visited on 2022-08-08).

[woollings_variability_2010] Tim Woollings, Abdel Hannachi, and Brian Hoskins. Variability of the North At-
lantic eddy-driven jet stream. Quarterly Journal of the Royal Meteorological Society, 136(649):856–868,
2010. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qj.625. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1002/qj.625 (visited on 2022-07-29), doi:10.1002/qj.625.

[xu_anuclim_2010] Tingbao Xu and Michael Hutchinson. ANUCLIM Version 6.1 User Guide. 2010. URL: https:
//fennerschool.anu.edu.au/files/anuclim61.pdf (visited on 2022-07-29).

[zech_multivariate_2003] G. Zech and B. Aslan. A Multivariate Two-Sample Test Based on the
Concept of Minimum Energy. In Statistical Problems in Particle Physics, Astrophysics
and Cosmology, 97–100. SLAC, Stanford, California, USA, 2003. URL: https://www.
semanticscholar.org/paper/A-Multivariate-Two-Sample-Test-Based-on-the-Concept-Zech-Aslan/
60e8b69d6f91a64231a0ab6bf1ddef1e88fb03f6 (visited on 2022-07-29).

986 Bibliography

https://essd.copernicus.org/articles/10/951/2018/
https://doi.org/10.5194/essd-10-951-2018
https://onlinelibrary.wiley.com/doi/abs/10.1029/2011GL049863
https://onlinelibrary.wiley.com/doi/abs/10.1029/2011GL049863
https://doi.org/10.1029/2011GL049863
https://journals.lww.com/soilsci/Citation/1948/07000/An_Approach_Toward_a_Rational_Classification_of.7.aspx
https://journals.lww.com/soilsci/Citation/1948/07000/An_Approach_Toward_a_Rational_Classification_of.7.aspx
https://hess.copernicus.org/articles/16/3309/2012/
https://hess.copernicus.org/articles/16/3309/2012/
https://doi.org/10.5194/hess-16-3309-2012
http://www.sciencedirect.com/science/article/pii/S0168192304000115
https://doi.org/10.1016/j.agrformet.2003.06.001
https://www.weather.gov/safety/cold-faqs
https://doi.org/10.1007/s10584-011-0261-z
https://doi.org/10.1007/s10584-011-0261-z
https://wiki.usask.ca/download/attachments/223019286/CLASS_v3.6_Documentation.pdf?version=1&modificationDate=1478106693000&api=v2
https://wiki.usask.ca/download/attachments/223019286/CLASS_v3.6_Documentation.pdf?version=1&modificationDate=1478106693000&api=v2
https://cires1.colorado.edu/~voemel/vp.html
https://cires1.colorado.edu/~voemel/vp.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/qj.625
https://onlinelibrary.wiley.com/doi/abs/10.1002/qj.625
https://doi.org/10.1002/qj.625
https://fennerschool.anu.edu.au/files/anuclim61.pdf
https://fennerschool.anu.edu.au/files/anuclim61.pdf
https://www.semanticscholar.org/paper/A-Multivariate-Two-Sample-Test-Based-on-the-Concept-Zech-Aslan/60e8b69d6f91a64231a0ab6bf1ddef1e88fb03f6
https://www.semanticscholar.org/paper/A-Multivariate-Two-Sample-Test-Based-on-the-Concept-Zech-Aslan/60e8b69d6f91a64231a0ab6bf1ddef1e88fb03f6
https://www.semanticscholar.org/paper/A-Multivariate-Two-Sample-Test-Based-on-the-Concept-Zech-Aslan/60e8b69d6f91a64231a0ab6bf1ddef1e88fb03f6

xclim Documentation, Release 0.39.0

[zhang_indices_2011] Xuebin Zhang, Lisa Alexander, Gabriele C. Hegerl, Philip Jones, Albert Klein Tank, Thomas C.
Peterson, Blair Trewin, and Francis W. Zwiers. Indices for monitoring changes in extremes based
on daily temperature and precipitation data. WIREs Climate Change, 2(6):851–870, 2011. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcc.147. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/wcc.147 (visited on 2022-08-03), doi:10.1002/wcc.147.

[zhang_avoiding_2005] Xuebin Zhang, Gabriele Hegerl, Francis W. Zwiers, and Jesse Kenyon. Avoiding Inhomogene-
ity in Percentile-Based Indices of Temperature Extremes. Journal of Climate, 18(11):1641–1651, June
2005. Publisher: American Meteorological Society Section: Journal of Climate. URL: https://journals.
ametsoc.org/view/journals/clim/18/11/jcli3366.1.xml (visited on 2022-08-03), doi:10.1175/JCLI3366.1.

[cbcl_climate_2020] CBCL. Climate Projections for the National Capital Region, Volume 1: Results and Interpretation
for Key Climate Indices. Technical Report 193600.00, CBCL, Ottawa, Ontario, 2020.

[george_h_hargreaves_reference_1985] George H. Hargreaves and Zohrab A. Samani. Reference Crop Evapotranspi-
ration from Temperature. Applied engineering in agriculture, 1(2):96–99, 1985. PubAg AGID: 5662005.
doi:10.13031/2013.26773.

[nsidc_frequently_2008] NSIDC. Frequently Asked Questions on Arctic sea ice. June 2008. URL: https://nsidc.org/
arcticseaicenews/faq/ (visited on 2022-07-29).

[project_team_eca&d_algorithm_2013] Project team ECA&D and KNMI. Algorithm Theoretical Basis Document
(ATBD). Project Description EPJ029135, Royal Netherlands Meteorological Institute KNMI, De Bilt,
Netherlands, September 2013.

[wikipedia_contributors_growing_2021] Wikipedia Contributors. Growing degree-day. December 2021. Page Ver-
sion ID: 1062329362. URL: https://en.wikipedia.org/w/index.php?title=Growing_degree-day&oldid=
1062329362 (visited on 2022-08-03).

[world_meteorological_organization_guide_2008] World Meteorological Organization. Guide to meteorological in-
struments and methods of observation. World Meteorological Organization, Geneva, Switzerland, 2008.
ISBN 978-92-63-10008-5. OCLC: 288915903.

Bibliography 987

https://onlinelibrary.wiley.com/doi/abs/10.1002/wcc.147
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcc.147
https://doi.org/10.1002/wcc.147
https://journals.ametsoc.org/view/journals/clim/18/11/jcli3366.1.xml
https://journals.ametsoc.org/view/journals/clim/18/11/jcli3366.1.xml
https://doi.org/10.1175/JCLI3366.1
https://doi.org/10.13031/2013.26773
https://nsidc.org/arcticseaicenews/faq/
https://nsidc.org/arcticseaicenews/faq/
https://en.wikipedia.org/w/index.php?title=Growing_degree-day&oldid=1062329362
https://en.wikipedia.org/w/index.php?title=Growing_degree-day&oldid=1062329362

xclim Documentation, Release 0.39.0

988 Bibliography

PYTHON MODULE INDEX

x
xclim, 609
xclim.analog, 970
xclim.cli, 976
xclim.core, 609
xclim.core.bootstrapping, 609
xclim.core.calendar, 611
xclim.core.cfchecks, 621
xclim.core.datachecks, 621
xclim.core.dataflags, 622
xclim.core.formatting, 628
xclim.core.indicator, 633
xclim.core.locales, 644
xclim.core.missing, 646
xclim.core.options, 648
xclim.core.units, 650
xclim.core.utils, 654
xclim.data, 662
xclim.ensembles, 662
xclim.ensembles._base, 662
xclim.ensembles._reduce, 665
xclim.ensembles._robustness, 669
xclim.indicators, 672
xclim.indicators.atmos, 672
xclim.indicators.atmos._conversion, 672
xclim.indicators.atmos._precip, 690
xclim.indicators.atmos._synoptic, 721
xclim.indicators.atmos._temperature, 722
xclim.indicators.atmos._wind, 781
xclim.indicators.land, 782
xclim.indicators.land._snow, 782
xclim.indicators.land._streamflow, 788
xclim.indicators.seaIce, 791
xclim.indicators.seaIce._seaice, 791
xclim.indices, 793
xclim.indices._agro, 806
xclim.indices._anuclim, 816
xclim.indices._conversion, 821
xclim.indices._hydrology, 834
xclim.indices._multivariate, 837
xclim.indices._simple, 856
xclim.indices._synoptic, 862

xclim.indices._threshold, 862
xclim.indices.fire, 793
xclim.indices.fire._cffwis, 794
xclim.indices.fire._ffdi, 804
xclim.indices.fwi, 888
xclim.indices.generic, 888
xclim.indices.helpers, 895
xclim.indices.run_length, 900
xclim.indices.stats, 910
xclim.sdba, 913
xclim.sdba._adjustment, 914
xclim.sdba._processing, 915
xclim.sdba.adjustment, 915
xclim.sdba.base, 924
xclim.sdba.detrending, 927
xclim.sdba.loess, 931
xclim.sdba.measures, 932
xclim.sdba.nbutils, 939
xclim.sdba.processing, 940
xclim.sdba.properties, 948
xclim.sdba.utils, 963
xclim.subset, 977
xclim.testing, 968
xclim.testing.utils, 968

989

xclim Documentation, Release 0.39.0

990 Python Module Index

INDEX

Symbols
_acf() (in module xclim.sdba.properties), 948
_adjust() (xclim.sdba.adjustment.BaseAdjustment

method), 915
_adjust() (xclim.sdba.adjustment.DetrendedQuantileMapping

method), 917
_adjust() (xclim.sdba.adjustment.EmpiricalQuantileMapping

method), 917
_adjust() (xclim.sdba.adjustment.ExtremeValues

method), 919
_adjust() (xclim.sdba.adjustment.LOCI method), 920
_adjust() (xclim.sdba.adjustment.NpdfTransform class

method), 921
_adjust() (xclim.sdba.adjustment.PrincipalComponents

method), 922
_adjust() (xclim.sdba.adjustment.QuantileDeltaMapping

method), 923
_adjust() (xclim.sdba.adjustment.Scaling method), 923
_all_parameters (xclim.core.indicator.Indicator

attribute), 636
_allow_diff_calendars

(xclim.sdba.adjustment.BaseAdjustment at-
tribute), 915

_allow_diff_calendars
(xclim.sdba.adjustment.DetrendedQuantileMapping
attribute), 917

_allow_diff_calendars
(xclim.sdba.adjustment.EmpiricalQuantileMapping
attribute), 917

_allow_diff_calendars (xclim.sdba.adjustment.LOCI
attribute), 920

_allow_diff_calendars
(xclim.sdba.adjustment.Scaling attribute),
923

_annual_cycle() (in module xclim.sdba.properties),
949

_annual_cycle_correlation() (in module
xclim.sdba.measures), 933

_annual_statistic() (in module
xclim.sdba.properties), 949

_assign_named_args() (xclim.core.indicator.Indicator
method), 636

_attribute (xclim.sdba.adjustment.BaseAdjustment at-
tribute), 915

_attribute (xclim.sdba.base.ParametrizableWithDataset
attribute), 926

_autocorrelation() (in module xclim.sdba.nbutils),
939

_bias() (in module xclim.sdba.measures), 934
_bind_call() (xclim.core.indicator.Indicator method),

636
_calc_rsq() (in module xclim.ensembles._reduce), 665
_cf_names (xclim.core.indicator.Indicator attribute),

636
_check_cell_methods() (in module

xclim.core.cfchecks), 621
_check_identifier() (xclim.core.indicator.Indicator

static method), 636
_check_inputs() (xclim.sdba.adjustment.BaseAdjustment

class method), 915
_circular_bias() (in module xclim.sdba.measures),

934
_compute_virtual_index() (in module

xclim.core.utils), 658
_constant_regression() (in module

xclim.sdba.loess), 931
_convert_parameters() (in module

xclim.indices.fire._cffwis), 796
_corr_btw_var() (in module xclim.sdba.properties),

950
_correlation() (in module xclim.sdba.nbutils), 939
_create_command() (in module xclim.cli), 976
_cumsum_reset_on_zero() (in module

xclim.indices.run_length), 900
_day_length() (in module xclim.indices.fire._cffwis),

796
_day_length_factor() (in module

xclim.indices.fire._cffwis), 796
_decode_cf_coords() (in module xclim.sdba.base),

926
_detrend() (xclim.sdba.detrending.BaseDetrend

method), 927
_detrend() (xclim.sdba.detrending.NoDetrend method),

929

991

xclim Documentation, Release 0.39.0

_ecdf_1d() (in module xclim.sdba.utils), 963
_empty (class in xclim.core.indicator), 642
_ens_align_datasets() (in module

xclim.ensembles._base), 662
_ensure_correct_parameters()

(xclim.core.indicator.Indicator class method),
636

_ensure_correct_parameters()
(xclim.core.indicator.ResamplingIndicator
class method), 642

_ensure_correct_parameters()
(xclim.sdba.measures.StatisticalMeasure
class method), 933

_ensure_correct_parameters()
(xclim.sdba.measures.StatisticalPropertyMeasure
class method), 933

_ensure_correct_parameters()
(xclim.sdba.properties.StatisticalProperty
class method), 948

_euclidean_norm() (in module xclim.sdba.nbutils),
939

_extrapolate_on_quantiles() (in module
xclim.sdba.nbutils), 939

_extremes_train_1d() (in module
xclim.sdba._adjustment), 914

_fire_season() (in module xclim.indices.fire._cffwis),
796

_fire_weather_calc() (in module
xclim.indices.fire._cffwis), 796

_first_and_last_nonnull() (in module
xclim.sdba.nbutils), 939

_first_eof() (in module xclim.sdba.properties), 950
_fit_cluster_and_cdf() (in module

xclim.sdba._adjustment), 914
_fit_on_cluster() (in module

xclim.sdba._adjustment), 914
_fit_start() (in module xclim.indices.stats), 910
_format() (xclim.core.indicator.Indicator class

method), 636
_format_dict() (in module xclim.cli), 976
_funcs (xclim.core.indicator.Indicator attribute), 637
_gather_lat() (in module xclim.indices.helpers), 895
_gather_lon() (in module xclim.indices.helpers), 896
_gaussian_weighting() (in module xclim.sdba.loess),

931
_gen_parameters_section() (in module

xclim.core.formatting), 629
_gen_returns_section() (in module

xclim.core.formatting), 630
_gen_signature() (xclim.core.indicator.Indicator

method), 637
_get_bootstrap_freq() (in module

xclim.core.bootstrapping), 609
_get_gamma() (in module xclim.core.utils), 659

_get_indexes() (in module xclim.core.utils), 659
_get_indicator() (in module xclim.cli), 976
_get_input() (in module xclim.cli), 976
_get_nclust() (in module xclim.ensembles._reduce),

665
_get_number_of_elements_by_year() (in module

xclim.sdba.processing), 940
_get_output() (in module xclim.cli), 976
_get_translated_metadata()

(xclim.core.indicator.Indicator class method),
637

_get_trend() (xclim.sdba.detrending.BaseDetrend
method), 927

_get_trend() (xclim.sdba.detrending.LoessDetrend
method), 929

_get_trend() (xclim.sdba.detrending.MeanDetrend
method), 929

_get_trend() (xclim.sdba.detrending.PolyDetrend
method), 929

_get_trend() (xclim.sdba.detrending.RollingMeanDetrend
method), 930

_get_trend_group() (xclim.sdba.detrending.BaseDetrend
method), 928

_get_trend_group() (xclim.sdba.detrending.NoDetrend
method), 929

_get_year_label() (in module
xclim.core.bootstrapping), 609

_harmonize_units() (xclim.sdba.adjustment.BaseAdjustment
class method), 915

_history_string() (xclim.core.indicator.Indicator
method), 637

_history_string() (xclim.core.indicator.ResamplingIndicator
method), 642

_injected_parameters()
(xclim.core.indicator.Indicator class method),
637

_injected_parameters()
(xclim.core.indicator.ResamplingIndicatorWithIndexing
class method), 642

_interp_on_quantiles_1D() (in module
xclim.sdba.utils), 963

_interp_on_quantiles_2D() (in module
xclim.sdba.utils), 963

_linear_interpolation() (in module
xclim.core.utils), 659

_linear_regression() (in module xclim.sdba.loess),
931

_loess_nb() (in module xclim.sdba.loess), 931
_mae() (in module xclim.sdba.measures), 934
_match_value() (xclim.core.formatting.AttrFormatter

method), 628
_mean() (in module xclim.sdba.properties), 950
_nan_quantile() (in module xclim.core.utils), 659
_pairwise_haversine_and_bins() (in module

992 Index

xclim Documentation, Release 0.39.0

xclim.sdba.nbutils), 939
_pairwise_spearman() (in module xclim.sdba.utils),

963
_parse_indice() (xclim.core.indicator.Indicator static

method), 637
_parse_output_attrs()

(xclim.core.indicator.Indicator class method),
637

_parse_parameters() (in module
xclim.core.formatting), 630

_parse_returns() (in module xclim.core.formatting),
630

_parse_var_mapping() (xclim.core.indicator.Indicator
class method), 637

_parse_variables_from_call()
(xclim.core.indicator.Indicator method),
637

_postprocess() (xclim.core.indicator.Indicator
method), 637

_postprocess() (xclim.core.indicator.ResamplingIndicator
method), 642

_postprocess() (xclim.sdba.measures.StatisticalPropertyMeasure
method), 933

_postprocess() (xclim.sdba.properties.StatisticalProperty
method), 948

_preprocess_and_checks()
(xclim.core.indicator.Indicator method),
637

_preprocess_and_checks()
(xclim.core.indicator.ResamplingIndicator
method), 642

_preprocess_and_checks()
(xclim.core.indicator.ResamplingIndicatorWithIndexing
method), 642

_preprocess_and_checks()
(xclim.sdba.measures.StatisticalMeasure
method), 933

_preprocess_and_checks()
(xclim.sdba.measures.StatisticalPropertyMeasure
method), 933

_preprocess_and_checks()
(xclim.sdba.properties.StatisticalProperty
method), 948

_process_indicator() (in module xclim.cli), 976
_quantile() (in module xclim.sdba.nbutils), 939
_quantile() (in module xclim.sdba.properties), 951
_ratio() (in module xclim.sdba.measures), 935
_relative_bias() (in module xclim.sdba.measures),

935
_relative_frequency() (in module

xclim.sdba.properties), 951
_repr_hide_params (xclim.sdba.base.Grouper at-

tribute), 924
_repr_hide_params (xclim.sdba.base.Parametrizable

attribute), 926
_retrend() (xclim.sdba.detrending.BaseDetrend

method), 928
_retrend() (xclim.sdba.detrending.NoDetrend method),

929
_return_value() (in module xclim.sdba.properties),

951
_rle_1d() (in module xclim.indices.run_length), 900
_rmse() (in module xclim.sdba.measures), 935
_run_check() (in module xclim.core.options), 648
_scorr() (in module xclim.sdba.measures), 935
_set_metadata_locales() (in module

xclim.core.options), 648
_set_missing_options() (in module

xclim.core.options), 648
_show_deprecation_warning()

(xclim.core.indicator.Indicator method),
637

_skewness() (in module xclim.sdba.properties), 952
_spatial_correlogram() (in module

xclim.sdba.properties), 952
_spell_length_distribution() (in module

xclim.sdba.properties), 952
_text_fields (xclim.core.indicator.Indicator attribute),

637
_train() (xclim.sdba.adjustment.BaseAdjustment class

method), 916
_train() (xclim.sdba.adjustment.DetrendedQuantileMapping

class method), 917
_train() (xclim.sdba.adjustment.EmpiricalQuantileMapping

class method), 917
_train() (xclim.sdba.adjustment.ExtremeValues class

method), 919
_train() (xclim.sdba.adjustment.LOCI class method),

920
_train() (xclim.sdba.adjustment.PrincipalComponents

class method), 922
_train() (xclim.sdba.adjustment.Scaling class method),

923
_trend() (in module xclim.sdba.properties), 953
_tricube_weighting() (in module xclim.sdba.loess),

931
_update() (xclim.core.options.set_options method), 650
_update_attrs() (xclim.core.indicator.Indicator

method), 637
_update_parameters() (xclim.core.indicator.Indicator

class method), 638
_valid_locales() (in module xclim.core.locales), 644
_valid_missing_options() (in module

xclim.core.options), 648
_var() (in module xclim.sdba.properties), 953
_variable_mapping (xclim.core.indicator.Indicator at-

tribute), 638
_version_deprecated (xclim.core.indicator.Indicator

Index 993

xclim Documentation, Release 0.39.0

attribute), 638

A
abstract (xclim.core.indicator.Indicator attribute), 638
acf() (in module xclim.sdba.properties), 954
adapt_clix_meta_yaml() (in module xclim.core.utils),

660
adapt_freq() (in module xclim.sdba.processing), 940
add_cyclic_bounds() (in module xclim.sdba.utils),

963
ADD_DIMS (xclim.sdba.base.Grouper attribute), 924
add_iter_indicators() (in module

xclim.core.indicator), 642
adjust_doy_calendar() (in module

xclim.core.calendar), 611
aggregate_between_dates() (in module

xclim.indices.generic), 888
allowed_groups (xclim.sdba.measures.StatisticalPropertyMeasure

attribute), 933
allowed_groups (xclim.sdba.properties.StatisticalProperty

attribute), 948
allowed_periods (xclim.core.indicator.ResamplingIndicator

attribute), 642
amount2rate() (in module xclim.core.units), 650
annual_cycle_amplitude() (in module

xclim.sdba.properties), 954
annual_cycle_asymmetry() (in module

xclim.sdba.properties), 955
annual_cycle_correlation() (in module

xclim.sdba.measures), 936
annual_cycle_maximum() (in module

xclim.sdba.properties), 955
annual_cycle_minimum() (in module

xclim.sdba.properties), 955
annual_cycle_phase() (in module

xclim.sdba.properties), 956
apply() (xclim.sdba.base.Grouper method), 924
apply_correction() (in module xclim.sdba.utils), 963
asdict() (xclim.core.indicator.Parameter method), 641
aspect (xclim.sdba.measures.StatisticalPropertyMeasure

attribute), 933
aspect (xclim.sdba.properties.StatisticalProperty

attribute), 948
at_least_n_valid() (in module xclim.core.missing),

646
AttrFormatter (class in xclim.core.formatting), 628

B
base_flow_index() (in module

xclim.indicators.land._streamflow), 788
base_flow_index() (in module

xclim.indices._hydrology), 834
BaseAdjustment (class in xclim.sdba.adjustment), 915
BaseDetrend (class in xclim.sdba.detrending), 927

best_pc_orientation_full() (in module
xclim.sdba.utils), 963

best_pc_orientation_simple() (in module
xclim.sdba.utils), 964

bias() (in module xclim.sdba.measures), 936
biologically_effective_degree_days() (in mod-

ule xclim.indicators.atmos._temperature), 722
biologically_effective_degree_days() (in mod-

ule xclim.indices._agro), 806
blowing_snow() (in module

xclim.indicators.land._snow), 782
blowing_snow() (in module

xclim.indices._multivariate), 837
BOOL (xclim.core.utils.InputKind attribute), 654
bootstrap_func() (in module

xclim.core.bootstrapping), 609
broadcast() (in module xclim.sdba.utils), 964
build_bootstrap_year_da() (in module

xclim.core.bootstrapping), 610
build_climatology_bounds() (in module

xclim.core.calendar), 611
build_indicator_module() (in module

xclim.core.indicator), 642
build_indicator_module_from_yaml() (in module

xclim.core.indicator), 642
build_up_index() (in module

xclim.indices.fire._cffwis), 796

C
calc_perc() (in module xclim.core.utils), 660
calm_days() (in module xclim.indicators.atmos._wind),

781
calm_days() (in module xclim.indices._threshold), 862
cf_attrs (xclim.core.indicator.Indicator attribute), 638
cfcheck() (in module xclim.core.options), 648
cfcheck() (xclim.core.indicator.Indicator method), 638
cfcheck_from_name() (in module xclim.core.cfchecks),

621
cffwis_indices() (in module

xclim.indicators.atmos._precip), 690
cffwis_indices() (in module

xclim.indices.fire._cffwis), 797
cfindex_end_time() (in module xclim.core.calendar),

611
cfindex_start_time() (in module

xclim.core.calendar), 611
cftime_end_time() (in module xclim.core.calendar),

612
cftime_start_time() (in module

xclim.core.calendar), 612
change_significance() (in module

xclim.ensembles._robustness), 669
check_common_time() (in module

xclim.core.datachecks), 621

994 Index

xclim Documentation, Release 0.39.0

check_daily() (in module xclim.core.datachecks), 621
check_freq() (in module xclim.core.datachecks), 621
check_units() (in module xclim.core.units), 650
check_valid() (in module xclim.core.cfchecks), 621
choices (xclim.core.indicator.Parameter attribute), 641
circular_bias() (in module xclim.sdba.measures),

936
clausius_clapeyron_scaled_precipitation() (in

module xclim.indices._conversion), 821
climatological_mean_doy() (in module

xclim.core.calendar), 612
cold_and_dry_days() (in module

xclim.indicators.atmos._precip), 692
cold_and_dry_days() (in module

xclim.indices._multivariate), 837
cold_and_wet_days() (in module

xclim.indicators.atmos._precip), 693
cold_and_wet_days() (in module

xclim.indices._multivariate), 838
cold_spell_days() (in module

xclim.indicators.atmos._temperature), 724
cold_spell_days() (in module

xclim.indices._threshold), 863
cold_spell_duration_index() (in module

xclim.indicators.atmos._temperature), 725
cold_spell_duration_index() (in module

xclim.indices._multivariate), 838
cold_spell_frequency() (in module

xclim.indicators.atmos._temperature), 726
cold_spell_frequency() (in module

xclim.indices._threshold), 863
compare() (in module xclim.indices.generic), 889
compare_offsets() (in module xclim.core.calendar),

612
compute() (xclim.core.indicator.Indicator static

method), 639
consecutive_frost_days() (in module

xclim.indicators.atmos._temperature), 726
construct_moving_yearly_window() (in module

xclim.sdba.processing), 941
context (xclim.core.indicator.Indicator attribute), 639
continuous_snow_cover_end() (in module

xclim.indicators.land._snow), 783
continuous_snow_cover_end() (in module

xclim.indices._threshold), 864
continuous_snow_cover_start() (in module

xclim.indicators.land._snow), 784
continuous_snow_cover_start() (in module

xclim.indices._threshold), 864
convert_calendar() (in module xclim.core.calendar),

613
convert_units_to() (in module xclim.core.units), 650
cool_night_index() (in module

xclim.indicators.atmos._temperature), 727

cool_night_index() (in module xclim.indices._agro),
807

cooling_degree_days() (in module
xclim.indicators.atmos._temperature), 728

cooling_degree_days() (in module
xclim.indices._threshold), 865

copy_all_attrs() (in module xclim.sdba.utils), 964
corn_heat_units() (in module

xclim.indicators.atmos._conversion), 672
corn_heat_units() (in module xclim.indices._agro),

808
corr_btw_var() (in module xclim.sdba.properties), 956
cosine_of_solar_zenith_angle() (in module

xclim.indices.helpers), 896
count_level_crossings() (in module

xclim.indices.generic), 889
count_occurrences() (in module

xclim.indices.generic), 889
create_ensemble() (in module

xclim.ensembles._base), 663
cumprod() (xclim.core.utils.PercentileDataArray

method), 656
cumsum() (xclim.core.utils.PercentileDataArray

method), 656
cumulative_difference() (in module

xclim.indices.generic), 890

D
Daily (class in xclim.core.indicator), 634
daily_freezethaw_cycles() (in module

xclim.indicators.atmos._temperature), 729
daily_pr_intensity() (in module

xclim.indicators.atmos._precip), 694
daily_pr_intensity() (in module

xclim.indices._threshold), 865
daily_severity_rating() (in module

xclim.indices.fire._cffwis), 798
daily_temperature_range() (in module

xclim.indicators.atmos._temperature), 730
daily_temperature_range() (in module

xclim.indices._multivariate), 839
daily_temperature_range_variability() (in mod-

ule xclim.indicators.atmos._temperature), 730
daily_temperature_range_variability() (in mod-

ule xclim.indices._multivariate), 840
data_flags() (in module xclim.core.dataflags), 622
datacheck() (in module xclim.core.options), 649
datacheck() (xclim.core.indicator.Indicator method),

639
DataQualityException, 622
DATASET (xclim.core.utils.InputKind attribute), 655
DATE (xclim.core.utils.InputKind attribute), 655
date_range() (in module xclim.core.calendar), 614

Index 995

xclim Documentation, Release 0.39.0

date_range_like() (in module xclim.core.calendar),
614

DateStr (in module xclim.core.utils), 654
datetime_to_decimal_year() (in module

xclim.core.calendar), 615
day_lengths() (in module xclim.indices.helpers), 897
DAY_OF_YEAR (xclim.core.utils.InputKind attribute), 655
DayOfYearStr (in module xclim.core.utils), 654
days_in_year() (in module xclim.core.calendar), 615
days_over_precip_doy_thresh() (in module

xclim.indicators.atmos._precip), 695
days_over_precip_thresh() (in module

xclim.indicators.atmos._precip), 695
days_over_precip_thresh() (in module

xclim.indices._multivariate), 840
days_since_to_doy() (in module

xclim.core.calendar), 615
days_with_snow() (in module

xclim.indicators.atmos._precip), 696
days_with_snow() (in module

xclim.indices._threshold), 866
declare_units() (in module xclim.core.units), 651
default (xclim.core.indicator.Parameter attribute), 641
default_freq() (in module xclim.indices.generic), 890
degree_days() (in module xclim.indices.generic), 890
degree_days_exceedance_date() (in module

xclim.indicators.atmos._temperature), 731
degree_days_exceedance_date() (in module

xclim.indices._threshold), 866
description (xclim.core.indicator.Parameter attribute),

641
detrend() (xclim.sdba.detrending.BaseDetrend

method), 928
DetrendedQuantileMapping (class in

xclim.sdba.adjustment), 916
DIM (xclim.sdba.base.Grouper attribute), 924
dist_method() (in module xclim.indices.stats), 910
distance_from_sun() (in module

xclim.indices.helpers), 897
diurnal_temperature_range() (in module

xclim.indices.generic), 890
domain_count() (in module xclim.indices.generic), 890
doy_qmax() (in module

xclim.indicators.land._streamflow), 788
doy_qmin() (in module

xclim.indicators.land._streamflow), 789
doy_to_days_since() (in module

xclim.core.calendar), 616
doymax() (in module xclim.indices.generic), 891
doymin() (in module xclim.indices.generic), 891
drought_code() (in module

xclim.indicators.atmos._precip), 697
drought_code() (in module xclim.indices.fire._cffwis),

798

dry_days() (in module xclim.indicators.atmos._precip),
698

dry_days() (in module xclim.indices._threshold), 867
dry_spell_frequency() (in module

xclim.indicators.atmos._precip), 699
dry_spell_frequency() (in module

xclim.indices._agro), 809
dry_spell_total_length() (in module

xclim.indicators.atmos._precip), 699
dry_spell_total_length() (in module

xclim.indices._agro), 809
duck_empty() (in module xclim.sdba.base), 926

E
ecad_compliant() (in module xclim.core.dataflags),

623
eccentricity_correction_factor() (in module

xclim.indices.helpers), 897
ecdf() (in module xclim.sdba.utils), 965
effective_growing_degree_days() (in module

xclim.indices._agro), 810
EmpiricalQuantileMapping (class in

xclim.sdba.adjustment), 917
ensemble_mean_std_max_min() (in module

xclim.ensembles._base), 664
ensemble_percentiles() (in module

xclim.ensembles._base), 664
ensure_cftime_array() (in module

xclim.core.calendar), 616
ensure_chunk_size() (in module xclim.core.utils), 660
ensure_longest_doy() (in module xclim.sdba.utils),

965
equally_spaced_nodes() (in module xclim.sdba.utils),

965
escore() (in module xclim.sdba.processing), 941
extraterrestrial_solar_radiation() (in module

xclim.indices.helpers), 898
extreme_temperature_range() (in module

xclim.indicators.atmos._temperature), 732
extreme_temperature_range() (in module

xclim.indices._multivariate), 841
extreme_temperature_range() (in module

xclim.indices.generic), 891
ExtremeValues (class in xclim.sdba.adjustment), 917

F
fa() (in module xclim.indices.stats), 911
fire_season() (in module

xclim.indicators.atmos._temperature), 733
fire_season() (in module xclim.indices.fire._cffwis),

799
fire_weather_index() (in module

xclim.indices.fire._cffwis), 800

996 Index

xclim Documentation, Release 0.39.0

fire_weather_indexes() (in module
xclim.indicators.atmos._precip), 700

fire_weather_indexes() (in module
xclim.indices.fire), 793

fire_weather_ufunc() (in module
xclim.indices.fire._cffwis), 800

first_day_above() (in module
xclim.indicators.atmos._temperature), 734

first_day_above() (in module
xclim.indices._threshold), 867

first_day_below() (in module
xclim.indicators.atmos._temperature), 735

first_day_below() (in module
xclim.indices._threshold), 867

first_day_temperature_above() (in module
xclim.indices._threshold), 867

first_day_temperature_below() (in module
xclim.indices._threshold), 868

first_day_tg_above() (in module
xclim.indicators.atmos._temperature), 735

first_day_tg_below() (in module
xclim.indicators.atmos._temperature), 736

first_day_threshold_reached() (in module
xclim.indices.generic), 891

first_day_tn_above() (in module
xclim.indicators.atmos._temperature), 737

first_day_tn_below() (in module
xclim.indicators.atmos._temperature), 737

first_day_tx_above() (in module
xclim.indicators.atmos._temperature), 738

first_day_tx_below() (in module
xclim.indicators.atmos._temperature), 739

first_eof() (in module xclim.sdba.properties), 957
first_occurrence() (in module

xclim.indices.generic), 891
first_run() (in module xclim.indices.run_length), 900
first_run_1d() (in module xclim.indices.run_length),

900
first_run_after_date() (in module

xclim.indices.run_length), 900
first_run_ufunc() (in module

xclim.indices.run_length), 901
first_snowfall() (in module

xclim.indicators.atmos._precip), 702
first_snowfall() (in module

xclim.indices._threshold), 869
fit() (in module xclim.indicators.land._streamflow),

789
fit() (in module xclim.indices.stats), 911
fit() (xclim.sdba.detrending.BaseDetrend method), 928
fitted (xclim.sdba.detrending.BaseDetrend property),

928
format() (xclim.core.formatting.AttrFormatter method),

628

format_field() (xclim.core.formatting.AttrFormatter
method), 629

fraction_over_precip_doy_thresh() (in module
xclim.indicators.atmos._precip), 703

fraction_over_precip_thresh() (in module
xclim.indicators.atmos._precip), 704

fraction_over_precip_thresh() (in module
xclim.indices._multivariate), 842

freezethaw_spell_frequency() (in module
xclim.indicators.atmos._temperature), 739

freezethaw_spell_max_length() (in module
xclim.indicators.atmos._temperature), 741

freezethaw_spell_mean_length() (in module
xclim.indicators.atmos._temperature), 742

freezing_degree_days() (in module
xclim.indicators.atmos._temperature), 743

freq (xclim.sdba.base.Grouper property), 925
freq_analysis() (in module

xclim.indicators.land._streamflow), 790
FREQ_STR (xclim.core.utils.InputKind attribute), 655
frequency_analysis() (in module xclim.indices.stats),

911
freshet_start() (in module

xclim.indicators.atmos._temperature), 744
freshet_start() (in module xclim.indices._threshold),

869
friedman_rafsky() (in module xclim.analog), 971
from_additive_space() (in module

xclim.sdba.processing), 942
from_da() (xclim.core.utils.PercentileDataArray class

method), 657
from_dataset() (xclim.sdba.base.ParametrizableWithDataset

class method), 926
from_dict() (xclim.core.indicator.Indicator class

method), 639
from_kwargs() (xclim.sdba.base.Grouper class

method), 925
frost_days() (in module

xclim.indicators.atmos._temperature), 744
frost_days() (in module xclim.indices._simple), 856
frost_free_season_end() (in module

xclim.indicators.atmos._temperature), 745
frost_free_season_end() (in module

xclim.indices._threshold), 869
frost_free_season_length() (in module

xclim.indicators.atmos._temperature), 746
frost_free_season_length() (in module

xclim.indices._threshold), 870
frost_free_season_start() (in module

xclim.indicators.atmos._temperature), 747
frost_free_season_start() (in module

xclim.indices._threshold), 871
frost_season_length() (in module

xclim.indicators.atmos._temperature), 747

Index 997

xclim Documentation, Release 0.39.0

frost_season_length() (in module
xclim.indices._threshold), 871

G
gen_call_string() (in module xclim.core.formatting),

630
generate_indicator_docstring() (in module

xclim.core.formatting), 630
generate_local_dict() (in module

xclim.core.locales), 645
get_all_CMIP6_variables() (in module

xclim.testing.utils), 968
get_calendar() (in module xclim.core.calendar), 617
get_clusters() (in module xclim.sdba.utils), 965
get_clusters_1d() (in module xclim.sdba.utils), 966
get_command() (xclim.cli.XclimCli method), 976
get_coordinate() (xclim.sdba.base.Grouper method),

925
get_correction() (in module xclim.sdba.utils), 966
get_daily_events() (in module

xclim.indices.generic), 892
get_dist() (in module xclim.indices.stats), 912
get_index() (xclim.sdba.base.Grouper method), 925
get_instance() (xclim.core.indicator.IndicatorRegistrar

class method), 640
get_lm3_dist() (in module xclim.indices.stats), 912
get_local_attrs() (in module xclim.core.locales),

645
get_local_dict() (in module xclim.core.locales), 645
get_local_formatter() (in module

xclim.core.locales), 645
get_measure() (xclim.sdba.properties.StatisticalProperty

method), 948
get_op() (in module xclim.indices.generic), 892
get_percentile_metadata() (in module

xclim.core.formatting), 630
griffiths_drought_factor() (in module

xclim.indicators.atmos._precip), 704
griffiths_drought_factor() (in module

xclim.indices.fire._ffdi), 804
group() (xclim.sdba.base.Grouper method), 925
Grouper (class in xclim.sdba.base), 924
growing_degree_days() (in module

xclim.indicators.atmos._temperature), 748
growing_degree_days() (in module

xclim.indices._threshold), 872
growing_season_end() (in module

xclim.indicators.atmos._temperature), 749
growing_season_end() (in module

xclim.indices._threshold), 873
growing_season_length() (in module

xclim.indicators.atmos._temperature), 750
growing_season_length() (in module

xclim.indices._threshold), 873

growing_season_start() (in module
xclim.indicators.atmos._temperature), 751

growing_season_start() (in module
xclim.indices._threshold), 874

H
heat_index() (in module

xclim.indicators.atmos._conversion), 673
heat_index() (in module xclim.indices._conversion),

822
heat_wave_frequency() (in module

xclim.indicators.atmos._temperature), 751
heat_wave_frequency() (in module

xclim.indices._multivariate), 842
heat_wave_index() (in module

xclim.indicators.atmos._temperature), 752
heat_wave_index() (in module

xclim.indices._threshold), 875
heat_wave_max_length() (in module

xclim.indicators.atmos._temperature), 753
heat_wave_max_length() (in module

xclim.indices._multivariate), 843
heat_wave_total_length() (in module

xclim.indicators.atmos._temperature), 754
heat_wave_total_length() (in module

xclim.indices._multivariate), 844
heating_degree_days() (in module

xclim.indicators.atmos._temperature), 755
heating_degree_days() (in module

xclim.indices._threshold), 875
high_precip_low_temp() (in module

xclim.indicators.atmos._precip), 705
high_precip_low_temp() (in module

xclim.indices._multivariate), 845
hot_spell_frequency() (in module

xclim.indicators.atmos._temperature), 756
hot_spell_frequency() (in module

xclim.indices._threshold), 875
hot_spell_max_length() (in module

xclim.indicators.atmos._temperature), 757
hot_spell_max_length() (in module

xclim.indices._threshold), 876
Hourly (class in xclim.core.indicator), 634
huglin_index() (in module

xclim.indicators.atmos._temperature), 758
huglin_index() (in module xclim.indices._agro), 811
humidex() (in module

xclim.indicators.atmos._conversion), 674
humidex() (in module xclim.indices._conversion), 822

I
ice_days() (in module

xclim.indicators.atmos._temperature), 759
ice_days() (in module xclim.indices._simple), 856

998 Index

xclim Documentation, Release 0.39.0

identifier (xclim.core.indicator.Indicator attribute),
639

index_of_date() (in module xclim.indices.run_length),
901

Indicator (class in xclim.core.indicator), 634
IndicatorRegistrar (class in xclim.core.indicator),

640
infer_kind_from_parameter() (in module

xclim.core.utils), 660
infer_sampling_units() (in module

xclim.core.units), 651
initial_spread_index() (in module

xclim.indices.fire._cffwis), 802
injected (xclim.core.indicator.Parameter property), 641
injected_parameters (xclim.core.indicator.Indicator

property), 639
InputKind (class in xclim.core.utils), 654
interday_diurnal_temperature_range() (in mod-

ule xclim.indices.generic), 892
interp_calendar() (in module xclim.core.calendar),

617
interp_on_quantiles() (in module xclim.sdba.utils),

966
invert() (in module xclim.sdba.utils), 967
is_compatible() (xclim.core.utils.PercentileDataArray

class method), 657
is_parameter_dict() (xclim.core.indicator.Parameter

class method), 641
isothermality() (in module xclim.indices._anuclim),

816
item() (xclim.core.utils.PercentileDataArray method),

657

J
jetstream_metric_woollings() (in module

xclim.indicators.atmos._synoptic), 721
jetstream_metric_woollings() (in module

xclim.indices._synoptic), 862
jitter() (in module xclim.sdba.processing), 943
jitter_over_thresh() (in module

xclim.sdba.processing), 943
jitter_under_thresh() (in module

xclim.sdba.processing), 944
json() (xclim.core.indicator.Indicator method), 639

K
keep_longest_run() (in module

xclim.indices.run_length), 901
keetch_byram_drought_index() (in module

xclim.indicators.atmos._precip), 706
keetch_byram_drought_index() (in module

xclim.indices.fire._ffdi), 804
keywords (xclim.core.indicator.Indicator attribute), 640
kind (xclim.core.indicator.Parameter attribute), 641

kkz_reduce_ensemble() (in module
xclim.ensembles._reduce), 665

kldiv() (in module xclim.analog), 972
kmeans_reduce_ensemble() (in module

xclim.ensembles._reduce), 666
kolmogorov_smirnov() (in module xclim.analog), 972
KWARGS (xclim.core.utils.InputKind attribute), 655

L
last_occurrence() (in module xclim.indices.generic),

893
last_run() (in module xclim.indices.run_length), 902
last_run_before_date() (in module

xclim.indices.run_length), 902
last_snowfall() (in module

xclim.indicators.atmos._precip), 707
last_snowfall() (in module xclim.indices._threshold),

877
last_spring_frost() (in module

xclim.indicators.atmos._temperature), 760
last_spring_frost() (in module

xclim.indices._threshold), 877
latitude_temperature_index() (in module

xclim.indicators.atmos._temperature), 760
latitude_temperature_index() (in module

xclim.indices._agro), 812
lazy_indexing() (in module xclim.indices.run_length),

902
liquid_precip_accumulation() (in module

xclim.indicators.atmos._precip), 707
liquid_precip_ratio() (in module

xclim.indicators.atmos._precip), 708
liquid_precip_ratio() (in module

xclim.indices._multivariate), 845
list_commands() (xclim.cli.XclimCli method), 976
list_datasets() (in module xclim.testing.utils), 968
list_input_variables() (in module

xclim.testing.utils), 968
list_locales() (in module xclim.core.locales), 645
load_locale() (in module xclim.core.locales), 646
load_module() (in module xclim.core.utils), 660
LOCI (class in xclim.sdba.adjustment), 919
loess_smoothing() (in module xclim.sdba.loess), 931
LoessDetrend (class in xclim.sdba.detrending), 928
longest_run() (in module xclim.indices.run_length),

903

M
mae() (in module xclim.sdba.measures), 937
map_blocks() (in module xclim.sdba.base), 926
map_cdf() (in module xclim.sdba.utils), 967
map_cdf_1d() (in module xclim.sdba.utils), 967
map_groups() (in module xclim.sdba.base), 926

Index 999

xclim Documentation, Release 0.39.0

max_1day_precipitation_amount() (in module
xclim.indicators.atmos._precip), 709

max_1day_precipitation_amount() (in module
xclim.indices._simple), 856

max_daily_temperature_range() (in module
xclim.indicators.atmos._temperature), 761

max_n_day_precipitation_amount() (in module
xclim.indicators.atmos._precip), 709

max_n_day_precipitation_amount() (in module
xclim.indices._simple), 857

max_pr_intensity() (in module
xclim.indicators.atmos._precip), 710

max_pr_intensity() (in module
xclim.indices._simple), 858

maximum_consecutive_dry_days() (in module
xclim.indicators.atmos._precip), 710

maximum_consecutive_dry_days() (in module
xclim.indices._threshold), 878

maximum_consecutive_frost_days() (in module
xclim.indices._threshold), 878

maximum_consecutive_frost_free_days() (in mod-
ule xclim.indicators.atmos._temperature), 762

maximum_consecutive_frost_free_days() (in mod-
ule xclim.indices._threshold), 879

maximum_consecutive_tx_days() (in module
xclim.indices._threshold), 879

maximum_consecutive_warm_days() (in module
xclim.indicators.atmos._temperature), 763

maximum_consecutive_wet_days() (in module
xclim.indicators.atmos._precip), 711

maximum_consecutive_wet_days() (in module
xclim.indices._threshold), 880

mcarthur_forest_fire_danger_index() (in module
xclim.indicators.atmos._precip), 712

mcarthur_forest_fire_danger_index() (in module
xclim.indices.fire._ffdi), 805

mean() (in module xclim.sdba.properties), 957
mean_annual_phase() (in module

xclim.sdba.properties), 957
mean_annual_range() (in module

xclim.sdba.properties), 958
mean_annual_relative_range() (in module

xclim.sdba.properties), 958
mean_radiant_temperature() (in module

xclim.indicators.atmos._conversion), 675
mean_radiant_temperature() (in module

xclim.indices._conversion), 823
MeanDetrend (class in xclim.sdba.detrending), 929
measure (xclim.sdba.properties.StatisticalProperty at-

tribute), 948
melt_and_precip_max() (in module

xclim.indices._hydrology), 835
merge_attributes() (in module

xclim.core.formatting), 631

metric() (in module xclim.analog), 973
missing (xclim.core.indicator.ResamplingIndicator at-

tribute), 642
missing_any() (in module xclim.core.missing), 647
missing_from_context() (in module

xclim.core.missing), 647
missing_options (xclim.core.indicator.ResamplingIndicator

attribute), 642
missing_pct() (in module xclim.core.missing), 647
missing_wmo() (in module xclim.core.missing), 647
MissingVariableError, 656
module

xclim, 609
xclim.analog, 970
xclim.cli, 976
xclim.core, 609
xclim.core.bootstrapping, 609
xclim.core.calendar, 611
xclim.core.cfchecks, 621
xclim.core.datachecks, 621
xclim.core.dataflags, 622
xclim.core.formatting, 628
xclim.core.indicator, 633
xclim.core.locales, 644
xclim.core.missing, 646
xclim.core.options, 648
xclim.core.units, 650
xclim.core.utils, 654
xclim.data, 662
xclim.ensembles, 662
xclim.ensembles._base, 662
xclim.ensembles._reduce, 665
xclim.ensembles._robustness, 669
xclim.indicators, 672
xclim.indicators.atmos, 672
xclim.indicators.atmos._conversion, 672
xclim.indicators.atmos._precip, 690
xclim.indicators.atmos._synoptic, 721
xclim.indicators.atmos._temperature, 722
xclim.indicators.atmos._wind, 781
xclim.indicators.land, 782
xclim.indicators.land._snow, 782
xclim.indicators.land._streamflow, 788
xclim.indicators.seaIce, 791
xclim.indicators.seaIce._seaice, 791
xclim.indices, 793
xclim.indices._agro, 806
xclim.indices._anuclim, 816
xclim.indices._conversion, 821
xclim.indices._hydrology, 834
xclim.indices._multivariate, 837
xclim.indices._simple, 856
xclim.indices._synoptic, 862
xclim.indices._threshold, 862

1000 Index

xclim Documentation, Release 0.39.0

xclim.indices.fire, 793
xclim.indices.fire._cffwis, 794
xclim.indices.fire._ffdi, 804
xclim.indices.fwi, 888
xclim.indices.generic, 888
xclim.indices.helpers, 895
xclim.indices.run_length, 900
xclim.indices.stats, 910
xclim.sdba, 913
xclim.sdba._adjustment, 914
xclim.sdba._processing, 915
xclim.sdba.adjustment, 915
xclim.sdba.base, 924
xclim.sdba.detrending, 927
xclim.sdba.loess, 931
xclim.sdba.measures, 932
xclim.sdba.nbutils, 939
xclim.sdba.processing, 940
xclim.sdba.properties, 948
xclim.sdba.utils, 963
xclim.subset, 977
xclim.testing, 968
xclim.testing.utils, 968

msg (xclim.core.utils.ValidationError property), 658
multiday_temperature_swing() (in module

xclim.indices._multivariate), 846

N
n_outs (xclim.core.indicator.Indicator property), 640
nan_calc_percentiles() (in module xclim.core.utils),

660
nearest_neighbor() (in module xclim.analog), 973
negative_accumulation_values() (in module

xclim.core.dataflags), 623
NoDetrend (class in xclim.sdba.detrending), 929
normalize() (in module xclim.sdba.processing), 944
notes (xclim.core.indicator.Indicator attribute), 640
npdf_transform() (in module

xclim.sdba._adjustment), 915
NpdfTransform (class in xclim.sdba.adjustment), 920
npts_opt (in module xclim.indices.run_length), 903
NUMBER (xclim.core.utils.InputKind attribute), 655
NUMBER_SEQUENCE (xclim.core.utils.InputKind at-

tribute), 655

O
open_dataset() (in module xclim.testing.utils), 969
OPTIONAL_VARIABLE (xclim.core.utils.InputKind at-

tribute), 655
OTHER_PARAMETER (xclim.core.utils.InputKind at-

tribute), 655
outside_n_standard_deviations_of_climatology()

(in module xclim.core.dataflags), 624

overwintering_drought_code() (in module
xclim.indices.fire._cffwis), 802

P
Parameter (class in xclim.core.indicator), 640
Parameter._empty (class in xclim.core.indicator), 641
parameters (xclim.core.indicator.Indicator property),

640
parameters (xclim.sdba.base.Parametrizable property),

926
parametric_cdf() (in module xclim.indices.stats), 912
parametric_quantile() (in module

xclim.indices.stats), 912
Parametrizable (class in xclim.sdba.base), 925
ParametrizableWithDataset (class in

xclim.sdba.base), 926
parse_doc() (in module xclim.core.formatting), 631
parse_group() (in module xclim.sdba.base), 927
parse_offset() (in module xclim.core.calendar), 617
pc_matrix() (in module xclim.sdba.utils), 967
percentage_values_outside_of_bounds() (in mod-

ule xclim.core.dataflags), 624
percentile_bootstrap() (in module

xclim.core.bootstrapping), 610
percentile_doy() (in module xclim.core.calendar),

618
PercentileDataArray (class in xclim.core.utils), 656
pint2cfunits() (in module xclim.core.units), 651
pint_multiply() (in module xclim.core.units), 651
plot_rsqprofile() (in module

xclim.ensembles._reduce), 668
PolyDetrend (class in xclim.sdba.detrending), 929
potential_evapotranspiration() (in module

xclim.indicators.atmos._conversion), 676
potential_evapotranspiration() (in module

xclim.indices._conversion), 824
prcptot() (in module xclim.indices._anuclim), 816
prcptot_warmcold_quarter() (in module

xclim.indices._anuclim), 816
prcptot_wetdry_period() (in module

xclim.indices._anuclim), 817
prcptot_wetdry_quarter() (in module

xclim.indices._anuclim), 818
precip_accumulation() (in module

xclim.indicators.atmos._precip), 713
precip_accumulation() (in module

xclim.indices._multivariate), 847
precip_seasonality() (in module

xclim.indices._anuclim), 818
prefix_attrs() (in module xclim.core.formatting), 631
PrincipalComponents (class in

xclim.sdba.adjustment), 921
PROP (xclim.sdba.base.Grouper attribute), 924
prop_name (xclim.sdba.base.Grouper property), 925

Index 1001

xclim Documentation, Release 0.39.0

publish_release_notes() (in module
xclim.testing.utils), 969

Q
qian_weighted_mean_average() (in module

xclim.indices._agro), 813
quantile() (in module xclim.sdba.nbutils), 939
quantile() (in module xclim.sdba.properties), 958
QuantileDeltaMapping (class in

xclim.sdba.adjustment), 922
QUANTITY_STR (xclim.core.utils.InputKind attribute),

655

R
rain_approximation() (in module

xclim.indicators.atmos._conversion), 678
rain_approximation() (in module

xclim.indices._conversion), 825
rain_on_frozen_ground_days() (in module

xclim.indicators.atmos._precip), 713
rain_on_frozen_ground_days() (in module

xclim.indices._multivariate), 847
raise_warn_or_log() (in module xclim.core.utils), 661
rand_rot_matrix() (in module xclim.sdba.utils), 967
rank() (in module xclim.sdba.utils), 968
rate2amount() (in module xclim.core.units), 652
ratio() (in module xclim.sdba.measures), 937
rb_flashiness_index() (in module

xclim.indicators.land._streamflow), 790
rb_flashiness_index() (in module

xclim.indices._hydrology), 835
read_locale_file() (in module xclim.core.locales),

646
realm (xclim.core.indicator.Indicator attribute), 640
realm (xclim.sdba.measures.StatisticalMeasure at-

tribute), 933
realm (xclim.sdba.measures.StatisticalPropertyMeasure

attribute), 933
realm (xclim.sdba.properties.StatisticalProperty at-

tribute), 948
references (xclim.core.indicator.Indicator attribute),

640
register_methods() (in module xclim.core.dataflags),

625
register_missing_method() (in module

xclim.core.missing), 648
register_missing_method() (in module

xclim.core.options), 649
relative_annual_cycle_amplitude() (in module

xclim.sdba.properties), 959
relative_bias() (in module xclim.sdba.measures),

937
relative_frequency() (in module

xclim.sdba.properties), 959

relative_humidity() (in module
xclim.indicators.atmos._conversion), 678

relative_humidity() (in module
xclim.indices._conversion), 826

relative_humidity_from_dewpoint() (in module
xclim.indicators.atmos._conversion), 680

remove_NaNs() (in module xclim.sdba.nbutils), 939
reordering() (in module xclim.sdba.processing), 945
resample_and_rl() (in module

xclim.indices.run_length), 903
resample_doy() (in module xclim.core.calendar), 618
ResamplingIndicator (class in xclim.core.indicator),

641
ResamplingIndicatorWithIndexing (class in

xclim.core.indicator), 642
retrend() (xclim.sdba.detrending.BaseDetrend

method), 928
return_value() (in module xclim.sdba.properties), 960
rle() (in module xclim.indices.run_length), 904
rle_1d() (in module xclim.indices.run_length), 904
rle_statistics() (in module

xclim.indices.run_length), 904
rmse() (in module xclim.sdba.measures), 938
robustness_coefficient() (in module

xclim.ensembles._robustness), 671
RollingMeanDetrend (class in xclim.sdba.detrending),

930
rprctot() (in module xclim.indicators.atmos._precip),

714
rprctot() (in module xclim.indices._threshold), 881
run_bounds() (in module xclim.indices.run_length),

905
run_end_after_date() (in module

xclim.indices.run_length), 905

S
saturation_vapor_pressure() (in module

xclim.indicators.atmos._conversion), 681
saturation_vapor_pressure() (in module

xclim.indices._conversion), 827
Scaling (class in xclim.sdba.adjustment), 923
scorr() (in module xclim.sdba.measures), 938
sea_ice_area() (in module

xclim.indicators.seaIce._seaice), 791
sea_ice_area() (in module xclim.indices._threshold),

881
sea_ice_extent() (in module

xclim.indicators.seaIce._seaice), 792
sea_ice_extent() (in module

xclim.indices._threshold), 882
searchsorted() (xclim.core.utils.PercentileDataArray

method), 658
season() (in module xclim.indices.run_length), 905

1002 Index

xclim Documentation, Release 0.39.0

season_length() (in module xclim.indices.run_length),
906

select_resample_op() (in module
xclim.indices.generic), 893

select_time() (in module xclim.core.calendar), 618
set_dataset() (xclim.sdba.base.ParametrizableWithDataset

method), 926
set_options (class in xclim.core.options), 649
seuclidean() (in module xclim.analog), 973
sfcwind_2_uas_vas() (in module

xclim.indices._conversion), 828
show_versions() (in module xclim.testing.utils), 970
skewness() (in module xclim.sdba.properties), 960
snd_max_doy() (in module

xclim.indicators.land._snow), 784
snd_max_doy() (in module xclim.indices._hydrology),

836
snow_cover_duration() (in module

xclim.indicators.land._snow), 785
snow_cover_duration() (in module

xclim.indices._threshold), 882
snow_depth() (in module xclim.indicators.land._snow),

785
snow_depth() (in module xclim.indices._simple), 858
snow_melt_we_max() (in module

xclim.indicators.land._snow), 785
snow_melt_we_max() (in module

xclim.indices._hydrology), 836
snowfall_approximation() (in module

xclim.indicators.atmos._conversion), 682
snowfall_approximation() (in module

xclim.indices._conversion), 829
snw_max() (in module xclim.indicators.land._snow), 786
snw_max() (in module xclim.indices._hydrology), 836
snw_max_doy() (in module

xclim.indicators.land._snow), 786
snw_max_doy() (in module xclim.indices._hydrology),

836
solar_declination() (in module

xclim.indices.helpers), 898
solid_precip_accumulation() (in module

xclim.indicators.atmos._precip), 715
spatial_analogs() (in module xclim.analog), 974
spatial_correlogram() (in module

xclim.sdba.properties), 960
specific_humidity() (in module

xclim.indicators.atmos._conversion), 683
specific_humidity() (in module

xclim.indices._conversion), 829
specific_humidity_from_dewpoint() (in module

xclim.indicators.atmos._conversion), 684
specific_humidity_from_dewpoint() (in module

xclim.indices._conversion), 830
spell_length() (in module xclim.indices.generic), 893

spell_length_distribution() (in module
xclim.sdba.properties), 961

src_freq (xclim.core.indicator.Daily attribute), 634
src_freq (xclim.core.indicator.Hourly attribute), 634
src_freq (xclim.core.indicator.Indicator attribute), 640
stack_variables() (in module xclim.sdba.processing),

945
standardize() (in module xclim.analog), 974
standardize() (in module xclim.sdba.processing), 945
standardized_precipitation_evapotranspiration_index()

(in module xclim.indicators.atmos._precip),
716

standardized_precipitation_evapotranspiration_index()
(in module xclim.indices._agro), 813

standardized_precipitation_index() (in module
xclim.indicators.atmos._precip), 717

standardized_precipitation_index() (in module
xclim.indices._agro), 814

StatisticalMeasure (class in xclim.sdba.measures),
932

StatisticalProperty (class in xclim.sdba.properties),
948

StatisticalPropertyMeasure (class in
xclim.sdba.measures), 933

statistics() (in module xclim.indices.generic), 894
statistics_run_1d() (in module

xclim.indices.run_length), 906
statistics_run_ufunc() (in module

xclim.indices.run_length), 907
stats() (in module xclim.indicators.land._streamflow),

791
str2pint() (in module xclim.core.units), 652
STRING (xclim.core.utils.InputKind attribute), 655
suspicious_run() (in module

xclim.indices.run_length), 907
suspicious_run_1d() (in module

xclim.indices.run_length), 907
szekely_rizzo() (in module xclim.analog), 974

T
tas() (in module xclim.indices._conversion), 831
tas_below_tasmin() (in module xclim.core.dataflags),

625
tas_exceeds_tasmax() (in module

xclim.core.dataflags), 625
tasmax_below_tasmin() (in module

xclim.core.dataflags), 625
temperature_extremely_high() (in module

xclim.core.dataflags), 626
temperature_extremely_low() (in module

xclim.core.dataflags), 626
temperature_seasonality() (in module

xclim.indices._anuclim), 819

Index 1003

xclim Documentation, Release 0.39.0

temperature_sum() (in module xclim.indices.generic),
894

tg() (in module xclim.indicators.atmos._conversion),
684

tg10p() (in module xclim.indicators.atmos._temperature),
763

tg10p() (in module xclim.indices._multivariate), 848
tg90p() (in module xclim.indicators.atmos._temperature),

764
tg90p() (in module xclim.indices._multivariate), 849
tg_days_above() (in module

xclim.indicators.atmos._temperature), 765
tg_days_above() (in module xclim.indices._threshold),

882
tg_days_below() (in module

xclim.indicators.atmos._temperature), 766
tg_days_below() (in module xclim.indices._threshold),

883
tg_max() (in module xclim.indicators.atmos._temperature),

766
tg_max() (in module xclim.indices._simple), 858
tg_mean() (in module

xclim.indicators.atmos._temperature), 767
tg_mean() (in module xclim.indices._simple), 859
tg_mean_warmcold_quarter() (in module

xclim.indices._anuclim), 820
tg_mean_wetdry_quarter() (in module

xclim.indices._anuclim), 821
tg_min() (in module xclim.indicators.atmos._temperature),

768
tg_min() (in module xclim.indices._simple), 859
thawing_degree_days() (in module

xclim.indicators.atmos._temperature), 768
threshold_count() (in module xclim.indices.generic),

894
thresholded_statistics() (in module

xclim.indices.generic), 895
time_bnds() (in module xclim.core.calendar), 619
time_correction_for_solar_angle() (in module

xclim.indices.helpers), 899
title (xclim.core.indicator.Indicator attribute), 640
tn10p() (in module xclim.indicators.atmos._temperature),

769
tn10p() (in module xclim.indices._multivariate), 849
tn90p() (in module xclim.indicators.atmos._temperature),

770
tn90p() (in module xclim.indices._multivariate), 850
tn_days_above() (in module

xclim.indicators.atmos._temperature), 771
tn_days_above() (in module xclim.indices._threshold),

883
tn_days_below() (in module

xclim.indicators.atmos._temperature), 771
tn_days_below() (in module xclim.indices._threshold),

884
tn_max() (in module xclim.indicators.atmos._temperature),

772
tn_max() (in module xclim.indices._simple), 860
tn_mean() (in module

xclim.indicators.atmos._temperature), 772
tn_mean() (in module xclim.indices._simple), 860
tn_min() (in module xclim.indicators.atmos._temperature),

773
tn_min() (in module xclim.indices._simple), 860
to_additive_space() (in module

xclim.sdba.processing), 945
to_agg_units() (in module xclim.core.units), 653
TRANSLATABLE_ATTRS (in module xclim.core.locales),

644
translate_attrs() (xclim.core.indicator.Indicator

class method), 640
trend() (in module xclim.sdba.properties), 962
tropical_nights() (in module

xclim.indicators.atmos._temperature), 774
tropical_nights() (in module

xclim.indices._threshold), 884
tx10p() (in module xclim.indicators.atmos._temperature),

774
tx10p() (in module xclim.indices._multivariate), 851
tx90p() (in module xclim.indicators.atmos._temperature),

775
tx90p() (in module xclim.indices._multivariate), 852
tx_days_above() (in module

xclim.indicators.atmos._temperature), 776
tx_days_above() (in module xclim.indices._threshold),

884
tx_days_below() (in module

xclim.indicators.atmos._temperature), 777
tx_days_below() (in module xclim.indices._threshold),

885
tx_max() (in module xclim.indicators.atmos._temperature),

777
tx_max() (in module xclim.indices._simple), 861
tx_mean() (in module

xclim.indicators.atmos._temperature), 778
tx_mean() (in module xclim.indices._simple), 861
tx_min() (in module xclim.indicators.atmos._temperature),

778
tx_min() (in module xclim.indices._simple), 861
tx_tn_days_above() (in module

xclim.indicators.atmos._temperature), 779
tx_tn_days_above() (in module

xclim.indices._multivariate), 852

U
uas_vas_2_sfcwind() (in module

xclim.indices._conversion), 832
UnavailableLocaleError, 644

1004 Index

xclim Documentation, Release 0.39.0

uniform_noise_like() (in module
xclim.sdba.processing), 947

units (xclim.core.indicator.Parameter attribute), 641
units2pint() (in module xclim.core.units), 654
universal_thermal_climate_index() (in module

xclim.indicators.atmos._conversion), 685
universal_thermal_climate_index() (in module

xclim.indices._conversion), 832
unpack_moving_yearly_window() (in module

xclim.sdba.processing), 947
unprefix_attrs() (in module xclim.core.formatting),

632
unstack_variables() (in module

xclim.sdba.processing), 947
unstandardize() (in module xclim.sdba.processing),

947
update() (xclim.core.indicator.Parameter method), 641
update_history() (in module xclim.core.formatting),

632
update_variable_yaml() (in module

xclim.testing.utils), 970
update_xclim_history() (in module

xclim.core.formatting), 632
use_ufunc() (in module xclim.indices.run_length), 908
uses_dask() (in module xclim.core.utils), 661

V
ValidationError, 658
value (xclim.core.indicator.Parameter attribute), 641
values_op_thresh_repeating_for_n_or_more_days()

(in module xclim.core.dataflags), 626
values_repeating_for_n_or_more_days() (in mod-

ule xclim.core.dataflags), 627
var() (in module xclim.sdba.properties), 962
VARIABLE (xclim.core.utils.InputKind attribute), 655
vecquantiles() (in module xclim.sdba.nbutils), 939
very_large_precipitation_events() (in module

xclim.core.dataflags), 627

W
walk_map() (in module xclim.core.utils), 661
warm_and_dry_days() (in module

xclim.indicators.atmos._precip), 718
warm_and_dry_days() (in module

xclim.indices._multivariate), 853
warm_and_wet_days() (in module

xclim.indicators.atmos._precip), 719
warm_and_wet_days() (in module

xclim.indices._multivariate), 854
warm_day_frequency() (in module

xclim.indices._threshold), 885
warm_night_frequency() (in module

xclim.indices._threshold), 886

warm_spell_duration_index() (in module
xclim.indicators.atmos._temperature), 780

warm_spell_duration_index() (in module
xclim.indices._multivariate), 854

water_budget() (in module
xclim.indicators.atmos._conversion), 686

water_budget() (in module xclim.indices._agro), 815
water_budget_from_tas() (in module

xclim.indicators.atmos._conversion), 687
wet_precip_accumulation() (in module

xclim.indicators.atmos._precip), 720
wetdays() (in module xclim.indicators.atmos._precip),

720
wetdays() (in module xclim.indices._threshold), 886
wetdays_prop() (in module

xclim.indicators.atmos._precip), 721
wetdays_prop() (in module xclim.indices._threshold),

887
wind_chill_index() (in module

xclim.indicators.atmos._conversion), 688
wind_chill_index() (in module

xclim.indices._conversion), 833
wind_speed_from_vector() (in module

xclim.indicators.atmos._conversion), 689
wind_speed_height_conversion() (in module

xclim.indices.helpers), 899
wind_values_outside_of_bounds() (in module

xclim.core.dataflags), 628
wind_vector_from_speed() (in module

xclim.indicators.atmos._conversion), 690
windowed_run_count() (in module

xclim.indices.run_length), 908
windowed_run_count_1d() (in module

xclim.indices.run_length), 908
windowed_run_count_ufunc() (in module

xclim.indices.run_length), 909
windowed_run_events() (in module

xclim.indices.run_length), 909
windowed_run_events_1d() (in module

xclim.indices.run_length), 909
windowed_run_events_ufunc() (in module

xclim.indices.run_length), 909
windy_days() (in module

xclim.indicators.atmos._wind), 782
windy_days() (in module xclim.indices._threshold), 887
winter_rain_ratio() (in module

xclim.indices._multivariate), 855
winter_storm() (in module

xclim.indicators.land._snow), 787
winter_storm() (in module xclim.indices._threshold),

888
within_bnds_doy() (in module xclim.core.calendar),

620
wrapped_partial() (in module xclim.core.utils), 661

Index 1005

xclim Documentation, Release 0.39.0

write_file() (in module xclim.cli), 977

X
xclim

module, 609
xclim.analog

module, 970
xclim.cli

module, 976
xclim.core

module, 609
xclim.core.bootstrapping

module, 609
xclim.core.calendar

module, 611
xclim.core.cfchecks

module, 621
xclim.core.datachecks

module, 621
xclim.core.dataflags

module, 622
xclim.core.formatting

module, 628
xclim.core.indicator

module, 633
xclim.core.locales

module, 644
xclim.core.missing

module, 646
xclim.core.options

module, 648
xclim.core.units

module, 650
xclim.core.utils

module, 654
xclim.data

module, 662
xclim.ensembles

module, 662
xclim.ensembles._base

module, 662
xclim.ensembles._reduce

module, 665
xclim.ensembles._robustness

module, 669
xclim.indicators

module, 672
xclim.indicators.atmos

module, 672
xclim.indicators.atmos._conversion

module, 672
xclim.indicators.atmos._precip

module, 690
xclim.indicators.atmos._synoptic

module, 721
xclim.indicators.atmos._temperature

module, 722
xclim.indicators.atmos._wind

module, 781
xclim.indicators.land

module, 782
xclim.indicators.land._snow

module, 782
xclim.indicators.land._streamflow

module, 788
xclim.indicators.seaIce

module, 791
xclim.indicators.seaIce._seaice

module, 791
xclim.indices

module, 793
xclim.indices._agro

module, 806
xclim.indices._anuclim

module, 816
xclim.indices._conversion

module, 821
xclim.indices._hydrology

module, 834
xclim.indices._multivariate

module, 837
xclim.indices._simple

module, 856
xclim.indices._synoptic

module, 862
xclim.indices._threshold

module, 862
xclim.indices.fire

module, 793
xclim.indices.fire._cffwis

module, 794
xclim.indices.fire._ffdi

module, 804
xclim.indices.fwi

module, 888
xclim.indices.generic

module, 888
xclim.indices.helpers

module, 895
xclim.indices.run_length

module, 900
xclim.indices.stats

module, 910
xclim.sdba

module, 913
xclim.sdba._adjustment

module, 914
xclim.sdba._processing

1006 Index

xclim Documentation, Release 0.39.0

module, 915
xclim.sdba.adjustment

module, 915
xclim.sdba.base

module, 924
xclim.sdba.detrending

module, 927
xclim.sdba.loess

module, 931
xclim.sdba.measures

module, 932
xclim.sdba.nbutils

module, 939
xclim.sdba.processing

module, 940
xclim.sdba.properties

module, 948
xclim.sdba.utils

module, 963
xclim.subset

module, 977
xclim.testing

module, 968
xclim.testing.utils

module, 968
XclimCli (class in xclim.cli), 976

Z
zech_aslan() (in module xclim.analog), 975

Index 1007

	Installation
	Stable release
	Anaconda release
	Extra dependencies
	From sources
	Creating a Conda environment

	Basic Usage
	Climate indicator computations
	Health checks and metadata attributes
	Graphics

	Examples
	Workflow Examples
	Environment configuration
	Setting up the Dask client: parallel processing
	Creating xarray datasets
	Multi-file datasets
	Subsetting and selecting data with xarray
	Climate index calculation & resampling frequencies
	Comparison of atmos vs indices modules
	Different ways of resampling

	Lazy computation - Nothing has been computed so far !
	Performance tips
	Optimizing the chunk size
	Loading the data in memory

	Unit handling in xclim
	Threshold indices

	Ensembles
	create_ensemble
	Ensemble statistics
	Ensemble percentiles

	Ensemble-Reduction Techniques
	K-Means reduce ensemble
	KKZ reduce ensemble
	KKZ algorithm vs K-Means algorithm

	Frequency analysis
	Handling missing values

	Customizing and controlling xclim
	Checks
	Adding translated metadata
	Missing values

	Extending xclim
	Indices vs Indicators
	indice
	indicator
	Call sequence

	Defining new indices
	Naming and conventions
	Generic functions for common operations
	Documentation

	Defining new indicators
	Identifier vs python name
	Metadata parsing vs explicit setting
	Internationalization of metadata
	Inputs and checks
	Indicator creation

	Virtual modules
	YAML file
	Validation of the YAML file
	Loading the module and computating of the indices.

	Mapping of indicators

	Statistical Downscaling and Bias-Adjustment
	Grouping
	Modular approach
	First example : pr and frequency adaptation
	Second example: tas and detrending
	Third example : Multi-method protocol - Hnilica et al. 2017
	Fourth example : Multivariate bias-adjustment with multiple steps - Cannon 2018
	Perform an initial univariate adjustment.
	Stack the variables to multivariate arrays and standardize them
	Perform the N-dimensional probability density function transform
	Restoring the trend
	There we are!

	Statistical Downscaling and Bias-Adjustment - Advanced tools
	Optimization with dask
	LOESS smoothing and detrending
	LOESS Detrending

	Initializing an Adjustment object from a training dataset
	Retrieving extra output diagnostics
	Moving window for adjustments
	Full example: Multivariate adjustment in the additive space
	1. Jitter, additive space transformation and variable stacking
	2. Get residuals and trends
	3. Adjustments
	4. Re-trend and transform back to the physical space

	Tests for sdba

	Spatial Analogues examples
	Input data

	Climate indicators
	atmos: Atmosphere
	land: Land surface
	seaIce: Sea ice
	Virtual submodules
	CF Standard indices
	ICCLIM indices
	ANUCLIM indices

	Climate indices
	Indices library
	Indices submodules
	Generic indices submodule
	Helper functions submodule
	Fire indices submodule
	Canadian Forest Fire Weather Index System
	Fire season
	Overwintering

	McArthur Forest Fire Danger (Mark 5) System

	Health Checks
	CF-Convention checking
	Data checks
	Missing values identification
	Data flags

	Unit handling
	Threshold indices
	Sum and count indices
	Other utilites

	Internationalization
	Command line interface
	Computing indicators
	Data Quality Checks

	Bias adjustment and downscaling algorithms
	Application in multivariate settings
	Minimum and maximum temperature
	Relative and specific humidity
	Radiation and precipitation

	SDBA User API
	Adjustment Methods
	Pre and post processing
	Detrending Objects
	Statistical Downscaling and Bias Adjustment Utilities
	Numba-accelerated utilities
	LOESS Smoothing Module
	Properties Submodule
	Measures Submodule

	Developer tools
	Base Classes and Developer Tools

	Spatial Analogues
	Methods to compute the (dis)similarity between samples
	Analogue metrics API
	Utilities for developers

	Contributing
	Types of Contributions
	Implement Features, Indices or Indicators
	Report Bugs
	Fix Bugs
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines
	Tips
	Versioning
	Deploying
	Packaging
	The Automated Approach
	The Manual Approach
	Releasing on conda-forge
	Initial Release
	Subsequent releases

	Credits
	Development Lead
	Co-Developers
	Contributors

	History
	0.39.0 (2022-11-01)
	New features and enhancements
	New indicators
	Breaking changes
	Bug fixes
	Internal changes

	0.38.0 (2022-09-06)
	New features and enhancements
	New indicators
	Breaking changes
	Bug fixes
	Internal changes

	0.37.0 (2022-06-20)
	Announcements
	New features and enhancements
	Breaking changes
	New indicators
	Internal changes
	Bug fixes

	v0.36.0 (2022-04-29)
	Bug fixes
	New features and enhancements
	Internal changes

	v0.35.0 (2022-04-01)
	New indicators
	New features and enhancements
	Bug fixes
	Internal changes

	v0.34.0 (2022-02-25)
	Announcements
	Breaking changes
	New features and enhancements
	Bug fixes
	Internal changes

	v0.33.2 (2022-02-09)
	Announcements
	Breaking changes
	Bug fixes
	Internal changes

	v0.33.0 (2022-01-28)
	Announcements
	New indicators
	New features and enhancements
	Breaking changes
	Internal changes
	Bug fixes

	v0.32.1 (2021-12-17)
	Bug fixes

	v0.32.0 (2021-12-17)
	Announcements
	New features and enhancements
	Breaking changes
	Internal changes
	Bug fixes

	v0.31.0 (2021-11-05)
	New indicators
	New features and enhancements
	Breaking changes
	Internal changes
	Bug fixes

	v0.30.1 (2021-10-01)
	Bug fixes

	v0.30.0 (2021-09-28)
	New indicators
	New features and enhancements
	Breaking changes
	Bug fixes
	Internal Changes

	v0.29.0 (2021-08-30)
	Announcements
	Breaking changes
	New features and enhancements
	New indicators
	Bug fixes
	Internal Changes

	v0.28.1 (2021-07-29)
	Announcements
	New indicators
	Internal Changes

	v0.28.0 (2021-07-07)
	New features and enhancements
	Bug fixes
	Breaking changes
	New indicators
	Internal Changes

	v0.27.0 (2021-05-28)
	New features and enhancements
	Breaking changes
	New indicators
	Internal Changes

	v0.26.1 (2021-05-04)
	v0.26.0 (2021-04-30)
	Announcements
	New features and enhancements
	Breaking changes
	Bug fixes
	Internal Changes

	v0.25.0 (2021-03-31)
	Announcements
	New indicators
	New features and enhancements
	Internal changes

	v0.24.0 (2021-03-01)
	New indicators
	Breaking changes
	New features and enhancements
	Internal changes
	Bug fixes

	v0.23.0 (2021-01-22)
	Breaking changes
	New indicators
	New features and enhancements
	Bug fixes
	Internal changes

	v0.22.0 (2020-12-07)
	Breaking changes
	New indicators
	New features and enhancements
	Bug fixes
	Internal changes

	v0.21.0 (2020-10-23)
	Breaking changes
	New indicators
	New features and enhancements
	Bug fixes
	Internal changes

	v0.20.0 (2020-09-18)
	Breaking changes
	New indicators
	New features and enhancements
	Bug fixes
	Internal changes

	v0.19.0 (2020-08-18)
	Breaking changes
	New features and enhancements
	Bug fixes
	Internal changes

	v0.18.0 (2020-06-26)
	v0.17.0 (2020-05-15)
	v0.16.0 (2020-04-23)
	v0.15.x (2020-03-12)
	v0.14.x (2020-02-21)
	v0.13.x (2020-01-10)
	v0.12.x-beta (2019-11-18)
	v0.11.x-beta (2019-10-17)
	v0.10.x-beta (2019-06-18)
	v0.10-beta (2019-06-06)
	v0.9-beta (2019-05-13)
	v0.8-beta (2019-02-11)
	0.7-beta (2019-02-05)
	v0.6-alpha (2018-10-03)
	v0.5-alpha (2018-09-26)
	v0.4-alpha (2018-09-14)
	v0.3-alpha (2018-09-4)
	v0.2-alpha (2018-08-27)
	v0.1.0-dev (2018-08-23)

	API
	Indicators
	Atmospheric indicators
	Land indicators
	Ice-related indicators
	Virtual indicator submodules
	CF Standard indices
	ICCLIM indices
	ANUCLIM indices

	Indices
	Ensembles module
	Ensemble Reduction
	Ensemble Robustness metrics

	Indicator Tools
	Indicators utilities
	Dictionary and YAML parser
	YAML file structure
	Inputs

	Unit Handling module
	Units handling submodule

	Other Utilities
	Calendar handling utilities
	Formatting utilities for indicators
	Options submodule
	Miscellaneous indices utilities

	Other xclim modules
	Spatial Analogs module
	Testing module
	Subset module

	xclim
	xclim package
	Subpackages
	xclim.core package
	Submodules
	xclim.core.bootstrapping module
	xclim.core.calendar module
	Calendar handling utilities

	xclim.core.cfchecks module
	CF-Convention checking

	xclim.core.datachecks module
	Data checks

	xclim.core.dataflags module
	Data flags

	xclim.core.formatting module
	Formatting utilities for indicators

	xclim.core.indicator module
	Indicators utilities
	Dictionary and YAML parser
	YAML file structure
	Inputs

	xclim.core.locales module
	Internationalization

	xclim.core.missing module
	Missing values identification

	xclim.core.options module
	Options submodule

	xclim.core.units module
	Units handling submodule

	xclim.core.utils module
	Miscellaneous indices utilities

	xclim.data package
	xclim.ensembles package
	Submodules
	xclim.ensembles._base module
	Ensembles Creation and Statistics

	xclim.ensembles._reduce module
	Ensemble Reduction

	xclim.ensembles._robustness module
	Ensemble Robustness metrics

	xclim.indicators package
	Indicators module
	Subpackages
	xclim.indicators.atmos package
	Atmospheric indicators
	Submodules
	xclim.indicators.atmos._conversion module
	xclim.indicators.atmos._precip module
	xclim.indicators.atmos._synoptic module
	xclim.indicators.atmos._temperature module
	xclim.indicators.atmos._wind module
	xclim.indicators.land package
	Land indicators
	Submodules
	xclim.indicators.land._snow module
	xclim.indicators.land._streamflow module
	xclim.indicators.seaIce package
	Ice-related indicators
	Submodules
	xclim.indicators.seaIce._seaice module
	Sea ice indicators

	xclim.indices package
	Indices library
	Subpackages
	xclim.indices.fire package
	Fire indices submodule
	Submodules
	xclim.indices.fire._cffwis module
	Canadian Forest Fire Weather Index System
	Fire season
	Overwintering
	xclim.indices.fire._ffdi module
	McArthur Forest Fire Danger (Mark 5) System

	Submodules
	xclim.indices._agro module
	xclim.indices._anuclim module
	xclim.indices._conversion module
	xclim.indices._hydrology module
	xclim.indices._multivariate module
	xclim.indices._simple module
	xclim.indices._synoptic module
	xclim.indices._threshold module
	xclim.indices.fwi module
	xclim.indices.generic module
	Generic indices submodule

	xclim.indices.helpers module
	Helper functions submodule

	xclim.indices.run_length module
	xclim.indices.stats module

	xclim.sdba package
	Statistical Downscaling and Bias Adjustment
	Modular Approach
	Grouping
	Experimental wrap of SBCK
	Notes for Developers

	Submodules
	xclim.sdba._adjustment module
	Adjustment Algorithms

	xclim.sdba._processing module
	xclim.sdba.adjustment module
	Adjustment Methods

	xclim.sdba.base module
	Base Classes and Developer Tools

	xclim.sdba.detrending module
	Detrending Objects

	xclim.sdba.loess module
	LOESS Smoothing Module

	xclim.sdba.measures module
	Measures Submodule

	xclim.sdba.nbutils module
	Numba-accelerated utilities

	xclim.sdba.processing module
	Pre and post processing

	xclim.sdba.properties module
	Properties Submodule

	xclim.sdba.utils module
	Statistical Downscaling and Bias Adjustment Utilities

	xclim.testing package
	Submodules
	xclim.testing.utils module

	Submodules
	xclim.analog module
	Methods to compute the (dis)similarity between samples

	xclim.cli module
	xclim.subset module

	Bibliography
	Python Module Index
	Index

